高二物理焦耳定律教案

时间:2019-05-12 18:59:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高二物理焦耳定律教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高二物理焦耳定律教案》。

第一篇:高二物理焦耳定律教案

2.5焦耳定律

【教学目标】

(一)知识与技能

1、理解电功的概念,知道电功是指电场力对自由电荷所做的功,理解电功的公式,能进行有关的计算。

2、理解电功率的概念和公式,能进行有关的计算。

3、知道电功率和热功率的区别和联系。

(二)过程与方法

通过推导电功的计算公式和焦耳定律,培养学生的分析、推理能力。

(三)情感、态度与价值观

通过电能与其他形式能量的转化和守恒,进一步掌握能量守恒定律的普遍性。

【教学重点】

电功、电功率的概念、公式;焦耳定律、电热功率的概念、公式。

【教学难点】

电功率和热功率的区别和联系。

【教学过程】

(一)复习

1.串并联电路的性质。2.电流表的改装。

(二)进行新课

1、电功和电功率

教师:请同学们思考下列问题

(1)电场力的功的定义式是什么?(2)电流的定义式是什么? 学生:(1)电场力的功的定义式W=qU

(2)电流的定义式I=

q t教师:投影教材图2.5-1(如图所示)

如图所示,一段电路两端的电压为U,由于这段电路两端有电势差,电路中就有电场存在,电路中的自由电荷在电场力的作

用下发生定向移动,形成电流I,在时间t内通过这段电路上任一横截面的电荷量q是多少? 学生:在时间t内,通过这段电路上任一横截面的电荷量q=It。

教师:这相当于在时间t内将这些电荷q由这段电路的一端移到另一端。在这个过程中,电场力做了多少功?

学生:在这一过程中,电场力做的功W=qU=IUt

教师:在这段电路中电场力所做的功,也就是通常所说的电流所做的功,简称电功。电功:

(1)定义:在一段电路中电场力所做的功,就是电流所做的功,简称电功.(2)定义式:W=UIT

教师:电功的定义式用语言如何表述?

学生:电流在一段电路上所做的功等于这段电路两端的电压U,电路中的电流I和通电时间t三者的乘积。

教师:请同学们说出电功的单位有哪些?

学生:(1)在国际单位制中,电功的单位是焦耳,简称焦,符号是J.(2)电功的常用单位有:千瓦时,俗称“度”,符号是kW·h.说明:使用电功的定义式计算时,要注意电压U的单位用V,电流I的单位用A,通电时间t的单位用s,求出的电功W的单位就是J。

教师:在相同的时间里,电流通过不同用电器所做的功一般不同。例如,在相同时间里,电流通过电力机车的电动机所做的功要显著大于通过电风扇的电动机所做的功。电流做功不仅有多少,而且还有快慢,为了描述电流做功的快慢,引入电功率的概念。

(1)定义:单位时间内电流所做的功叫做电功率。用P表示电功率。(2)定义式:P=W=IU t(3)单位:瓦(W)、千瓦(kW)

[说明]电流做功的“快慢”与电流做功的“多少”不同。电流做功快,但做功不一定多;电流做功慢,但做功不一定少。

2、焦耳定律

教师:电流做功,消耗的是电能。电能转化为什么形式的能与电路中的电学元件有关。在纯电阻元件中电能完全转化成内能,于是导体发热。.......设在一段电路中只有纯电阻元件,其电阻为R,通过的电流为I,试计算在时间t内电

流通过此电阻产生的热量Q。

学生:求解产生的热量Q。

解:据欧姆定律加在电阻元件两端的电压U=IR 在时间t内电场力对电阻元件所做的功为W=IUt=I2Rt

由于电路中只有纯电阻元件,故电流所做的功W等于电热Q。产生的热量为

Q=I2Rt

教师指出:这个关系最初是物理学家焦耳用实验得到的,叫焦耳定律,同学们在初中已经学过了。

学生活动:总结热功率的定义、定义式及单位。热功率:

(1)定义:单位时间内发热的功率叫做热功率。(2)定义式:P热=

Q

2=IR t(3)单位:瓦(W)

(三)研究电功率与热功率的区别和联系。

学生:分组讨论总结电功率与热功率的区别和联系。师生共同活动:总结:(1)电功率与热功率的区别

电功率是指输入某段电路的全部功率或在这段电路上消耗的全部电功率,决定于这段电路两端电压U和通过的电流I的乘积。

热功率是在某段电路上因发热而消耗的功率,决定于通过这段电路的电流的平方I2和电阻R的乘积。

(2)电功率与热功率的联系

若在电路中只有电阻元件时,电功率与热功率数值相等。即P热=P电 教师指出:

若电路中有电动机或电解槽时,电路消耗的电功率绝大部分转化为机械能或化学能,只有一少部分转化为内能,这时电功率大于热功率,即P电>P热。

课堂练习

例一: 一个电动机,线圈电阻是0.4欧,当它两端所加的电压为220V时,通过的电流是5A。求(1)电功率是否等于热功率?(2)这台电动机的机械功率是多少?

解:本题涉及三个不同的功率:电动机消耗的电功率P电、电动机发热的功率P热、转化为机械能的功率P机

。三者之间遵从能量守恒定律,即

P电=P热+P机 由焦耳定律,电动机发热的功率为

P热=I2R 电动机消耗的功率,即电流做功的功率为

P电=IU 因此可得电能转化为机械的功率,即电动机所做机械功的功率

P机=P电-P热=IU - I2R

=5 ×220 -52 ×0.4

=1090w 课堂小结

电功

W=UIt

电功率

P=UI

焦耳热

Q=I2Rt

热功率

P=I2R 纯电阻电路:

电功=电热

电功率=热功率

非纯电阻电路:

电功=电热+其它形式的能量

电功率=热功率=其它形式的功率

第二篇:高一物理焦耳定律教案

第五节、焦耳定律

一、教学目标

(一)知识与技能

1.理解电功、电功率的概念,公式的物理意义。了解实际功率和额定功率。2.了解电功和电热的关系。了解公式Q=I2Rt(P=I2R)、Q=U2t/R(P=U2/R)的适应条件。

3.知道非纯电阻电路中电能与其他形式能转化关系,电功大于电热。4.能运用能量转化与守恒的观点解决简单的含电动机的非纯电阻电路问题。

(二)过程与方法

通过有关实例,让学生理解电流做功的过程就是电能转化为其他形式能的过程。

(三)情感态度与价值观

通过学习进一步体会能量守恒定律的普遍性。

三、重点与难点:

重点:区别并掌握电功和电热的计算。

难点:主要在学生对电路中的能量转化关系缺乏感性认识,接受起来比较困难。

四、教学过程:

(一)复习上课时内容

要点:串、并联电路的规律和欧姆定律及综合运用。

提出问题,引入新课

1.通过前面的学习,可知导体内自由电荷在电场力作用下发生定向移动,电场力对定向移动的电荷做功吗?(做功,而且做正功)

2.电场力做功将引起能量的转化,电能转化为其他形式能,举出一些大家熟悉的例子:电能→机械能,如电动机。电能→内能,如电热器。电能→化学能,如电解槽。本节课将重点研究电路中的能量问题。

(二)新课讲解-----第五节、焦耳定律 1.电功和电功率

(1).电功

定义:电路中电场力对定向移动的电荷所做的功,简称电功,通常也说成是电流的功。用W表示。

实质:是能量守恒定律在电路中的体现。即电流做功的过程就是电能转化为其他形式能的过程,在转化过程中,能量守恒,即有多少电能减少,就有多少其他形式的能增加。

【注意】功是能量转化的量度,电流做了多少功,就有多少电能减少而转化为其他形式的能,即电功等于电路中电能的减少,这是电路中能量转化与守恒的关键。

在第一章里我们学过电场力对电荷的功,若电荷q在电场力作用下从A搬至B,AB两点间电势差为UAB,则电场力做功W=qUAB。

对于一段导体而言,两端电势差为U,把电荷q从一端搬至另一端,电场力的功W=qU,在导体中形成电流,且q=It,(在时间间隔t内搬运的电量为q,则通过导体截面电量为q,I=q/t),所以W=qU=IUt。这就是电路中电场力做功即电功的表达式。

