高二物理《机械能守恒定律》教案

时间:2019-05-12 17:23:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高二物理《机械能守恒定律》教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高二物理《机械能守恒定律》教案》。

第一篇:高二物理《机械能守恒定律》教案

江苏省苏州市蓝缨学校高二物理《机械能守恒定律》教案

在离地面高h的地方,以v0的速度斜向上抛出一石块,v0的方向与水平成角,若空气阻力不计,求石块落至地面的速度大小.(看例题课件)

设石块的质量为m,因空气阻力不计,石块在整个运动过程只受重力,只有重力做功,石块机械能保持守恒.

现取地面为零重力势能面.

石块在抛出点的机械能:E112mv0mgh 2石块在落地点的机械能: 据

列出等式 可得:

从以上解答可看出,应用机械能守恒定律解题简洁便利,显示出很大的优越性,不仅 适合于直线运动,也适合于做曲线运动的物体,分析以上解题过程,还可归纳出 1.应用机械能守恒定律解题的基本步骤

(l)根据题意,选取研究对象(物体或相互作用的物体系)

(2)分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件.

(3)若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运 动过程的初、末状态的机械能值.

(4)根据机械能守恒定律列方程,并代人数值求解.

2.在应用机械能守恒定律时,要注意其他力学定理、定律的运用,对物体的整个过程 进行综合分析.再举一例.

如图所示,光滑的倾斜轨道与半径为R的圆形轨道相连接,质量为。的小球

在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道 最低点多高?通过轨道点最低点时球对轨道压力多大?(看例题课本)

小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.

取轨道最低点为零重力势能面.

因小球恰能通过圆轨道的最高点C,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列

vc21vc2mmgm 得 mgR

R2R2在圆轨道最高点小球机械能EC1mgR2mgR 2在释放点,小球机械能为 EAmgh 根据机械能守恒定律 ECEA 列等式:

51mgRmg2R 解设hR

2212同理,小球在最低点机械能 EBmvB

2mghEB:ECvB5gR

小球在B点受到轨道支持力F和重力 根据牛顿第二定律,以向上为正,可列

2vBFmgmRF6mg

据牛顿第三定律,小球对轨道压力为6mg.方向竖直向下.

在较复杂的物理现象中,往往要同时应用动量守恒定律和机械能守恒定律,明确这两个定律应用上的差异,可正确运用它们,客观反映系统中物体间的相互作用,准确求出有关物理量.

【例】 在光滑的水平面上,置放着滑块A和B,它们的质量分别为m1和m2,B滑块与一轻弹簧相连,弹簧的另一端固定在竖直的墙上,滑块A以速度v0与静止的滑块B发生正碰后粘合一起运动并压缩弹簧,如图所示,求此过程中弹簧的最大弹性势能(看例课课件)

滑块A与B碰撞瞬间,对于滑块A、B组成的物体系,所受合外力为零,动量守恒,得

m1v0(m1m2)v

在滑块A、B粘合一起运动压缩弹簧时,只有弹簧的弹力做功,A、B滑块和弹簧组成的系统机械能守恒,弹簧弹性势能最大时,滑块A、B动能为零.动能全部变为弹簧的弹性势能,则

Ep1(m1m2)v2两式联立解,可得

2(四)总结、扩展

1.在只有重力和弹力做功的情况下,可应用机械能守恒定律解题.也可以用动能定理解题,这两者并不矛盾.前者往往不深究过程的细节而使解答过程显得简捷,但后者的应用更具普遍性.

