第一篇:第三章《晶体结构与性质》《晶体的常识》教学设计.doc
第三章《晶体结构与性质》《晶体的常识》教学设计
一、教学目标
1、知识与技能
(1)知道获得晶体的几种途径
(2)理解晶体的特点和性质及晶体与非晶体的本质区别
(3)初步学会确定一个晶胞中平均所含粒子数的方法
2、过程与方法
(1)收集生活素材,结合已有知识和生活经验对晶体与非晶体进行分类
(2)学生通过观察、实验等方法获取信息
(3)学会运用比较、分类、归纳、概括等方法对获取的信息进行加工
3、情感态度与价值观
(1)培养学生科学探究的方法
(2)培养学生的动手能力、观察能力、自主学习的能力,保持对生活中化学的好奇心和探知欲,增强学生学习化学的兴趣。
二、教学重点
1、晶体的特点和性质及晶体与非晶体的本质区别
2、确定一个晶胞中平均所含粒子数的方法
三、教学难点
1、确定一个晶胞中平均所含粒子数的方法
四、教学用品
课前学生收集的各种固体物质、玛瑙耳坠和水晶项链、蜂巢、晶胞实物模型、乒乓球、铁架台、酒精灯、蒸发皿、圆底烧瓶、碘、水、多媒体等
五、教学过程
1.新课导入:
[学生汇报]:(我们讨论后觉得将粗盐、明矾、樟脑丸分为一类;塑料、玻璃片、橡胶分为另一类。教师追问:你们为什么会这样分呢?生:根据这些有规则的几何外形,而另一些没有。)
[教师总结]这组同学收集的物品很丰富,并通过组内讨论确定了分类依据,然后进行了恰当的分类。其实,同学们也许没有留心观察,我们身边还有许多美丽的固体,当然也有的可能是我们日常生活中不易接触到的。下面,我们就一起欣赏一下这些美丽的固体。
[视频投影]雪花放大后的形状、烟水晶、石膏、毒砂、绿柱石、云母等晶体实物(并配以相应的解说,给学生了解到这些固态物质都有规则的几何外形。)
[教师讲述]我们就将这些有规则几何外形的固体称之为晶体,而另一些没有规则几何外形的固体称之为非晶体。
[板书]
一、晶体与非晶体
设计意图:课前请同学收集身边的固态物质,然后在课堂上展示,并分组交流讨论,最后进行分类,并在课堂上汇报。这样从学生身边的固体入手,直观、简洁地引入课题,潜移默化地使学生融入课堂,同时激发了他们强烈的求知欲望。
2.探究活动一:探究晶体的特点,晶体与非晶体的区别。(1)晶体的特点之一:自范性
[过渡]晶体和非晶体在本质上到底有什么区别呢?下面我们一起来探究一下晶体与非晶体的本质区别。
[教师讲述](展示实物)大家看我手上的两件美丽的饰品——玛瑙耳坠和水晶项链,从外表看,两种饰品材质一样吗?(不一样)但是大家知道吗,其实她们都取材于天然水晶球。(学生疑惑)大家一定觉得意外,不过大家看完下面一段短片后,一定就不会觉得意外了。
[视频投影]玛瑙和水晶的形成过程的录像(配以相应的解说)
[教师提问]我们了解到水晶的天然规则几何外形是怎样形成的?(自然形成的)
[教师讲述]化学上把这种自发地形成规则几何外形的性质称之为自范性。但我们也发现玛瑙没有像水晶那样形成规则的几何外形,这又是为什么呢?
(因为冷却速度不同)
[教师讲述]也就是说晶体的自范性是有条件的,是什么呢?
[幻灯投影]自范性的概念及自范性的条件
设计意图:通过视频材料,给学生以直观的视觉感知:紧扣视频设计问题,层层推进,让学生对晶体形成过程中的“自范性”和“自范性条件”这两个难以理解的概念,轻松地掌握。
(2)晶体的形成途径
[教师讲述]天然水晶球是由熔融态的二氧化硅凝固后得到的晶体,这是得到晶体的一种途径。
(3)晶体的其他特点 [过渡]前面我们从宏观世界探究了晶体的本质,接下来我们再进入微观世界去探究一下晶体的微观结构。
自范性 微观结构 晶体 有
原子在三维空间里呈周期性有序排列
非晶体 没有
原子排列相对无序
[教师提问]正是因为晶体中原子在三维空间成有序排列,所以晶体才有自范性,能自发呈现多面体外形的特点,此外,晶体还有那些特点呢?
[幻灯投影]多媒体模拟一组有关晶体与非晶体导热性的比较实验。(从而引出“各向异性”的概念。)
[学生阅读]请同学阅读课本p64,总结晶体还有哪些特点? [学生汇报]还有:强度、光学性质等。
[师生活动]根据晶体的这些特点,我们就可以区分哪些是晶体,哪些是非晶体。(请学生总结晶体的特点,同时举例说明如何用该特点来区别晶体和非晶体)
[幻灯投影]晶体的特点总结
[教师讲述]在区别晶体和非晶体的方法中,X——射线衍射实验是最科学的方法。
[
[思考交流]某同学在网站上找到一张玻璃的结构示意图如图所示,这张图说明玻璃是不是晶体?为什么?