表达式:W = Iut ① 【说明】:①表达式的物理意义:电流在一段电路上的功,跟这段电路两端电压、电路中电流强度和通电时间成正比。

②适用条件:I、U不随时间变化——恒定电流。单位:焦耳(J)。1J=1V·A·s(2)电功率

①定义:单位时间内电流所做的功

②表达式:P=W/t=UI(对任何电路都适用)② 上式表明:电流在一段电路上做功的功率P,和等于电流I跟这段电路两端电压U的乘积。

③单位:为瓦特(W)。1W=1J/s ④额定功率和实际功率

额定功率:用电器正常工作时所需电压叫额定电压,在这个电压下消耗的功率称额定功率。

实际功率:用电器在实际电压下的功率。实际功率P实=IU,U、I分别为用电器两端实际电压和通过用电器的实际电流。

这里应强调说明:推导过程中没用到任何特殊电路或用电器的性质,电功和电功率的表达式对任何电压、电流不随时间变化的电路都适用。再者,这里W=IUt是电场力做功,是消耗的总电能,也是电能所转化的其他形式能量的总和。

电流在通过导体时,导体要发热,电能转化为内能。这就是电流的热效应,描述它的定量规律是焦耳定律。

学生一般认为,W=IUt,又由欧姆定律,U=IR,所以得出W=I2Rt,电流做这么多功,放出热量Q=W=I2Rt。这里有一个错误,可让学生思考并找出来。

错在Q=W,何以见得电流做功全部转化为内能增量?有无可能同时转化为其他形式能?

英国物理学家焦耳,经过长期实验研究后提出焦耳定律。2.焦耳定律——电流热效应(1)焦耳定律

内容:电流通过导体产生的热量,跟电流强度的平方、导体电阻和通电时间成正比。表达式: Q=I2Rt ③

【说明】:对纯电阻电路(只含白炽灯、电炉等电热器的电路)中电流做功完全用于产生热,电能转化为内能,故电功W等于电热Q;这时W= Q=UIt=I2Rt(2)热功率:单位时间内的发热量。即P=Q/t=I2R ④

【注意】②和④都是电流的功率的表达式,但物理意义不同。②对所有的电路都适用,而④式只适用于纯电阻电路,对非纯电阻电路(含有电动机、电解槽的电路)不适用。

关于非纯电阻电路中的能量转化,电能除了转化为内能外,还转化为机械能、化学能等。这时W 》Q。即W=Q+E其它

或P =P 热+ P其它、UI = I2R + P其它

引导学生分析P56例题(从能量转化和守恒入手)如图 再增补两个问题(1)电动机的效率。(2)若由于某种原因电动机被卡住,这时电动机消耗的功率为多少?

最后通过“思考与讨论”以加深认识。注意,在非纯电阻电路中,欧姆定律已不适用。

(三)小结:对本节内容做简要小结。并比较UIt和IRt的区别和联系,从能的转化与守恒的角度解释纯电阻电路和非纯电阻电路中电功和电热的关系。在纯电阻电路中,电能全部转化为电热,故电功W等于电热Q;在非纯电阻电路中,电能的一部分转化为电热,另一部分转化为其他形式的能(如机械能、化学能),故电功W大于电热Q。

(四)巩固新课:

1、复习课本内容

2、完成P57问题与练习

3、作业纸

2教后记:

1、学生对电功和电热的区别的理解比想象的要好,得益于功和功率学的较好。在纯电阻电路和非纯电阻电路的计算中经常疏忽欧姆定律不使用。

第三篇:九年级物理教科版焦耳定律教案

《焦耳定律》教案

一、教学目标:

1、知识与技能

① 知道电流的热效应 ②知道焦耳定律

③ 知道电热的利用和防止

2、过程与方法

通过探究,知道电流通过导体产生的热量与什么因素有关

3、情感态度与价值观

① 通过学习电热的利用和危害,学会辩证地看待问题 ② 通过讨论和交流培养合作学习的态度和意识

二、教学重点和难点

1、教学重点:电流产生热效应跟什么因素有关(也就是焦耳定律)。

2、教学难点:

(1)如何让学生提出与本节课相关的问题,如何进行探究实验设计.(2)如何推导公式.三、教学器材:

电源、焦耳定律演示器、电流表、导线、多媒体课件。

四、教学设计:

(一)、导入新课:

1、根据生活经验回答:用手去摸正在工作的电灯、电视机的后盖,会有什么样的感觉?(会有热的感觉)

2、这种现象叫做什么?(复习:电流的热效应)

3、灯泡中的电流与导线中的相同,为什么他不感觉热而他却热得大叫?(出示动画课件演示)

(二)、新授:

1、观察电流的热效应:

实验一:(出示动画课件演示)闭合开关,你观察到了什么?并想一想为什么?(观察到:煤油柱上升。解释:这就是电流的热效应,导体通电后发热,煤油温度升高,发生热胀冷缩现象,造成煤油柱上升。)

2、探究电流的热效应与什么因素有关:

实验二:(出示动画课件演示)将两只瓶内装有不同电阻丝的烧瓶串联在一起(R 1>R2),同时通以电流。引导学生猜想会发生什么现象?然后进行实验,提醒学生观察煤油柱的上升情况?

(观察到:甲瓶中的煤油柱上升得更高)

引导学生分析这个实验为什么会出现这种现象呢?两个瓶中的电阻丝各有什么相同的量和不同的量?(通过的电流和通电时间一样。两个瓶中的电阻丝的电阻不一样。)

这个实验告诉了我们什么?

(在电流、通电时间不变时,电阻越大,电流产生的热量越多。)

实验三:(出示动画课件演示)移动滑动变阻器,改变电阻丝中电流的大小。引导学生猜想会发生什么现象?然后进行实验,提醒学生观察对比煤油柱上升的高度?

这个实验告诉了我们什么?(在电阻、通电时间不变时,电流越大,电流产生的热量越多。)

实验四:(出示动画课件演示)用同一个电阻丝(R1)做实验,分别做两次实验,分别通电2分种和4分钟,对比煤油柱上升的高度?引导学生猜想会发生什么现象?然后进行实验,提醒学生观察对比煤油柱上升的高度?

这个实验告诉了我们什么?

(在通电电流和电阻不变时,通电时间越长,电流产生的热量越多。)

3、实验结论总结:

在电流、通电时间不变时,电阻越大,电流产生的热量越多。在电阻、通电时间不变时,电流越大,电流产生的热量越多。在通电电流和电阻不变时,通电时间越长,电流产生的热量越多。

4、分析、归纳得出:

焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。

公式:Q=I2Rt 热量的单位:焦(J)

4、例题:

例1:一根60欧的电阻丝接在36V的电源上,在5min内共产生多少热量? 解:I=U/R=36V/60Ω=0.6A

Q=I2Rt=(0.6A)2×60Ω×300s=6480J.答:共产生了6480J的热量。

例2:一只额定功率是450W的电饭锅,在220V的额定电压使用,每分钟产生多少焦耳的热量?

解:略

例3:两根导线电阻之比是3:4,通过的电流之比是4:3,在相同的时间内,两根导线产生的热量之比为___________。

5、电流热效应的利用与危害(图6-3-6)

(三)、小结:本节课重点探究了焦耳定律实验的过程。(四)、布置作业:P97:第1、2、3、4题。(五)、板书设计:

1、电流的热效应。

2、焦耳定律实验:

在电流、通电时间不变时,电阻越大,电流产生的热量越多。在电阻、通电时间不变时,电流越大,电流产生的热量越多。在通电电流和电阻不变时,通电时间越长,电流产生的热量越多。

3、焦耳定律:

电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。

公式:Q=I2Rt 热量的单位:焦(J)

第四篇:高二物理内能教案

教案示例 ——物体的内能

一、教学目标

1.知道分子热运动的动能跟温度有关,知道温度是分子热运动平均动能的标志.