2.动量守恒定律和机械能守恒定律的比较

(l)两个定律的研究对象都是相互作用的物体组成的系统.两个定律的数学表达公式中

第二篇:高一物理机械能守恒定律教案41

高一物理机械能守恒定律教案41.6机械能守恒定律

一、教学目标

.在已经学习有关机械能概念的基础上,学习机械能守恒定律,掌握机械能守恒的条件,掌握应用机械能守恒定律分析、解决问题的基本方法。

2.学习从功和能的角度分析、处理问题的方法,提高运用所学知识综合分析、解决问题的能力。

二、重点、难点分析

.机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能;能够应用机械能守恒定律解决有关问题。

2.分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一。在教学中应让学生认识到,物体重力势能大小与所选取的参考平面有关;而重力势能的变化量是与所选取的参考平面无关的。在讨论物体系统的机械能时,应先确定参考平面。

3.能否正确选用机械能守恒定律解决问题是本节学习的另一难点。通过本节学习应让学生认识到,从功和能的角度分析、解决问题是物理学的重要方法之一;同时进一步明确,在对问题作具体分析的条件下,要能够正确选用适当的物理规律分析、处理问题。

三、教具

演示物体在运动中动能与势能相互转化。

器材包括:麦克斯韦滚摆;单摆;弹簧振子。

四、主要教学过程

引入新课

结合复习引入新课。

前面我们学习了动能、势能和机械能的知识。在初中学习时我们就了解到,在一定条件下,物体的动能与势能可以相互转化,下面我们观察演示实验中物体动能与势能转化的情况。

[演示实验]依次演示麦克斯韦滚摆、单摆和弹簧振子,提醒学生注意观察物体运动中动能、势能的变化情况。

通过观察演示实验,学生回答物体运动中动能、势能变化情况,教师小结:

物体运动过程中,随动能增大,物体的势能减小;反之,随动能减小,物体的势能增大。

提出问题:上述运动过程中,物体的机械能是否变化呢?这是我们本节要学习的主要内容。

教学过程设计

在观察演示实验的基础上,我们从理论上分析物理动能与势能相互转化的情况。先考虑只有重力对物体做功的理想情况。

.只有重力对物体做功时物体的机械能

问题:质量为m的物体自由下落过程中,经过高度h1处速度为v1,下落至高度h2处速度为v2,不计空气阻力,分析由h1下落到h2过程中机械能的变化。

分析:根据动能定理,有

下落过程中重力对物体做功,重力做功在数值上等于物体重力势能的变化量。取地面为参考平面,有

wG=mgh1-mgh2

由以上两式可以得到

引导学生分析上面式子所反映的物理意义,并小结:下落过程中,物体重力势能转化为动能,此过程中物体的机械能总量不变。

指出问题:上述结论是否具有普遍意义呢?作为课后作业,请同学们课后进一步分析物体做平抛和竖直上抛运动时的情况。

明确:可以证明,在只有重力做功的情况下,物体动能和势能可以相互转化,而机械能总量保持不变。

提出问题:在只有弹簧弹力做功时,物体的机械能是否变化呢?

2.弹簧和物体组成的系统的机械能

以弹簧振子为例,简要分析系统势能与动能的转化。

明确:进一步定量研究可以证明,在只有弹簧弹力做功条件下,物体的动能与势能可以相互转化,物体的机械能总量不变。

综上所述,可以得到如下结论:

3.机械能守恒定律

在只有重力和弹簧弹力对物体做功的情况下,物体的动能和势能可以相互转化,物体机械能总量保持不变。这个结论叫做机械能守恒定律。

提出问题:学习机械能守恒定律,要能应用它分析、解决问题。下面我们通过具体问题的分析来学习机械能守恒定律的应用。在具体问题分析过程中,一方面要学习应用机械能守恒定律解决问题的方法,另一方面通过问题分析加深对机械能守恒定律的理解与认识。

4.机械能守恒定律的应用

例1.在距离地面20m高处以15m/s的初速度水平抛出一小球,不计空气阻力,取g=10m/s2,求小球落地速度大小。

引导学生思考分析,提出问题:

前面学习过应用运动合成与分解的方法处理平抛运动,现在能否应用机械能守恒定律解决这类问题?

小球抛出后至落地之前的运动过程中,是否满足机械能守恒的条件?如何应用机械能守恒定律解决问题?