(玻璃不是晶体,因为从结构上看是无序的,不满足晶体的微观结构特点)
3.探究活动二:晶胞、原子在晶胞中的位置及其对晶胞的贡献
[过渡]通过上面的学习,我们了解了晶体与非晶体的本质区别,那我们如何来描述晶体在微观空间里原子的排列呢?有必要画出千千万万个原子吗?当然不必,也是不可能的。
[教师讲述]我们只需在晶体微观空间里取出一个基本单元即可。
[实物展示]蜂巢
[教师讲述]这就好比我们要研究蜂巢,因为蜂巢是由无数多个蜂室构成的,所以我们只需研究一个个基本单元——蜂室就可以了。晶体和其基本单元的关系就和蜂巢与蜂室的关系一样。晶体也是由无数多个重复的基本单元“无隙并置”而成。这些基本单元我们称之为晶胞。
[板书]
二、晶胞
[教师讲述]“无隙”即无间隙,“并置”指晶胞都是平行排列,取向相同。设计意图:“晶胞”、“无隙并置”又是比较抽象、难以理解的概念,通过蜂巢实物展示,运用比喻的方式介绍“晶体和晶胞”的关系,化抽象为形象,让学生轻松掌握“晶胞”、“无隙并置”,并很好地理解晶胞和晶体的关系。
[幻灯投影]晶胞(一般都为平行六面体)
[师生活动]首先由老师展示晶胞实物模型——一个平行六面体和一只乒乓球。乒乓球好比是晶体中的某个原子,请同学分组讨论,这个原子在六面体上可以有几个不同的位置出现?(学生分组讨论,教师巡视指导
[幻灯投影]原子在晶胞的顶角、棱、面上及晶胞内时,一个晶胞平均拥有的原子情况。并对学生的讨论结果一一验证。
设计意图:有关晶胞中原子的位置及其对晶胞的贡献是一个抽象,难以理解的问题;用平行六面体和乒乓球作为实物模型,学生能很好地借助模型发挥空间想象;在学生讨论、分析、汇报以后,再结合动画加以验证,将抽象的事物具体化,使学生学得轻松而又能很好地掌握相关知识;整个过程均由学生完成,学生真正地“动”起来,课堂真正地“活”起来,真正培养了学生的空间想象能力,分析处理问题的能力。
表一:晶体和非晶体的区别
自范性 微观结构 性质 晶体 有
原子在三维空间里呈周期性有序排列
有固定的熔点,某些物理性质(如强度,导热性,光学性等)表现出各向异性
非晶体 没有
原子排列相对无序
无固定熔点,不具有物理性质各向异性 表二:晶体中不同位置的粒子对晶胞的贡献
晶胞内
微粒被一个晶胞占有,所以这个晶胞拥有这个微粒1
面上
微粒同时被两个晶胞占有,所以每个晶胞实际拥有这个微粒1/2
棱上
微粒同时被四个晶胞占有,所以每个晶胞实际拥有这个微粒1/4
顶角上
微粒同时被八个晶胞占有,所以每个晶胞实际拥有这个微粒1/8 《晶体的常识》这一节内容,比较抽象,其间出现了诸多抽象名词,如:“自范性、各向异性、无隙并置、晶胞、原子对晶胞的贡献等”,如何将这些抽象的内容具体化、形象化,并深入浅出地介绍给学生,成为本节课的难点。作为执教者运用身边事物,直观录象、图片,亲自动手操作实验等方法,利用多种教学手段,比较巧妙地使科学知识与学生的认识、学生的情感产生共鸣,通过主观感悟使学生轻松地掌握了本节内容。
第二篇:晶体的常识(晶胞)教学设计
教学设计]第三章 第一节 晶体的常识(晶胞)
江苏省如东高级中学 张 霞
教学设想
从教材看,本章首先从人们熟悉的固体出发,把固体分为晶体和非晶体两大类,引出了晶体的特征和晶胞的概念。晶胞是描述晶体结构的基本单元,是研究晶体结构的最基本概念,教科书利用图片、比喻等方式介绍了晶体与晶胞的关系,并通过例子介绍了如何计算晶胞中所含的原子数。
本教案选择《晶胞》作为学生自主学习的课题,试图利用多媒体课件和形象比喻等教学方式,使学生建构起晶胞的概念,通过动手制作晶胞模型并把自己制作的晶胞模型拼凑成晶体模型,体会晶胞与晶体之间的关系;再以课本上的问题设置矛盾,通过学生自学讨论,教师的适当点拨,总结归纳出一个晶胞中平均所含粒子个数的计算方法,在此过程中,提升学生的空间想象能力。
一、教学目标分析
知识与技能
1.了解晶体与晶胞的关系,体会由晶胞“无隙并置”构成晶体的过程。2.通过自学讨论,掌握不同晶胞中平均所含粒子个数的计算方法。
过程与方法
1.运用多种教学媒体,借助形象的比喻,帮助学生建构抽象的空间结构。2.知道研究晶体结构的一般方法。
情感态度和价值观
1、进一步形成求真务实、勤于思考的科学态度;形成敢于质疑、勇于创新的科学精神。
二、教学内容分析
对本节教学内容的处理方法:利用多媒体演示若干晶体和晶胞,组织学生讨论晶体与晶胞的关系,动手制作晶胞模型,引导学生建立以晶胞为基本结构研究晶体的思想,结合课本图3-7铜晶胞,展示实物模型,提出问题:为什么说一个晶胞里只含4个铜原子?学生自学、讨论并归纳出立方晶胞中平均所含粒子个数的计算方法,然后设置问题:如果为三棱柱晶胞或者六棱柱晶胞,又该如何计算?举一反三,巩固了学生对空间结构的理解和计算。最后利用课本学与问与课后习题3,进行训练反思。
三、教学过程设计
[多媒体演示](1)不同类型的晶体图片:玛瑙、水晶、碘等;(2)同一晶体,不同大小的图片。
[学生活动] 回忆前面所学的晶体的知识,观察图片,并讨论:同一类型的晶体,大小不同,外观是否相同?
[设置问题情境]如果我们把一块金刚石敲碎,就会得到小金刚石,如果小金刚石继续不停的敲碎,最后得到的是什么呢?
[学生讨论、教师点拨]最后可以得到晶体的最基本结构单元。大的晶体可以看成是许多这样的重复单位重叠起来的,或看成是数量巨大的这些最基本单元紧密的堆积起来的。
[多媒体演示]大大小小的金刚石图片。金刚石的外观、空间结构以及晶胞结构图片。
[师生总结]我们把这种描述晶体结构的基本单元叫做晶胞。它是保持晶体规则多面体外形的最小单位。晶体就是由无数个晶胞经过“无隙并置”而成的。
[学生活动]利用提供的纸、小木棍等工具,制作小的立方晶胞(按教师给定的尺寸),并将每8个同学所做的晶胞进行组合,要求尽可能结合紧密。讨论晶胞与晶体的关系,体会晶胞无隙并置构成晶体的过程。
[设置问题情境]图中所示金属铜的一个晶胞,它是一个立方体,含4个铜原子,但是从图中我们看到有14个铜原子,这是怎么回事?为什么说一个晶胞里只含4个铜原子呢?请同学们结合课本内容,先自己寻找出晶胞中所含原子个数的计算方法,然后以前后桌4个人一小组,讨论你们的结论是否正确。
[学生活动]自学、结论、交流。
[学生活动]以一个小组为代表,汇报讨论的结果,其他小组同学来判断是否正确,对不完整的地方进行补充,并归纳出最简洁的计算方法。
[师生总结](1)所有晶胞都是平行六面体,晶体可以看作是晶胞在三维空间里共面堆积而成。每个晶胞的上、下、左、右、前、后共有六个与之共面的晶胞。(2)处于晶胞顶点的粒子,同时为8个晶胞所共有,每个粒子只有1/8属于晶胞;处于棱上的粒子,同时为4个晶胞所共有,每个粒子只有1/4属于晶胞;处于面上的粒子,同时为两个晶胞所共有,每个粒子只有1/2属于晶胞;处于晶胞内部的粒子,完全属于该晶胞。
[思维拓展]在计算晶胞中所含平均原子数时,我们已经知道如果为立方结构,则有1/8,1/4,1/2和1,若换为六棱柱状呢?三棱柱又如何呢?
[学生活动]结合图片提供的结构,讨论交流得出六棱柱和三棱柱中所含平均原子个数的计算。六棱柱为1/6,1/3,1/2和1,而三棱柱为1/12,1/6,1/2和1。
[训练反思]教材P66学与问:图3-9依次是金属钠、金属锌、碘、金刚石晶胞的示意图,数一数它们分别平均含几个原子。
[巩固练习]教材P67习题3.下图的晶胞中各含有几个原子?