2.知道什么是分子的势能;知道改变分子间的距离必须克服分子力做功,因而分子势能发生变化;知道分子势能跟物体体积有关.

二、重点难点

重点:物体的内能和决定物体内能的因素.

难点:分子间做功跟分子势能变化的关系.

三、教与学

教学过程:

在自然界中能量的存在形式是多种多样的,每种的运动形式对应着相应的能.在机械运动中,由于物体的运动而使物体具有动能,由于物体与地球之间存在相对作用,并由它们的相对位置决定了重力势能,那么我们会自然地想到由于组成物体的大量分子都在永不停息地做无规则运动,分子间存在相互作用力,(分子力只与相对位置有关)也应存在与此相对应的能量.

(一)分子的动能

温度

1.分子动能:组成物体的分子由于热运动而具有的能叫做分子动能.

(1)大量分子的运动速率不尽相同,以中等速率者占多数.

在研究热现象时,有意义的不是一个分子的动能,而是大量分子动能的平均值.

(2)平均动能:物体里所有分子动能的平均值叫做分子热运动的平均动能.

2.温度

(1)宏观含义:温度是表示物体的冷热程度.

(2)微观含义(即从分子动理论的观点来看):温度是物体分子热运动的平均动能的标志,温度越高,物体分子热运动的平均动能越大.

【注意】

(1)同一温度下,不同物质分子的平均动能都相同.但由于不同物质的分子质量不一定相同.所以分子热运动的平均速率也不一定相同.

(2)温度反映的是大量分子平均动能的大小,不能反映个别分子的动能大小,同一温度下,各个分子的动能不尽相同.

(二)分子势能

1.分子势能:由于分子间存在相互作用力,并由它们的相对位置决定的能叫做分子势能.

2.分子力做功跟分子势能变化的关系(类同于重力做功与重力势能变化的关系)

分子力做正功时,分子势能减少,分子力做负功时,分子势能增加.

3.决定分子势能的因素

(1)从宏观上看:分子势能跟物体的体积有关.

(2)从微观上看:分子势能跟分子间距离r有关.

①一般选取两分子间距离很大()时,分子势能为零.

②在 的条件下,分子力为引力,当两分子逐渐靠近至 过程中,分子力做正功,分子势能减小.

在 的条件下,分子力为斥力,当两分子间距离增大至 过程中,分子力也做正功,分子势能也减小.

结论:当两分子间距离

(三)物体的内能

1.物体的内能:物体中所有分子做热运动的动能和分子势能的总和叫做物体的内能.也叫做物体的热力学能.

2.任何物体都具有内能.因为一切物体都是由不停地做无规则热运动并且相互作用着的分子所组成.

3.决定物体内能的因素

时,分子势能最小(且为负值).

(1)从宏观上看:物体内能的大小由物体的摩尔数、温度和体积三个因素决定.

(2)从微观上看:物体内能的大小由组成物体的分子总数,分子热运动的平均动能和分子间的距离三个因素决定.

(四)物体的内能跟机械能的区别

1.能量的形式不同.物体的内能和物体的机械能分别跟两种不同的运动形式相对应,内能是由于组成物体的大量分子的热运动及分子间的相对位置而使物体具有的能.而机械能是由于整个物体的机械运动及其与它物体间相对位置而使物体具有的能.

2.决定能量的因素不同.内能只与(给定)物体的温度和体积有关,而与整个物体的运动速度路物体的相对位置无关.机械能只与物体的运动速度和跟其他物体的相对位置有关,与物体的温度体积无关.

3.一个具有机械能的物体,同时也具有内能;一个具有内能的物体不一定具有机械能.