归纳学生分析的结果,明确:

小球下落过程中,只有重力对小球做功,满足机械能守恒条件,可以用机械能守恒定律求解;

应用机械能守恒定律时,应明确所选取的运动过程,明确初、末状态小球所具有的机械能。

例题求解过程:

取地面为参考平面,抛出时小球具有的重力势能Ep1=mgh,动能

落地时小球的速度大小为

提出问题:请考虑用机械能守恒定律解决问题与用运动合成解决问题的差异是什么?

例2.小球沿光滑的斜轨道由静止开始滑下,并进入在竖直平面内的离心轨道运动,如图所示,为保持小球能够通过离心轨道最高点而不落下来,求小球至少应从多高处开始滑下?已知离心圆轨道半径为R,不计各处摩擦。

提出问题,引导学生思考分析:

小球能够在离心轨道内完成完整的圆周运动,对小球通过圆轨道最高点的速度有何要求?

从小球沿斜轨道滑下,到小球在离心轨道内运动的过程中,小球的机械能是否守恒?

如何应用机械能守恒定律解决这一问题?如何选取物体运动的初、末状态?

归纳学生分析的结果,明确:

小球能够通过圆轨道最高点,要求小球在最高点具有一定速度,即此时小球运动所需要的向心力,恰好等于小球所受重力;

运动中小球的机械能守恒;

选小球开始下滑为初状态,通过离心轨道最高点为末状态,研究小球这一运动过程。

例题求解过程:

取离心轨道最低点所在平面为参考平面,开始时小球具有的机械能E1=mgh。通过离心轨道最高点时,小球速度为v,此时小球的机械能

成完整的圆周运动。

进一步说明:在中学阶段,由于数学工具的限制,我们无法应用牛顿运动定律解决小球在离心圆轨道内的运动。但应用机械能守恒定律,可以很简单地解决这类问题。

例3.长l=80cm的细绳上端固定,下端系一个质量m=100g的小球。将小球拉起至细绳与竖直方向成60°角的位置,然后无初速释放。不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2。

提出问题,引导学生分析思考:

释放后小球做何运动?通过最低点时,绳对小球的拉力是否等于小球的重力?

能否应用机械能守恒定律求出小球通过最低点时的速度?

归纳学生分析结果,明确:

小球做圆周运动,通过最低点时,绳的拉力大于小球的重力,此二力的合力等于小球在最低点时所需向心力;

绳对小球的拉力不对小球做功,运动中只有重力对球做功,小球机械能守恒。

例题求解过程:

小球运动过程中,重力势能的变化量ΔEp=-mgh=-mgl,在最低点时绳对小球的拉力大小为

提出问题:通过以上各例题,总结应用机械能守恒定律解决问题的基本方法。

归纳学生的分析,作课堂小结。

五、小结

.在只有重力做功的过程中,物体的机械能总量不变。通过例题分析要加深对机械能守恒定律的理解。

2.应用机械能守恒定律解决问题时,应首先分析物体运动过程中是否满足机械能守恒条件,其次要正确选择所研究的物理过程,正确写出初、末状态物体的机械能表达式。

3.从功和能的角度分析、解决问题,是物理学研究的重要方法和途径。通过本节内容的学习,逐步培养用功和能的观点分析解决物理问题的能力。

4.应用功和能的观点分析处理的问题往往具有一定的综合性,例如与圆周运动或动量知识相结合,要注意将所学知识融汇贯通,综合应用,提高综合运用知识解决问题的能力。

六、说明

势能是相互作用的物体系统所共有的,同样,机械能也应是物体系统所共有的。在中学物理教学中,不必过份强调这点,平时我们所说物体的机械能,可以理解为是对物体系统所具有的机械能的一种简便而通俗的说法。

第三篇:高一物理机械能守恒定律

§7.8机械能守恒定律

一、预习指导:

1、知道机械能的各种形式,能够分析动能与势能(包括弹性势能)之间的相互转化问题

2、能够根据动能定理和重力做功与重力势能变化间的关系,推导出机械能守恒定律

3、会根据机械能守恒的条件判断机械能是否守恒,能运用机械能守恒定律解决有关问题

4、能从能量转化的角度理解机械能守恒条件,领会运用机械能守恒定律解决问题的优越性

5、阅读课本P69—P71

二、问题思考:

1、我们说功是能量转化的量度,这句话的物理意义是什么?