教后反思:
晶胞,是连接宏观晶体与微观原子之间的桥梁。晶胞是晶体微观结构的最基本单元,要研究晶体,必须先了解晶胞。虽然本教学案例侧重自主讨论的学习方式,但在教学过程中,基于教学内容的基础性和抽象性,我还是充分利用了多种教育、教学资源,比如多媒体演示了多幅晶体和晶胞的图片,比如让学生自己动手制作晶胞模型并拼制成晶体模型,以使学生对晶胞有一个比较形象和具体的认识,然后再进行问题情境的创设(即晶胞中显示的原子是否全部为此晶胞所包含?),使学生比较顺利的完成了自主学习的任务,在此基础上,又进行了一定的变化,把立方晶胞拓展到棱柱晶胞,使学生对问题的认识得到深化,同时也完成了化学知识和技能方面的自我建构。
第三篇:高考化学复习专题-晶体结构与性质
晶体结构与性质
【解题技巧】
(1)一般情况下,不同类型晶体的熔沸点高低规律:原子晶体>离子晶体>分子晶体,如:金刚石>NaCl>Cl2;金属晶体>分子晶体,如:Na>Cl2(金属晶体熔沸点有的很高,如钨、铂等,有的则很低,如汞等)。
(2)形成原子晶体的原子半径越小、键长越短,则键能越大,其熔沸点就越高,如:金刚石>石英>碳化硅>晶体硅。
(3)形成离子晶体的阴阳离子的电荷数越多,离子半径越小,则离子键越强,熔沸点就越高,如:MgO>MgCl2,NaCl>CsCl。
(4)金属晶体中金属离子半径越小,离子所带电荷数越多,其形成的金属键越强,金属单质的熔沸点就越高,如Al>Mg>Na。
(5)分子晶体的熔沸点比较规律
①组成和结构相似的分子,相对分子质量越大,其熔沸点就越高,如:HI>HBr>HCl。
②组成和结构不相似的分子,分子极性越大,其熔沸点就越高,如:CO>N2。
③同分异构体分子中,支链越少,其熔沸点就越高,如:正戊烷>异戊烷>新戊烷。
④同分异构体中的芳香烃及其衍生物,邻位取代物>间位取代物>对位取代物,如:邻二甲苯>间二甲苯>对二甲苯。
2.晶胞中微粒数目的计算方法——均摊法
熟记几种常见的晶胞结构及晶胞含有的粒子数目。
A.NaCl(含4个Na+,4个Cl-)
B.干冰(含4个CO2)
C.CaF2(含4个Ca2+,8个F-)
D.金刚石(含8个C)
E.体心立方(含2个原子)
F.面心立方(含4个原子)
3.晶胞求算
(1)晶体密度的计算
(2)晶体微粒与M、ρ之间的关系
若1个晶胞中含有x个微粒,则1
mol晶胞中含有x mol微粒,其质量为xM g(M为微粒的相对原子质量);又1个晶胞的质量为ρa3 g(a3为晶胞的体积,a为晶胞边长或微粒间距离),则1
mol晶胞的质量为ρa3NA g,因此有xM=ρa3NA。
【训练】
1.(1)我国科学家最近成功合成了世界上首个五氮阴离子盐(N5)6(H3O)3(NH4)4Cl(用R代表)晶体局部结构如图所示。回答下列问题:
R的晶体密度为d g·cm-3,其立方晶胞参数为a nm,晶胞中含有y个[(N5)6(H3O)3(NH4)4Cl]单元,该单元的相对质量为M,则y的计算表达式为________________。
(2)MgO具有NaCl型结构(如图),其中阴离子采用面心立方最密堆积方式,X射线衍射实验测得MgO的晶胞参数为a=0.420
nm,则r(O2-)为________
nm。MnO也属于NaCl型结构,晶胞参数为a′=0.448
nm,则r(Mn2+)为________
nm。
(3)①GaF3的熔点高于1
000
℃,GaCl3的熔点为77.9
℃,其原因是______________________________________。
②GaAs的熔点为1
238
℃,密度为ρ g·cm-3,其晶胞结构如图所示。该晶体的类型为________,Ga与As以________键键合。Ga和As的摩尔质量分别为MGa g·mol-1和MAs g·mol-1,原子半径分别为rGa pm和rAs pm,阿伏加德罗常数值为NA,则GaAs晶胞中原子的体积占晶胞体积的百分率为____________________。
(4)单质O有两种同素异形体,其中沸点高的是________(填分子式),原因是__________________________________;O和Na的氢化物所属的晶体类型分别为________和________。
(5)①
Cu2O为半导体材料,在其立方晶胞内部有4个氧原子,其余氧原子位于面心和顶点,则该晶胞中有________个铜原子。
②Al单质为面心立方晶体,其晶胞参数a=0.405
nm,晶胞中铝原子的配位数为________。列式表示Al单质的密度________________g·cm-3(不必计算出结果)。
第四篇:《晶体结构与性质》综合训练题
《晶体结构与性质》综合训练题
1.碳元素不仅能形成丰富多彩的有机化合物,而且还能形成多种无机化合物,同时自身可以形成多种单质,碳及其化合物的用途广泛。
(1)C60分子能与F2发生加成反应,其加成产物为______,C60分子的晶体中,在晶胞的顶点和面心均含有一个C60分子,则一个C60晶胞的质量为________。
(2)干冰和冰是两种常见的分子晶体,下列关于两种晶体的比较中正确的是_______(填字母)。
a.晶体的密度:干冰>冰
b.晶体的熔点:干冰>冰
c.晶体中的空间利用率:干冰>冰
d.晶体中分子间相互作用力类型相同
(3)金刚石和石墨是碳元素形成的两种常见单质,下列关于这两种单质的叙述中正确的是________(填字母)。
a.金刚石中碳原子的杂化类型为sp3杂化,石墨中碳原子的杂化类型为sp2杂化
b.晶体中共价键的键长:金刚石中C—C<石墨中C—C
c.晶体的熔点:金刚石>石墨
d.晶体中共价键的键角:金刚石>石墨
e.金刚石晶体中只存在共价键,石墨晶体中则存在共价键、金属键和范德华力
f.金刚石和石墨的熔点都很高,所以金刚石和石墨都是原子晶体
(4)金刚石晶胞结构如下图,立方BN结构与金刚石相似,在BN晶体中,B原子周围最近的N原子所构成的立体图形为________,B原子与N原子之间共价键与配位键的数目比为________,一个晶胞中N原子数目为________。
(5)C与孔雀石共热可以得到金属铜,铜原子的原子结构示意图为_______,金属铜采用面心立方最密堆积(在晶胞的顶点和面心均含有一个Cu原子),则Cu的晶体中Cu原子的配位数为_______。
已知Cu单质的晶体密度为ρg·cm-3,Cu的相对原子质量为M,阿伏加德罗常数为NA,则Cu的原子半径为_______。
2.太阳能电池的发展已经进入了第三代。第三代就是铜铟镓硒CIGS等化合物薄膜太阳能电池以及薄膜Si系太阳能电池。完成下列填空:
(1)亚铜离子(Cu+)基态时的电子排布式为________;
(2)硒为第四周期元素,相邻的元素有砷和溴,则3种元素的第一电离能从大到小顺序为________(用元素符号表示),用原子结构观点加以解释:________。