[例1]有两个分子,用r表示它们之间的距离,当力和引力相等,使两分子从相距很远处((时,两分子间的斥)逐渐靠近,直至不能靠近为止).在整个过程中两分子间相互作用的势能()

A.一直增加

B.一直减小

C.先增加后减小

D.先减小后增加

【解析】根据动和能的关系,分子势能的变化是和分子力和功相联系的.分子力对分子做正功,分子势能减小;分子克服分子力做功,分子势能增加.当时,分子间引力和斥力相等,表现分子力等于零;当表现出的分子力为引力;当两分子从 处靠近,直至

时,分子引力大于斥力,时分子引力小于斥力,表现出分子力为斥力,在 为止的整个过程中,当

时分子力做正功,使分子势能减少,当当

时,则分子克服分子力做功,分子势能增加,不难看出,时分子势能最小。

正确选项为D.

[例2]若已知分子势能增大,则在这个过程中()

A.一定克服分子力做功

B.分子力一定减小

C.分子间距离的变化情况无法确定

D.以上说法都不正确

【解析】分子势能增大,说明分子力一定做负功,或者说一定克服分子力做功,所以选项A正确.我们知道,当减小;当

时,分子势能增大说明r增大,分子力 时,分子势能增大说明r减小,分子力增大,因题目未说明初始状态分子间的距离r是大于、小于或等于,所以对分子力和分子距离的变化情况无法确定,选项C正确,B和D错误.

[例3]有甲、乙两种气体,如果甲气体内分子平均速率比乙气体内平均速率大,则()

A.甲气体温度,一定高于乙气体的温度

B.甲气体温度,一定低于乙气体的温度

C.甲气体的温度可能高于也可能低于乙气体的温度

D.甲气体的每个分子运动都比乙气体每个分子运动的快

[解析]正确答案是C.A认为气体分子平均速率大,温度就高,这是对气体温度的微观本质的错误认识,气体温度是气体分子平均动能的标志,而分子的平均动能不仅与分子的平均速率有关,还与分子的质量有关.本题涉及两种不同气体(即分子质量不同),它们的分子质量无法比较.因而无法比较两种气体温度的高低.故A、B错,C正确,速率的平均值大,并不一定每个分子速率都大,故D错.

[例4]用力拉着铁块在水平面上运动,铁块内能和机械能有没有变化?

【解析】当地面光滑时,铁块由受到外力后将做加速运动,速度越来越大,但势能保持不变,所以铁块的机械能增加,增加的机械能等于外力对它所做的功.由于运动过程中,铁块所含的分子数,分子无规则运动的平均动能和分子势能都不变化,因而铁块内能不变.

当地面不光滑时,铁块运动中时刻受摩擦力的作用,若所受外力等于地面摩擦力,铁块将匀速运动,机械能不变.若所受外力大于地面的摩擦力,铁块做加速运动,克服摩擦做功将机械能转变为内能,其中一部分使铁块温度升高,分子的平均动能增大,铁块的机械能和内能都增加.

【小结】物体的内能是组成物体的所有分子做热运动的动能和分子势能的总和.温度是物体分子热运动平均动能的标志.

教案点评:

本节重点物体的内能和决定物体内能的因素.教案围绕这些重点,对分子的动能、温度、平均动能、分子势能及其关系等知识点进行讲解,同时结合例题分析,由浅入深,思路明确,合理使用此教案可以达到较好的教学效果.

第五篇:高二物理万有引力定律教案

高二物理万有引力定律教案

【摘要】查字典物理网小编编辑整理了高二物理教案:万有引力定律,供广大同学们在暑假期间,复习本门课程,希望能帮助同学们加深记忆,巩固学过的知识!