2、机械能守恒定律的研究对象是什么?

3、物体系机械能守恒的条件是什么?

三、新课教学:

【例l】关于机械能守恒定律的适用条件,下列说法中正确的是

()A.只有重力和弹力作用时,机械能守恒

B.内力只有重力和弹力作用,同时还有其他外力作用,但只要合外力为零.机械能守恒 C.内力只有重力和弹力作用,同时还有其他外力作用,但只要其他外力的功为零,机械能守恒

D.炮弹在空中飞行不计阻力时,仅受重力作用,所以爆炸前后机械能守恒

【例2】如图所示.用轻绳跨过定滑轮悬挂质量为m1、m2的两个物体,已知m1>m2.若滑轮质量及一切摩擦都不计,系统由静止开始运动的过程中

()A.m1、m2各自的机械能守恒

B.m2减少的机械能等于m1增加的重力势能 C.m2减少的重力势能等于m1增加的重力势能 D.m1、m2的机械能之和保持不变

【例3】质量分别为2m和m的可看作质点的小球A、B,用不计质量不可伸长的细绳相连,跨在半径为R的固定的光滑圆柱的两侧,如图所示.开始时A球和B球与圆柱轴心同高,然后释放,则B球到达最高点时的速度为多少?

四、课后练习:

1.(单选)下列四个选项的图中,木块均在固定的斜面上运动,其中图A、B、C中的斜面是光滑的,图D中的斜面是粗糙的,图A、B中的F为木块所受的外力,方向如图中箭头所示.图A、B、D中的木块向下运动,图C中的木块向上运动,在这四个图所示的运动过程中机械能守恒的是

()2.(单选)在下列实例中,不计空气阻力,机械能不守恒的是

()A.做斜抛运动的手榴弹

B.沿竖直方向自由下落的物体 C.起重机将重物体匀速吊起

D.沿光滑竖直圆轨道运动的小球

3.(单选)如图所示,从H高处以v平抛一小球,不计空气阻力,当小球距地面高度为h时,其动能恰好等于其势能,则

()A.h=H/2 B.hH/2 D.无法确定

4.(多选)下列实例中,物体机械能守恒的是

()A.物体沿光滑的斜面向上加速运动

B.在空气阻力不计的条件下,抛出后的手榴弹在空中做抛体运动 C.沿光滑固定的曲面自由下滑的物体 D.物体在竖直平面内做匀道圆周运动

5.(多选)如图所示.两个质量相同的小球A、B分别用线悬在等高的O1、O2点,A球的悬线比B球的长.把两球的悬线均拉到水平位置后,将小球无初速度释放.则经最低点时(以悬点为零势能点)

()A.A球的速度大于B球的速度 B.A球的动能大于B球的动能 C.A球的机械能大于B球的机械能 D.A球的机械能等于B球的机械能

6.如图所示,长度为2r的均匀直杆.它的两端恰放在半径为r的四分之一光滑圆弧AB的两瑞.BC为光滑水平轨道,直杆由静止开始下滑.当直杆全部滑到水平轨道上时的速度为

7.如图所示,斜面的倾角为30°,顶端离地面高度为0.2 m,质量相等的两个小球A、B用恰好等于斜面长的细绳相连.使B在斜面顶端,A在斜面底端.现把B稍许移出斜面,使它由静止开始沿斜面的竖直边下落.所有摩擦均忽略不计,g取10 m/s2.求:

(1)B球刚落地时,A球的速度;

(2)B球落地后,A球向上最多还能运动多远?

8.如图所示,质量为m的物体以某一初速度从A点向下沿轨道运动.不计空气阻力,轨道全部光滑,若物体通过半圆形轨道的最低点B时的速度为3gR,求:

(1)物体在A点时的速度;

(2)物体离开C点还能上升多高.