(3)与镓元素处于同一主族的硼元素具有缺电子性(价电子数少于价层轨道数),其化合物可与具有孤对电子的分子或离子生成加合物,如BF3能与NH3反应生成BF3·NH3。BF3·NH3中B原子的杂化轨道类型为________,B与N之间形成________键。
(4)单晶硅的结构与金刚石结构相似,若将金刚石晶体中一半的C原子换成Si原子且同种原子不成键,则得如图所示的金刚砂(SiC)结构;在SiC中,每个C原子周围最近的C原子数目为________。
3.回答下列问题:
(1)过渡金属元素铁能形成多种配合物,如[Fe(H2NCONH2)6]
(NO3)3[三硝酸六尿素合铁(Ⅲ)]和Fe(CO)x等。
①基态氧原子的价电子排布式为________。
②尿素(H2NCONH2)分子中C、N原子的杂化方式分别是________、________。
③配合物Fe(CO)x的中心原子价电子数与配体提供电子数之和为18,则x=________。
Fe(CO)x常温下呈液态,熔点为-20.5
℃,沸点为103
℃,易溶于非极性溶剂,据此可判断Fe(CO)x晶体属于____________(填晶体类型)。
(2)O和Na形成的一种只含有离子键的离子化合物的晶胞结构如下图,距一个阴离子周围最近的所有阳离子为顶点构成的几何体为________。已知该晶胞的密度为ρg/cm3,阿伏伽德罗常数为NA,求晶胞边长a=______cm。
(用含ρ、NA的计算式表示)
(3)下列说法正确的是________。
A.第一电离能大小:S>P>Si
B.电负性顺序:C<N<O<F
C.因为晶格能CaO比KCl高,所以KCl比CaO熔点低
D.SO2与CO2的化学性质类似,分子结构也都呈直线形,相同条件下SO2的溶解度更大
E.分子晶体中,共价键键能越大,该分子晶体的熔沸点越高
(4)图(a)是Na、Cu、Si、H、C、N等元素单质的熔点高低的顺序,其中c、d均是热和电的良导体。
(a)(b)
①图中d单质的晶体堆积方式类型是_________________________________。
②单质a、b、f
对应的元素以原子个数比1∶1∶1形成的分子中含________个σ键,________个π键。
③图(b)是上述6种元素中的1种元素形成的含氧酸的结构,请简要说明该物质易溶于水的原因:_
________________________________________________________________________。
4.铜、镓、硒、硅等元素的化合物是生产第三代太阳能电池的重要材料。
回答下列问题:
(1)基态铜原子的电子排布式为__________________;已知高温下CuO→Cu2O+O2,试从铜原子价层电子结构变化角度解释这一反应发生的原因:
________________________________________________________________________。
(2)
硒、硅均能与氢元素形成气态氢化物,则它们形成的组成最简单的氢化物中,分子构型分别为____________,若“Si—H”中键合电子偏向氢元素,氢气与硒反应时单质硒是氧化剂,则硒与硅的电负性相对大小为__________。
(3)硒的一种含氧酸H2SeO3电离平衡常数分别为K1=2.7×10-3,K2=2.5×10-8,二者之间存在着较大差异的原因(任意答出一种)是:
________________________________________________________________________。
(4)与镓元素处于同一主族的硼元素具有缺电子性(价电子数少于价层轨道数),其化合物可与具有孤对电子的分子或离子生成配合物,如BF3能与NH3反应生成BF3·NH3。
BF3·NH3中B原子的杂化轨道类型为________,B与N之间形成________键。
(5)金刚砂(SiC)的硬度为9.5,其晶胞结构如下图所示;则金刚砂晶体类型为________,在SiC中,每个C原子周围最近的C原子数目为________,若晶胞的边长为apm,则金刚砂的密度为______________。
5.在电解冶炼铝的过程中加入冰晶石,可起到降低Al2O3熔点的作用。冰晶石的生产原理为2Al(OH)3+12HF+3Na2CO3===2Na3AlF6+3CO2↑+9H2O。根据题意完成下列填空:
(1)冰晶石的晶体不导电,但熔融时能导电,则在冰晶石晶体中存在________(填序号)。
a.离子键 b.极性键
c.配位键
d.范德华力
(2)
CO2分子的空间构型为____________,中心原子的杂化方式为____________,和CO2互为等电子体的氧化物是________。
(3)反应物中电负性最大的元素为________(填元素符号),写出其原子最外层的电子排布图:______________。
(4)冰晶石由两种微粒构成,冰晶石的晶胞结构如图甲所示,●位于大立方体的顶点和面心,○位于大立方体的12条棱的中点和8个小立方体的体心,那么大立方体的体心处所代表的微粒是________(填具体的微粒符号)。
(5)Al单质的晶体中原子的堆积方式如图乙所示,其晶胞特征如图丙所示,原子之间相互位置关系的平面图如图丁所示:
若已知Al的原子半径为d,NA代表阿伏伽德罗常数,Al的相对原子质量为M,则一个晶胞中Al原子的数目为________个;Al晶体的密度为______________________(用字母表示)。
6.根据下列五种元素的第一至第四电离能数据(单位:kJ·mol-1),回答下列各题:
(1)在周期表中,最可能处于同一族的是________。
A.Q和R
B.S和T
C.T和U
D.R和T
E.R和U
(2)下列离子的氧化性最弱的是________。
A.S2+B.R2+C.T3+D.U+
(3)下列元素中,化学性质和物理性质最像Q元素的是________。
A.硼
B.铍
C.氦
D.氢
(4)每种元素都出现相邻两个电离能的数据相差较大的情况,这一事实从一个侧面说明:
________
如果U元素是短周期元素,你估计它的第2电离能飞跃数据将发生在失去第________个电子时。
(5)如果R、S、T是同周期的三种主族元素,则它们的原子序数由小到大的顺序是,其中元素的第一电离能异常高的原因是。
7.根据信息回答下列问题:
A.第一电离能I1是指气态原子X(g)处于基态时,失去一个电子成为气态阳离子X+(g)所需的最低能量。下图是部分元素原子的第一电离能I1随原子序数变化的曲线图(其中12号至17号元素的有关数据缺失)。
B.不同元素的原子在分子内吸引电子的能力大小可用数值表示,该数值称为电负性。一般认为:如果两个成键原子间的电负性差值大于1.7,原子之间通常形成离子键;如果两个成键原子间的电负性差值小于1.7,通常形成共价键。下表是某些元素的电负性值:
(1)认真分析信息A图中同周期元素第一电离能的变化规律,推断第三周期Na~Ar这几种元素中,Al的第一电离能的大小范围为________<Al<________(填元素符号)。
(2)从信息A图中分析可知,同一主族元素原子的第一电离能I1的变化规律是:
(3)信息A图中第一电离能最小的元素在周期表中的位置是________周期________族。
(4)根据对角线规则,Be、Al元素最高价氧化物对应水化物的性质相似,它们都具有性,其中Be(OH)2显示这种性质的离子方程式是________。
(5)通过分析电负性值的变化规律,确定Mg元素的电负性值的最小范围________。
(6)请归纳元素的电负性和金属性、非金属性的关系是________。
(7)从电负性角度,判断AlCl3是离子化合物还是共价化合物,说出理由并写出判断的方法
8.下图为几种晶体或晶胞的示意图:
请回答下列问题:
(1)上述晶体中,粒子之间以共价键结合形成的晶体是________________。
(2)冰、金刚石、MgO、CaCl2、干冰5种晶体的熔点由高到低的顺序为:___________________。
(3)NaCl晶胞与MgO晶胞相同,NaCl晶体的晶格能________(填“大于”或“小于”)MgO晶体,原因是________________________。
(4)每个Cu晶胞中实际占有________个Cu原子,CaCl2晶体中Ca2+的配位数为________。
(5)冰的熔点远高于干冰,除H2O是极性分子、CO2是非极性分子外,还有一个重要的原因是________________________________。
9.下图为CaF2、H3BO3(层状结构,层内的H3BO3分子通过氢键结合)、金属铜三种晶体的结构示意图,请回答下列问题:
图Ⅲ 铜晶体中铜原子堆积模型
(1)图Ⅰ所示的CaF2晶体中与Ca2+最近且等距离的F-数为________________,图Ⅲ中未标号的铜原子形成晶体后周围最紧邻的铜原子数为__________________________________。
(2)图Ⅱ所示的物质结构中最外能层已达8电子结构的原子是________,H3BO3晶体中B原子个数与极性键个数比为____________。
(3)金属铜具有很好的延展性、导电性、传热性,对此现象最简单的解释是用________理论。
(4)三种晶体中熔点最低的是________(填化学式),其晶体受热熔化时,克服的微粒之间的相互作用为____________________________________________________________。
(5)已知两个距离最近的Ca2+核间距离为a×10-8cm,结合CaF2晶体的晶胞示意图,CaF2晶体的密度为_______________________________________。
10.(1)氯酸钾熔化,粒子间克服了________的作用力;二氧化硅熔化,粒子间克服了________的作用力;碘的升华,粒子间克服了________的作用力。三种晶体的熔点由高到低的顺序是____________(填化学式)。
(2)下列六种晶体:①CO2,②NaCl,③Na,④Si,⑤CS2,⑥金刚石,它们的熔点从低到高的顺序为________(填序号)。
(3)在H2、(NH4)2SO4、SiC、CO2、HF中,由极性键形成的非极性分子是________,由非极性键形成的非极性分子是________,能形成分子晶体的物质是________,含有氢键的晶体的化学式是________________________,属于离子晶体的是____________________,属于原子晶体的是____________________,五种物质的熔点由高到低的顺序是________________。
(4)A、B、C、D为四种晶体,性质如下:
A.固态时能导电,能溶于盐酸
B.能溶于CS2,不溶于水
C.固态时不导电,液态时能导电,可溶于水
D.固态、液态时均不导电,熔点为3
500℃
试推断它们的晶体类型:
A.________________;B.________________;
C.________________;D.________________。
(5)相同压强下,部分元素氟化物的熔点见下表:
试解释上表中氟化物熔点差异的原因:
____________________________________________________________________
(6)镍粉在CO中低温加热,生成无色挥发性液态Ni(CO)4,呈四面体构型。150
℃时,Ni(CO)4分解为Ni和CO。Ni(CO)是________晶体,Ni(CO)4易溶于下列________(填序号)
a.水 b.四氯化碳 c.苯 d.硫酸镍溶液
11.图A所示的转化关系中(具体反应条件略),a,b,c和d分别为四种短周期元素的常见单质,其余均为它们的化合物,i的溶液为常见的酸,a的一种同素异形体的晶胞如图B所示。
回答下列问题:
(1)图B对应的物质名称是______,其晶胞中的原子数为______,晶体类型为________。
(2)d中元素的原子核外电子排布式为________。
(3)图A中由二种元素组成的物质中,沸点最高的是______,原因是______,该物质的分子构型为______,中心原子的杂化轨道类型为________。
(4)图A中的双原子分子中,极性最大的分子是________。
(5)k的分子式为________,中心原子的杂化轨道类型为________,属于________分子(填“极性”或“非极性”)。
12.X,Y,Z,W是元素周期表前四周期中的常见元素,其相关信息如下表:
(1)W位于元素周期表第_____周期,第_____族,其基态原子最外层有_____个电子。
(2)X的电负性比Y的_______(填“大”或“小”);X和Y的气态氢化物中,较稳定的是___________(写化学式)。
(3)写出Z2Y2与XY2反应的化学方程式,并标出电子转移的方向和数目:__________。
(4)在X原子与氢原子形成的多种分子中,有些分子的核磁共振氢谱显示有两种氢,写出其中一种分子的名称:______________。氢元素,X,Y的原子也可共同形成多种分子和某种常见无机阴离子,写出其中一种分子与该无机阴离子反应的离子方程式:_____________。
答案解析
1.【答案】(1)C60F60 g(2)ac(3)ae
(4)正四面体 3∶1 4
(5)12 ×cm
【解析】(1)C60中每个碳原子的连接方式为,所以C60中共有双键0.5×60=30个,则与F2加成的产物应为C60F60;C60为面心立方堆积,则