教学目标

知识与技能

1.了解万有引力定律得出的思路和过程,知道地球上的重物下落与天体运动的统一性。

2.知道万有引力是一种存在于所有物体之间的吸引力,知道万有引力定律的适用范围。

3.会用万有引力定律解决简单的引力计算问题,知道万有引力定律公式中r的物理意义,了解引力常量G的测定在科学历史上的重大意义。

4.了解万有引力定律发现的意义。

过程与方法

1.通过演绎牛顿当年发现万有引力定律的过程,体会在科学规律发现过程中猜想与求证 的重要性。

2.体会推导过程中的数量关系.情感、态度与价值观

1.感受自然界任何物体间引力的关系,从而体会大自然的奥秘.2.通过演绎牛顿当年发现万有引力定律的过程和卡文迪许测定万有引力常量的实验,让

学生体会科学家们勇于探索、永不知足的精神和发现真理的曲折与艰辛。

教学重点、难点

1.万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点。

2.由于一般物体间的万有引力极小,学生对此缺乏感性认识。

教学方法

探究、讲授、讨论、练习

教 学 活 动

(一)引入新课

复习回顾上节课的内容

如果行星的运动轨道是圆,则行星将作匀速圆周运动。根据匀速圆周运动的条件可知,行星必然要受到一个引力。牛顿认为这是太阳对行星的引力,那么,太阳对行星的引力F提供行星作匀速圆周运动所需的向心力。

学生活动: 推导得

将V=2r/T代入上式得

利用开普勒第三定律 代入上式

得到:

师生总结:由上式可得出结论:太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离的二次方成反比。即:F

教师:牛顿根据其第三定律:太阳吸引行星的力与行星吸引太阳的力是同性质的作用力,且大小相等。于是提出大胆的设想:既然这个引力与行星的质量成正比,也应跟太阳的质量M成正比。即:F

写成等式就是F=G(其中G为比例常数)

(二)进行新课

教师:牛顿得到这个规律以后是不是就停止思考了呢?假如你是牛顿,你又会想到什么呢? 学生回答基础上教师总结:

猜想一:既然行星与太阳之间的力遵从这个规律,那么其他天体之间的力是否也遵从这个规律呢?(比如说月球与地球之间)

师生: 因为其他天体的运动规律与之类似,根据前面的推导所以月球与地球之间的力,其他行星的卫星和该行星之间的力,都满足上面的规律,而且都是同一种性质的力。

教师:但是牛顿的思考还是没有停止。假如你是牛顿,你又会想到什么呢?

学生回答基础上教师总结:

猜想二:地球与月球之间的力,和地球与其周围物体之间的力是否遵从相同的规律?

教师:地球对月球的引力提供向心力,即F= =ma

地球对其周围物体的力,就是物体受到的重力,即F=mg 从以上推导可知:地球对月球的引力遵从以上规律,即F=G

那么,地球对其周围物体的力是否也满足以上规律呢?即F=G

此等式是否成立呢?

已知:地球半径R=6.37106m , 月球绕地球的轨道半径r=3.8108 m ,月球绕地球的公转周期T=27.3天, 重力加速度g=9.8

(以上数据在当时都已经能够精确测量)

提问:同学们能否通过提供的数据验证关系式F=G 是否成立?

学生回答基础上教师总结:

假设此关系式成立,即F=G

可得: =ma=G F=mg=G

两式相比得: a/g=R2 / r2

但此等式是在以上假设成立的基础上得到的,反过来若能通过其他途径证明此等式成立,也就证明了前面的假设是成立的。代人数据计算:

a/g1/3600

R2 / r21/3600

即a/g=R2 / r2 成立,从而证明以上假设是成立的,说明地球与其周围物体之间的力也遵从相同的规律,即F=G

这就是牛顿当年所做的著名的月-地检验,结果证明他的猜想是正确的。从而验证了地面上的重力与地球吸引月球、太阳吸引行星的力是同一性质的力,遵守同样的规律。

教师:不过牛顿的思考还是没有停止,假如你是牛顿,此时你又会想到什么呢? 学生回答基础上教师总结:

猜想三:自然界中任何两个物体间的作用力是否都遵从相同的规律?