第四篇:机械能守恒定律教案(模版)

《机械能守恒定律》教案

教学目标:

知识与技能

1.知道什么是机械能,知道物体的动能和势能可以相互转化.

2.会正确推导物体在光滑曲面上运动过程中的机械能守恒,理解机械能守恒定律的内容,知道它的含义和适用条件.

3.在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。过程与方法

学会在具体的问题中判定物体的机械能是否守恒. 情感、态度与价值观

通过能量守恒的教学,使学生树立科学观点,应用机械能守恒定律解决具体问题. 教学重点

1.掌握机械能守恒定律的推导、建立过程,理解机械能守恒定律的内容. 2.在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式. 教学难点

1.从能的转化和功能关系出发理解机械能守恒的条件.

2.能正确判断研究对象在所经历的过程中机械能是否守恒,能正确分析 教学过程

一、复习:重力势能、动能表达式是什么?动能定理表达式什么? 动能和势能的相互转化 演示:如图,试分析:

1、小球受哪些力的作用?

2、哪些力对小球做功?

3、能量如何转化?

你还能举出动能和势能的相互转化的例子吗?

二、进行新课 机械能守恒定律

(参阅课本70页图7.8—3的问题,学生自主推导)物体沿光滑曲面滑下,只有重力对物体做功.用我们学过的动能定理以及重力的功和重力势能的关系,推导出物体在A处的机械能和B处的机械能相等. 引导1:请写出推导过程:(学生讨论推导)引导2:根据推导的结果用文字叙述应该是什么? 引导3:这个结论的前提是什么? 典型例题分析:

例1:学生尝试独立解决例题1,在解决问题中体会用机械能守恒定律解决问题的思路)分析下列情况下机械能是否守恒?(A.跳伞运动员从空中匀速下落过程 B.物体以8m/s2在空中下落过程

C.物体作平抛运动过程

D.物体以不变的速率在竖直平面内做曲线运动 练习:关于机械能是否守恒的叙述,正确的是()A.作匀速直线运动的物体的机械能一定守恒。B.作匀变速运动的物体机械能可能守恒。C.外力对物体做功为零时,机械能一定守恒。D.只有只受重力时,物体机械能才守恒

例题

2、把一个小球用细线悬挂起来,就成为一个摆,摆长为L,最大倾角为θ.小球到达最底端的速度是多大? 引导1:请写出解答过程:

引导2:请你总结一下用机械能守恒定律解决问题的三、达标训练(学生练习)题在学案中

四、小结:本节课的主要内容

五、作业:《创新方案》课堂达标

思路:

第五篇:高二物理内能教案

教案示例 ——物体的内能

一、教学目标

1.知道分子热运动的动能跟温度有关,知道温度是分子热运动平均动能的标志.

2.知道什么是分子的势能;知道改变分子间的距离必须克服分子力做功,因而分子势能发生变化;知道分子势能跟物体体积有关.

二、重点难点

重点:物体的内能和决定物体内能的因素.

难点:分子间做功跟分子势能变化的关系.

三、教与学

教学过程:

在自然界中能量的存在形式是多种多样的,每种的运动形式对应着相应的能.在机械运动中,由于物体的运动而使物体具有动能,由于物体与地球之间存在相对作用,并由它们的相对位置决定了重力势能,那么我们会自然地想到由于组成物体的大量分子都在永不停息地做无规则运动,分子间存在相互作用力,(分子力只与相对位置有关)也应存在与此相对应的能量.

(一)分子的动能

温度

1.分子动能:组成物体的分子由于热运动而具有的能叫做分子动能.

(1)大量分子的运动速率不尽相同,以中等速率者占多数.

在研究热现象时,有意义的不是一个分子的动能,而是大量分子动能的平均值.

(2)平均动能:物体里所有分子动能的平均值叫做分子热运动的平均动能.

2.温度

(1)宏观含义:温度是表示物体的冷热程度.

(2)微观含义(即从分子动理论的观点来看):温度是物体分子热运动的平均动能的标志,温度越高,物体分子热运动的平均动能越大.