m·NA=4×12×60
g
m=g。
(2)在冰中存在氢键,空间利用率较低,密度较小,a、c正确。
(3)石墨中C—C键键长小于金刚石中C—C键键长,所以熔点:石墨>金刚石,金刚石的碳原子呈sp3杂化,而石墨中的碳原子呈sp2杂化,所以共价键的键角:石墨大于金刚石,石墨属于混合型晶体,a、e正确。
(4)在BN中,B原子周围最近的N原子所构成的立体图形为正四面体形,在四个共价键中,其中有一个配位键,其个数之比为3∶1,在晶胞中,含N:8×+6×=4个,含B:4个。
(5)根据铜的堆积方式,Cu原子的配位数应为12,设晶胞边长为a,则a3·ρ·NA=4M
a=
面对角线为×,其为Cu原子半径,即r=×cm。
2.【答案】
【解析】
3.【答案】1.(1)①2s22p4 ②sp2 sp3 ③5 分子晶体
(2)立方体(3)BC
(4)①面心立方最密堆积 ②2 2 ③硝酸分子是极性分子,易溶于为极性溶剂的水中;硝酸分子中氢氧键易与水分子间形成氢键
【解析】(1)尿素中碳原子形成了3个σ键和1个π键,氮原子形成了3个化学键且还有1个孤电子对,故二者分别为sp2、sp3杂化。Fe(CO)x中铁有8个价电子(3d64s2),一个CO提供2个电子与Fe形成配位键,故x=5。由Fe(CO)x的熔点、沸点数值知其为分子晶体。
(2)对应的化合物为Na2O,观察晶胞图知,白色小球代表Na+,黑色小球代表O2-,O2-的配位数是8,8个Na+构成了一个立方体。该晶胞中含有4个“Na2O”组成单元,物质的量为,晶胞的质量为g,晶胞体积V==a3,由此可求出a=。(3)磷的第一电离能比硫的大,A项错误,SO2中硫为sp2杂化,SO2是V形结构,D项错误。
(4)①由c、d是热和电的良导体知二者是金属,结合熔点知c是钠,d是铜,a是氢,b是氮,e是硅,f是碳。铜为面心立方最密堆积。②H、C、N形成的符合条件的化合物为HCN,结构式为H-C≡N,故有2个σ键,2个π键。图(b)对应的物质是硝酸,硝酸中存在“H-O”键,能与水形成氢键,故它易溶于水。
4.【答案】(1)1s22s22p63s23p63d104s1或[Ar]3d104s1 CuO中铜的价层电子排布为3d9,Cu2O中铜的价层电子排布为3d10,后者处于稳定的全充满状态而前者不是
(2)V形、正四面体 Se>Si
(3)SeO与H+的结合能力强于HSeO与H+的结合能力或H2SeO3一级电离电离出的H+对二级电离存在抑制作用
(4)sp3 配位(5)原子晶体 12 ag·mol-1。
【解析】(1)Cu+、Cu2+的价层电子排布分别为稳定状态的3d10、不稳定的3d9,故高温时CuO稳定性比Cu2O差。
(2)SiH4、H2Se中硅与硒均有四个价层电子对,故VSEPR模型均为正四面体,分子构型分别为四面体与V形;键合电子偏向氢元素,说明氢的电负性比硅元素的大,氢与硒反应时硒是氧化剂,说明硒的非金属性比氢元素的强,故硒的电负性比硅的电负性大。
(3)亚硒酸的一级电离常数与二级电离常数相差较大,与两种酸根离子结合H+能力大小不同有关,也与电离平衡间的抑制作用有关。
(4)B原子含有三个共价键,所以采取sp3杂化;由提供空轨道的原子和提供孤电子对的原子间形成的化学键属于配位键。
(5)
采用X、Y、Z三轴切割的方法判断知,符合题设条件的碳原子有
12个。又每个晶胞中含有4个“SiC”,质量为40
g·mol-1×,晶胞的体积为10-30a3mL,由此可求出晶体的密度。
5.【答案】(1)abc(2)直线形 sp N2O(3)
F(4)Na+
(5)4 g/mL
【解析】(1)冰晶石是以3个钠离子为外界,六氟合铝离子为内界的配合物,AlF中存在共价键与配位键,Na+与AlF之间形成的是离子键。(2)N2O有22个电子,与CO2互为等电子体。(4)冰晶石是由Na+和AlF组成的,个数之比为3∶1,故处于体心的微粒是Na+。
(5)铝晶胞的原子处于晶胞顶点和面心,故一个晶胞含有的Al原子数目为6×+8×=4。设Al晶胞的边长为a,则有2a2=(4d)2,a=2d,Al晶胞的体积为V=16d3,故Al晶体的密度为g/mL。
6.【答案】(1)E
(2)D
(3)C
(4)电子分层排布,各能层能量不同 10
(5)R
【解析】(1)根据电离能的变化趋势知,Q为稀有气体元素,R为第ⅠA族元素,S为第ⅡA族元素,T为第ⅢA族元素,U为第ⅠA族元素,所以R和U处于同一主族。
(2)由于U+为第ⅠA族元素且比R电离能小,所以U+的氧化性最弱。
(3)由于Q是稀有气体元素,所以氦的物理性质和化学性质与此最像。
(4)电离能的突跃变化,说明核外电子是分层排布的。若U是短周期元素,则U是Na,其核外电子排布式为1s22s22p63s1,由于2s22p6所处能层相同,所以它的第2次电离能飞跃数据发生在失去第10个电子时。
(5)同一周期,第一电离能呈增大趋势,但ⅡA、ⅤA族比相邻元素要高,因为其最外层电子呈全充满或半充满结构。
7.【答案】(1)Na Mg
(2)从上到下依次减小
(3)第五 第ⅠA
(4)两 Be(OH)2+2H+===Be2++2H2O、Be(OH)2+2OH-===BeO+2H2O(5)0.9~1.5
(6)非金属性越强,电负性越大;金属性越强,电负性越小
(7)Al元素和Cl元素的电负性差值为1.5<1.7,所以形成共价键,为共价化合物 将氯化铝加热到熔融态,进行导电性实验,如果不导电,说明是共价化合物
【解析】(1)由信息所给的图可以看出,同周期的ⅠA族元素的第一电离能最小,而第ⅢA族元素的第一电离能小于ⅡA族元素的第一电离能,故Na<Al<Mg。
(2)从图中可看出同主族元素的第一电离能从上到下逐渐减小。
(3)根据第一电离能的递变规律可以看出,图中所给元素中Rb的第一电离能最小,其在周期表中的位置为第五周期第ⅠA族。
(4)根据对角线规则,Al(OH)3与Be(OH)2的性质相似,Be(OH)2应具有两性,根据Al(OH)3+NaOH===NaAlO2+2H2O,Al(OH)3+3HCl===AlCl3+3H2O可以类似地写出Be(OH)2与酸、碱反应的离子方程式。
(5)根据电负性的递变规律:同周期元素,从左到右电负性逐渐增大,同主族元素从上到下电负性逐渐减小可知,在同周期中电负性Na<Mg<Al,Be>Mg>Ca,最小范围应为0.9~1.5。
(6)因电负性可以用来衡量原子吸引电子能力的大小,所以电负性越大,原子吸引电子的能力越强,非金属性越强,反之金属性越强。
(7)AlCl3中Al与Cl的电负性差值为1.5,根据信息,电负性差值若小于1.7,则形成共价键,所以AlCl3为共价化合物。离子化合物在熔融状态下以离子形式存在,可以导电,但共价化合物不能导电。
8.【答案】(1)金刚石晶体