牛顿在研究了这许多不同物体间的作用力都遵循上述引力规律之后。于是他大胆地把这一规律推广到自然界中任意两个物体间,于1687年正式发表了具有划时代意义的万有引力定律。

万有引力定律

①内容

自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。

②公式

如果用m1和m2表示两个物体的质量,用r表示它们的距离,那么万有引力定律可以用下面的公式来表示(其中G为引力常量)

说明:1.G为引力常量,在SI制中,G=6.6710-11Nm2/kg2.2.万有引力定律中的物体是指质点而言,不能随意应用于一般物体。

a.对于相距很远因而可以看作质点的物体,公式中的r 就是指两个质点间的距离;

b.对均匀的球体,可以看成是质量集中于球心上的质点,这是一种等效的简化处理方法。

教师:牛顿虽然得到了万有引力定律,但并没有很大的实际应用,因为当时他没有办法测定引力常量G的数值。直到一百多年后英国的另一位物理学家卡文迪许才用实验测定了G的数值。

利用多媒体演示说明卡文迪许的扭秤装置及其原理。

扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出万有引力恒量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。

卡文迪许测定的G值为6.75410-11 Nm2/kg2,现在公认的G值为6.6710-11 Nm2/kg2。由于万有引力恒量的数值非常小,所以一般质量的物体之间的万有引力是很小的,我们可以估算一下,两个质量50kg的同学相距0.5m时之间的万有引力有多大(可由学生回答:约6.6710-7N),这么小的力我们是根本感觉不到的。只有质量很大的物体对一般物体的引力我们才能感觉到,如地球对我们的引力大致就是我们的重力,月球对海洋的引力导致了潮汐现象。而天体之间的引力由于星球的质量很大,又是非常惊人的:如太阳对地球的引力达3.561022N。

教师:万有引力定律建立的重要意义

下载高二物理焦耳定律教案word格式文档
下载高二物理焦耳定律教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高二物理法拉第电磁感应定律教案

    课题 4.3 法拉第电磁感应定律第3时 一、 教学目标: (一)知识与技能 1.知道什么叫感应电动势。 2.知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、En3.理解法......

    高二物理《机械能守恒定律》教案

    江苏省苏州市蓝缨学校高二物理《机械能守恒定律》教案 在离地面高h的地方,以v0的速度斜向上抛出一石块,v0的方向与水平成角,若空气阻力不计,求石块落至地面的速度大小.(看例题课......

    高二物理《回旋加速器》教案

    江苏省苏州市蓝缨学校高二物理《回旋加速器》教案 一、引入新课 [师]在现代物理学中,为了研究物质的微观结构,人们往往利用能量很高的带电粒子作为“炮弹”,去轰击各种原子核,以观......

    高二物理自感教案

    第二节 自感 三维教学目标 1、知识与技能 (1)了解互感和自感现象。 (2)了解自感现象产生的原因。 (3)知道自感现象中的一个重要概念——自感系数,了解它的单位及影响其大小的因素。......

    高二物理热力学第二定律教案

    高二物理热力学第二定律教案 【教材分析】 本节介绍热力学第二定律,该定律与热力学第一定律是构成热力学知识的理论基础,热力学第一定律对自然过程没有任何限制,只指 出在任何......

    高二物理《内能》教案

    高二物理《内能》教案教学目标(一)知识和技能1、了解内能的概念,简单描述温度和内能的关系。2、知道热传递过程中,物体吸收(或放出)热量,使物体温度升高(或降低),内能改变。3、知道在......

    高二物理的教案

    一、教学简析1.教材分析:本学期期采用的教材为人民教育出版社出版的《物理》选修3-1,共分为三章,分别是第一章静电场、第二章恒定电流、第三章磁场。静电场是高中阶段的基础内......

    九年级物理上册《焦耳定律》教学反思

    主要内容是电流通过导体时,电能转化成热与电流、电阻、通电时间有关;电热的利用和防止。本节课的设计的体现从生活走向物理,从物理走向社会的基本理念,注重科学的探究,激发学生的......