【注意】

(1)同一温度下,不同物质分子的平均动能都相同.但由于不同物质的分子质量不一定相同.所以分子热运动的平均速率也不一定相同.

(2)温度反映的是大量分子平均动能的大小,不能反映个别分子的动能大小,同一温度下,各个分子的动能不尽相同.

(二)分子势能

1.分子势能:由于分子间存在相互作用力,并由它们的相对位置决定的能叫做分子势能.

2.分子力做功跟分子势能变化的关系(类同于重力做功与重力势能变化的关系)

分子力做正功时,分子势能减少,分子力做负功时,分子势能增加.

3.决定分子势能的因素

(1)从宏观上看:分子势能跟物体的体积有关.

(2)从微观上看:分子势能跟分子间距离r有关.

①一般选取两分子间距离很大()时,分子势能为零.

②在 的条件下,分子力为引力,当两分子逐渐靠近至 过程中,分子力做正功,分子势能减小.

在 的条件下,分子力为斥力,当两分子间距离增大至 过程中,分子力也做正功,分子势能也减小.

结论:当两分子间距离

(三)物体的内能

1.物体的内能:物体中所有分子做热运动的动能和分子势能的总和叫做物体的内能.也叫做物体的热力学能.

2.任何物体都具有内能.因为一切物体都是由不停地做无规则热运动并且相互作用着的分子所组成.

3.决定物体内能的因素

时,分子势能最小(且为负值).

(1)从宏观上看:物体内能的大小由物体的摩尔数、温度和体积三个因素决定.

(2)从微观上看:物体内能的大小由组成物体的分子总数,分子热运动的平均动能和分子间的距离三个因素决定.

(四)物体的内能跟机械能的区别

1.能量的形式不同.物体的内能和物体的机械能分别跟两种不同的运动形式相对应,内能是由于组成物体的大量分子的热运动及分子间的相对位置而使物体具有的能.而机械能是由于整个物体的机械运动及其与它物体间相对位置而使物体具有的能.

2.决定能量的因素不同.内能只与(给定)物体的温度和体积有关,而与整个物体的运动速度路物体的相对位置无关.机械能只与物体的运动速度和跟其他物体的相对位置有关,与物体的温度体积无关.

3.一个具有机械能的物体,同时也具有内能;一个具有内能的物体不一定具有机械能.

[例1]有两个分子,用r表示它们之间的距离,当力和引力相等,使两分子从相距很远处((时,两分子间的斥)逐渐靠近,直至不能靠近为止).在整个过程中两分子间相互作用的势能()

A.一直增加

B.一直减小

C.先增加后减小

D.先减小后增加

【解析】根据动和能的关系,分子势能的变化是和分子力和功相联系的.分子力对分子做正功,分子势能减小;分子克服分子力做功,分子势能增加.当时,分子间引力和斥力相等,表现分子力等于零;当表现出的分子力为引力;当两分子从 处靠近,直至

时,分子引力大于斥力,时分子引力小于斥力,表现出分子力为斥力,在 为止的整个过程中,当

时分子力做正功,使分子势能减少,当当

时,则分子克服分子力做功,分子势能增加,不难看出,时分子势能最小。

正确选项为D.

[例2]若已知分子势能增大,则在这个过程中()

A.一定克服分子力做功

B.分子力一定减小

C.分子间距离的变化情况无法确定

D.以上说法都不正确

【解析】分子势能增大,说明分子力一定做负功,或者说一定克服分子力做功,所以选项A正确.我们知道,当减小;当

时,分子势能增大说明r增大,分子力 时,分子势能增大说明r减小,分子力增大,因题目未说明初始状态分子间的距离r是大于、小于或等于,所以对分子力和分子距离的变化情况无法确定,选项C正确,B和D错误.