(2)金刚石>MgO>CaCl2>冰>干冰
(3)小于 MgO晶体中离子的电荷数大于NaCl晶体中离子电荷数;且r(Mg2+) (4)4 8 (5)水分子之间形成氢健 【解析】(2)离子晶体的熔点与离子半径及离子所带电荷数有关,离子半径越小,离子所带电荷数越大,则离子晶体熔点越高。金刚石是原子晶体,熔点最高,冰、干冰均为分子晶体,冰中存在氢键,冰的熔点高于干冰。 (4)铜晶胞实际占有铜原子数用均摊法分析,8×+6×=4,氯化钙类似于氟化钙,Ca2+的配位数为8,Cl-配位数为4。 9.【答案】(1)8 12(2)O 1∶6(3)金属键 (4)H3BO3 分子间作用力(5)g·cm-3 【解析】(1)CaF2晶体中Ca2+的配位数为8,F-的配位数为4,Ca2+和F-个数比为1∶2,铜晶体中未标号的铜原子周围最紧邻的铜原子为上层1、2、3,同层的4、5、6、7、8、9,下层的10、11、12,共12个。 (2)图Ⅱ中B原子最外层三个电子形成三条共价键,最外层共6个电子,H原子达到2电子稳定结构,只有氧原子形成两条键达到8电子稳定。H3BO3晶体是分子晶体,相互之间通过氢键相连,每个B原子形成三条B—O极性键,每个O原子形成一条O—H极性价键,共6条极性键。 (3)金属键理论把金属键描述为金属原子脱落下来的价电子形成整块晶体的电子气,被所有原子所共用,从而把所有的原子联系在一起,可以用来解释金属键的本质,金属的延展性、导电性、传热性。 (4)H3BO3晶体是分子晶体,熔点最低,熔化时克服了分子间作用力。 (5)一个晶胞中实际拥有的离子数:较小的离子数为8×1/8+6×1/2=4,而较大的离子为8个,从而确定晶胞顶点及六个面上的离子为Ca2+,晶胞内部的离子为F-,1个晶胞实际拥有4个“CaF2”,则CaF2晶体的密度为4×78 g·mol-1÷[(a×10-8cm)3×6.02×1023mol-1]≈g·cm-3。 10.【答案】(1)离子键 共价键 分子间 SiO2>KClO3>I2 (2)①<⑤<③<②<④<⑥ (3)CO2 H2 H2、CO2、HF HF(NH4)2SO4 SiC SiC>(NH4)2SO4>HF>CO2>H2 (4)金属晶体 分子晶体 离子晶体 原子晶体 (5)NaF与MgF2为离子晶体,SiF4为分子晶体,故SiF4的熔点低;Mg2+的半径比Na+的半径小,Mg2+带2个单位正电荷数比Na+多,故MgF2的熔点比NaF高 (6)分子晶体 bc 【解析】(1)氯酸钾是离子晶体,熔化离子晶体时需要克服离子键的作用力;二氧化硅是原子晶体,熔化原子晶体时需要克服共价键的作用力;碘为分子晶体,熔化分子晶体时需克服的是分子间的作用力。由于原子晶体是由共价键形成的空间网状结构的晶体,所以原子晶体的熔点最高;其次是离子晶体;由于分子间作用力与化学键相比较要小得多,所以碘的熔点最低。 (2)先把六种晶体分类。原子晶体:④、⑥;离子晶体:②;金属晶体:③;分子晶体:①、⑤。由于C原子半径小于Si原子半径,所以金刚石的熔点高于晶体硅;CO2和CS2同属于分子晶体,其熔点与相对分子质量成正比,故CS2熔点高于CO2;Na在通常状况下是固态,而CS2是液态,CO2是气态,所以Na的熔点高于CS2和CO2;Na在水中即熔化成小球,说明它的熔点较NaCl低。 (6)根据“相似相溶”原理判断溶解性。 11.【答案】(1)金刚石 原子晶体 (2)1s22s22p63s23p5 (3)H2O 分子间形成氢键 V形(或角形) sp3 (4)HCl (5)COCl2sp2极性 【解析】(1)a有同素异形体,每个原子周围有4个键,判断为金刚石,是原子晶体。晶胞中含有的C原子数为8×+6×+4=8; (2)a为C,则b为H2,c为O2,因i是常见的酸,只由b,d形成可判断为盐酸,则d为Cl2; (3)除a,b,c,d外,f为CO,g为CO2,i为HCl,而k与水反应生成CO2与盐酸,且由f,d反应得到,应含C,O,Cl三种元素,只能判断为COCl2。所有两元素形成的物质中,只有水是液态,其它都是气体,H2O存在分子间氢键,沸点比较高,H2O的中心原子sp3杂化,空间构型为V型; (4)所有双原子分子中,只有H,Cl电负性差值最大,因而极性最大。 (5)COCl2中羰基的平面结构,所以C为sp2杂化,是极性分子。 12.【答案】(1)四 Ⅷ (2)小 H2O (3) (4)丙烷 CH3COOH+HCO3-=CH3COO-+H2O+CO2↑ 【解析】X,Y,Z,W是元素周期表前四周期中的常见元素,X的基态原子L层电子数是K层电子数的2倍,所以X基态原子核外有6个电子,X是C元素;Y的基态原子最外层电子排布式为:nsnnpn+2,s能级上最多排2个电子,且p能级上还有电子,所以n为2,则Y的基态原子最外层电子排布式为:2s22p4,Y是O元素;Z存在质量数为23,中子数为12的核素,则其质子数是11,Z是Na元素;W有多种化合价,其白色氢氧化物在空气中会迅速变成灰绿色,最后变成红褐色,W是Fe。 (1)Fe位于周期表中第四周期Ⅷ族,最外层为2个电子; (2)X是C元素,Y是O元素,同一周期从左到右电负性递增,所以X的电负性比Y的小,元素的电负性越大,其氢化物越稳定,所以X和Y的气态氢化物中,较稳定的是H2O; (3)过氧化钠和二氧化碳反应生成碳酸钠和氧气,该反应中过氧化钠既是氧化剂又是还原剂,; (4)在X原子与氢原子形成的多种分子中,有些分子的核磁共振氢谱显示有两种氢,则物质可能是丙烷或丁烷等,氢元素,X,Y的原子也可共同形成多种分子,如羧酸或含有羟基的羧酸等,某种常见无机阴离子有碳酸氢根离子,醋酸和碳酸氢根离子反应二氧化碳,水和醋酸根离子,离子方程式为: CH3COOH+HCO3-=CH3COO-+H2O+CO2↑。 晶体结构与性质教案(四)【晶体模拟试题】 1、下列的晶体中,化学键种类相同,晶体类型也相同的是()A.SO2与SiO2 B.CO2与H2O C.C与HCl D.CCl4与SiC 2、碳化硅SiC的一种晶体具有类似金刚石的结构,其中C原子和S原子的位置是交替的。在下列三种晶体①金刚石 ②晶体硅 ③碳化硅中,它们的熔点从高到低的顺序是() A.①③② B.②③① C.③①② D.②①③ 3、1999年美国《科学》杂志报道:在40GPa高压下,用激光器加热到1800K,人们成功制得了原子晶体干冰,下列推断中不正确的是() A.原子晶体干冰有很高的熔点、沸点,有很大的硬度 B.原子晶体干冰易气化,可用作制冷材料 C.原子晶体干冰的硬度大,可用作耐磨材料 D.每摩尔原子晶体干冰中含4molC—O键 4.下列晶体中不属于原子晶体的是()A.干冰 B.金刚砂 C.金刚石 D.水晶 5.在金刚石的网状结构中,含有共价键形成的碳原子环,其中最小的环上,碳原子数是() A.2个 B.3个 C.4个 D.6个 6.下列各物质中,按熔点由低到高排列正确的是() 版权所有:中华资源库 www.xiexiebang.com A.O2、I2、Hg B.CO2、K、SiO2 C.Na、K、Rb D.SiC、NaCl、SO2 7.下列各晶体中任意一个原子都被相邻的4个原子所包围,以共价键结合成正四面体结构,并向空间伸展成网状结构的是() A.甲烷 B.石墨 C.晶体硅 D.水晶 8.在x mol石英晶体中,含有的Si—O键数是()A.x mol B.2x mol C.3 x mol D.4x mol 9.固体熔化时,必须破坏非极性共价键的是()A.冰 B.晶体硅 C.溴 D.二氧化硅 10.石墨晶体是层状结构,在每一层内;每一个碳原子都跟其他3个碳原子相结合,如下图是其晶体结构的俯视图,则图中7个六元环完全占有的碳原子数是() A.10个 B.18个 C.24个 D.14个 11.下图所示是晶体结构中具有代表性的最小重复单元(晶胞)的排列方式,其对应的化学式正确的是(图中:○—X,●—Y,×—Z)() 12.最近发现一种由钛(Ti)原子和碳原子构成的气态团簇分子,分子模型如图所示,其中圆圈表示钛原子,黑点表示碳原子,则它的化学式为() 版权所有:中华资源库 www.xiexiebang.com A.TiC B.C.D.13.美国《科学》杂志评选的2001年世界科技十大成就中,名列第五的日本青山学院大学教授秋光纯发现的金属间化合物硼化镁超导转变温度高达39K,该金属间化合物的晶体结构如下图,则它的化学式为() A.MgB B.Mg2B C.MgB2 D.Mg2B3 14.碘元素有多种价态,可以形成多种含氧阴离子IχOyn-。由2个IO62-正八面体共用一个面形成的IχOyn-的化学式为() A.I2O94-B.I2O106-C.I2O118-D.I2O1210-15.石墨是层状晶体,每一层内碳原子排列成正六边形,一个个正六边形排列成平面的网状结构。如果将每对相邻的原子间的化学键看成是一个化学键,则石墨晶体每一层内碳原子数与碳碳化学键数之比是() A.1∶1 B.1∶2 C.1∶3 D.2∶3 16.在金刚石的网状结构中,含有由共价键形成的碳原子环,其中最小的环上有___(填数字)个碳原子,每个碳原子上的任意两个C—C键的夹角都是_____(填角度)。 版权所有:中华资源库 www.xiexiebang.com 17.二氧化硅晶体是立体的网状结构。其晶体模型如下图所示。认真观察晶体模型并回答下列问题: (1)二氧化硅晶体中最小的环为 元环。 (2)每个硅原子为 个最小环共有。 (3)每个最小环平均拥有 个氧原子。 18.下图为高温超导领域里的一种化合物——钙钛矿的晶体结构,该结构是具有代表性的最小重复单位。 (1)在该物质的晶体结构中,每个钛离子周围与它最接近且距离相等的钛离子、钙离子各有、个。 (2)该晶体结构中,元素氧、钛、钙的离子个数比是。该物质的化学式可表示为。 (3)若钙、钛、氧三元素的相对质量分别为a,b,c,晶体结构图中正方体边长(钛原子之间的距离)为dnm(1nm=10-9m),则该晶体的密度为 g/cm3。 19.有A、B、C、D四种元素,A元素的气态氢化物分子式为RH4,其中R的质量分数为75%,该元素核内有6个中子,能与B形成AB2型化合物,B在它的氢化物中含量为88.9%,核内质子数和中子数相等,C、D为同周期元素,D的最高价氧化物的水化物为酸性最强的酸,版权所有:中华资源库 www.xiexiebang.com C的氧化物为两性氧化物。 (1)A元素的一种无色透明的单质,名称叫______,其晶体类型是______。 (2)B的氢化物的电子式为______,属______分子。(极性或非极性) (3)A和B形成化合物的分子空间构型为____,属___分子,其晶体类型是_,俗名______。 (4)C元素位于周期表中第______周期______族,A、C、D三元素的最高价氧化物的水化物按酸性由强到弱的顺序排列(用分子式表示)______。 (5)C和D的化合物溶于水后滴入过量KOH,现象是______,离子方程式______。20.1996年诺贝尔化学奖授予对发现C60有重大贡献的三位科学家。C60分子是形如球状的多面体(如图),该结构的建立基于以下考虑:(1)C60分子中每个碳原子只跟相邻的3个碳原子形成化学键;(2)C60分子只含有五边形;(3)多面体的顶点数、面数和棱边数的关系,遵循欧拉定理:顶点数+面数-棱边数 = 2。据上所述,可推知C60分子有12个五边形和20个六边形,C60分子所含的双键数为30。请回答下列问题: (1)固体C60与金刚石相比较,熔点较高者应是_____,理由是:________。 (2)试估计C60跟F2在一定条件下,能否发生反应生成C60F60(填“可能”或“不可能”)___________,并简述其理由:_______________________________。 (3)通过计算,确定C60分子所含单键数。 (4)C70分子也制得,它的分子结构模型可以与C60同样考虑而推知。通过计算确定 版权所有:中华资源库 www.xiexiebang.com C70分子中五边形和六边形的数目。 【试题答案】 1.B 2.A 3.B D 4.A 5.D 6.B 7.C 8.B 9.B 10.D 11.BC 12.D 13.C 14.A 15.D 16.6 109°28′(或109.5°)17.(1)12(2)12(3)1 18.(1)6 8(2)3:1:1 19.(1)金刚石;原子晶体 (3) (2)极性 (3)直线型分子;非极性;分子晶体;干冰 (4)3;ⅢA;HClO4>H2CO3>H3AlO3(5)先有白色沉淀,滴入过量KOH时白色沉淀消失。 Al3++3OH-=Al(OH)3↓ Al(OH)3+OH-=AlO2—+2H2O 20.(1)金刚石 金刚石属原子晶体,而固体C60不是,故金刚石熔点较高。(答出“金刚石属原子晶体”即给分) (2)可能 因C60分子中含30个双键,与极活泼的F2发生加成反应即可生成C60F60 版权所有:中华资源库 www.xiexiebang.com (只要指出“C60含30个双键”即给分,但答“因C60含有双键”不给分) (3)通过计算,确定C60分子所含单键数。依题意,C60分子形成的化学键为:,也可以由欧拉定理计算键数(即棱边数):60+(12+20)-2 = 90,C60分子所含单键数为:90-30=60。(答“2×30(双键数)=60”即给分) (4)设C70分子中五边形数为x,六边形数为y。依题意可得方程组: 解得:C70分子中所含五边形数为五边形数x=12,六边形数为:六边形数y=25。 版权所有:中华资源库 www.xiexiebang.com第五篇:化学教学素材:晶体结构与性质教案(四)