[例3]有甲、乙两种气体,如果甲气体内分子平均速率比乙气体内平均速率大,则()

A.甲气体温度,一定高于乙气体的温度

B.甲气体温度,一定低于乙气体的温度

C.甲气体的温度可能高于也可能低于乙气体的温度

D.甲气体的每个分子运动都比乙气体每个分子运动的快

[解析]正确答案是C.A认为气体分子平均速率大,温度就高,这是对气体温度的微观本质的错误认识,气体温度是气体分子平均动能的标志,而分子的平均动能不仅与分子的平均速率有关,还与分子的质量有关.本题涉及两种不同气体(即分子质量不同),它们的分子质量无法比较.因而无法比较两种气体温度的高低.故A、B错,C正确,速率的平均值大,并不一定每个分子速率都大,故D错.

[例4]用力拉着铁块在水平面上运动,铁块内能和机械能有没有变化?

【解析】当地面光滑时,铁块由受到外力后将做加速运动,速度越来越大,但势能保持不变,所以铁块的机械能增加,增加的机械能等于外力对它所做的功.由于运动过程中,铁块所含的分子数,分子无规则运动的平均动能和分子势能都不变化,因而铁块内能不变.

当地面不光滑时,铁块运动中时刻受摩擦力的作用,若所受外力等于地面摩擦力,铁块将匀速运动,机械能不变.若所受外力大于地面的摩擦力,铁块做加速运动,克服摩擦做功将机械能转变为内能,其中一部分使铁块温度升高,分子的平均动能增大,铁块的机械能和内能都增加.

【小结】物体的内能是组成物体的所有分子做热运动的动能和分子势能的总和.温度是物体分子热运动平均动能的标志.

教案点评:

本节重点物体的内能和决定物体内能的因素.教案围绕这些重点,对分子的动能、温度、平均动能、分子势能及其关系等知识点进行讲解,同时结合例题分析,由浅入深,思路明确,合理使用此教案可以达到较好的教学效果.

下载高二物理《机械能守恒定律》教案word格式文档
下载高二物理《机械能守恒定律》教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高二物理万有引力定律教案

    高二物理万有引力定律教案 【摘要】查字典物理网小编编辑整理了高二物理教案:万有引力定律,供广大同学们在暑假期间,复习本门课程,希望能帮助同学们加深记忆,巩固学过的知识! 教......

    高二物理焦耳定律教案

    2.5焦耳定律 【教学目标】 (一)知识与技能 1、理解电功的概念,知道电功是指电场力对自由电荷所做的功,理解电功的公式,能进行有关的计算。 2、理解电功率的概念和公式,能进行有关......

    高二物理法拉第电磁感应定律教案

    课题 4.3 法拉第电磁感应定律第3时 一、 教学目标: (一)知识与技能 1.知道什么叫感应电动势。 2.知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、En3.理解法......

    高二物理《回旋加速器》教案

    江苏省苏州市蓝缨学校高二物理《回旋加速器》教案 一、引入新课 [师]在现代物理学中,为了研究物质的微观结构,人们往往利用能量很高的带电粒子作为“炮弹”,去轰击各种原子核,以观......

    高二物理自感教案

    第二节 自感 三维教学目标 1、知识与技能 (1)了解互感和自感现象。 (2)了解自感现象产生的原因。 (3)知道自感现象中的一个重要概念——自感系数,了解它的单位及影响其大小的因素。......

    高二物理热力学第二定律教案

    高二物理热力学第二定律教案 【教材分析】 本节介绍热力学第二定律,该定律与热力学第一定律是构成热力学知识的理论基础,热力学第一定律对自然过程没有任何限制,只指 出在任何......

    高二物理《内能》教案

    高二物理《内能》教案教学目标(一)知识和技能1、了解内能的概念,简单描述温度和内能的关系。2、知道热传递过程中,物体吸收(或放出)热量,使物体温度升高(或降低),内能改变。3、知道在......

    高二物理的教案

    一、教学简析1.教材分析:本学期期采用的教材为人民教育出版社出版的《物理》选修3-1,共分为三章,分别是第一章静电场、第二章恒定电流、第三章磁场。静电场是高中阶段的基础内......