人教版六年级数学下册抽屉原理教学设计(大全)

时间:2019-05-12 17:50:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版六年级数学下册抽屉原理教学设计(大全)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版六年级数学下册抽屉原理教学设计(大全)》。

第一篇:人教版六年级数学下册抽屉原理教学设计(大全)

小学六年级数学下册《抽屉原理》教学设计

教学内容:义务教育课程标准实验教科书六年级下册《抽屉原理》。

教学目标:

1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教具学具:课件、扑克牌、每组都有相应数量的笔筒、铅笔、书。

教学过程:

一、创设情景 导入新课

师:今天我们在学习新课之前,老师想请3名同学上来做一个游戏,游戏的名字叫“抢椅子”。谁愿意来?同学们看:这有几把椅子?几名同学?游戏的规则是:这3名同学绕着椅子顺时针转圈,老师说“停”时,必须找身旁的椅子坐下。请同学们观察,会发生怎样的情况。师:准备好了吗?走!(学生转,师说停)谁来说一下发生了什么情况?(一人没有做到座位)(再重复一遍做)这次又发生了什么情况?(两人挤在了一个椅子上)

师:这个游戏蕴含一个有趣的数学原理——抽屉原理。(板书课题)这节课我们就一起来研究这个数学原理。

二、自主操作 探究新知

1、用铅笔和文具盒探究抽屉原理

(一)活动1课件出示:把4根铅笔放到3个文具盒里,你有什么发现?

师:4人一小组你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。(可以用图表示,也可以用数字表示)

1、学生动手操作,师巡视,了解情况。

2、汇报交流 说理活动

① 师:有什么发现?哪个小组先说说看?(指名说)

师:我看有些同学没有听清楚,老师在用课件展示一下。

② 再认真观察记录,还有什么发现? 板书:总有一个文具盒里至少放2 枝铅笔。“总有”是什么意思?(肯定有,一定有):至少有2枝“是什么意思?(有2枝或者2枝以上)

③ 怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。)用算式怎么表示?(板书: 4 ÷3=1……1)

④ 师:这种方法是不是很快就能确定总有一个文具盒里至少有几枝铅笔呢?

⑤ 把5 根铅笔放进4 个文具盒里呢?还用摆吗?(板书: 5÷4=1……1)我们再来验证一下。(出示课件,再次出示课件,小结)⑥ 课件出示: 把7 根铅笔放进6 个文具盒呢? 把10 根铅笔放进9 个文具盒呢? 把100 根铅笔放进99 个文具盒呢? ⑦ 观察这些数据你发现了什么规律?(预设学生说出:至少数=商+余数)

师:是不是这个规律呢?我们来试一试吧!

3.深化探究 得出结论

课件出示:7 只鸽子飞回5个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么?

① 学生活动:同桌互相说一说。

② 交流说理活动 预设:生1:题目的说法是错误的,用商加余数,应该至少有3 只鸽子要飞进同一个鸽笼。生2:不同意!不是“商加余数”是“商加1”.③ 师:到底是“商加余数”还是“商加1”?谁的结论对呢?在小组里进行研究、讨论。

④ 师:谁能说清楚?板书:7÷5=1(只)……2(只)至少数=商+1 ④回顾刚才的想一想,如果要放的铅笔数比文具盒的数量多2,多3,多4或更多呢?这个结论还成立吗?(成立)那至少数等于什么?是商加1,还是商加余数呢?(至少数=商+1)

(二)活动二

课件出示:把5 本书放进2 个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

1、分组操作后汇报。(板书:5÷2=2……1

7÷2=3……1 9÷2=4……1

2、那么探究到现在,大家认为怎样才能确定总有一个抽屉至少有几本书?怎么来的?(生:至少数=商+1)、师:我同意大家的讨论。我们这个发现就是有趣的“抽屉原理”,(点题)。(出示课件):“抽屉原理” 又称“鸽笼原理”,最先是由19 世纪德国数学家狄里克雷提出的,所以又称“狄里克雷原理”。这一原理在实际问题中有着广泛的应用,用它可以解决许多有趣的问题。(出示课件)抽屉原理虽然简单,却能解决许多有趣的问题。运用它时,关键是要找出谁是“抽屉”,谁是“待分物体”。像刚才的问题中,谁相当于“抽屉”?谁相当于“物体”?

三、灵活应用 解决问题

1、解释课前提出的游戏问题。

2、课件出示:8 只鸽子飞回3 个鸽舍,不管怎样分,总有一个鸽舍至少有几只鸽子?

3、课件出示:六二班任意13人中,至少有两人的出生月份相同。为什么?

4、课件出示:蓟县第六小学六年级共有学生385人,至少有2名学生,他们在同一天过生日。为什么?

四、畅谈感受 教学结束

同学们,今天这节课有什么感受?

【板书设计】

抽屉原理

铅笔 文具盒 总有一个杯子里至少有 4 ÷ 3 = 1„„1 2 5 ÷ 4 = 1„„1 2 7 ÷ 5 = 1„„2 2 7 ÷ 2 = 3„„1 4 9 ÷ 2 = 4„„1 5 物体

商+1

第二篇:(人教新课标)六年级数学下册数学广角《抽屉原理》

(人教新课标)六年级数学下册 数学广角《抽屉原理》

1.把5只兔放进2个笼子里。不管怎么放,总有一个笼子至少放进几只兔?为什么?

2.盒子里有同样大小的红球、黄球和蓝球各5个。

(1)要想摸出的球一定有两种同色的,最少要摸多少个球?

(2)要想摸出的球一定有3个同色的,至少要摸多少个球?

3.五(1)班有30名学生是2月份出生的,至少有几名学生的生日是同一天,为什么?

4.在38个小朋友中,至少有几个小朋友的属相是相同的?为什么?

5.一个盒子里装有大小相同但颜色不同的手套若干只,已知手套的颜色有灰、白、黑三种。问最少要取出多少只手套才能保证有三幅手套是同色的?

6.有100个学生参加美术小组,其中最小的只有7岁,最大的有12岁。问参加美术小组的学生是否一定有两个学生肯定是同年同月出生的?

第三篇:六年级数学《抽屉原理》教学设计

六年级数学《抽屉原理》教学设计

《抽屉原理》教学设计

教学内容:

人教版《义务教育课程标准实验教科书数学》六年级下册数学广角《抽屉原理》。

教学目标:

1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教具学具:课件、扑克牌、每组都有相应数量的杯子、吸管。

教学过程:

一、创设情景,导入新课

分配房间1、3个人住两个房间 2、4个人住3个房间

板书课题:抽屉原理

展示学习目标1经历抽屉原理的探究过程,初步了解抽屉原理;

2运用抽屉原理解决简单的实际问题。

二、探究新知,揭示原理

1.出示题目:把4根吸管放进3个纸杯里。

师:先进入活动

(一):把4枝吸管放进3个杯子里,有多少种放法呢?会出现什么情况呢?大家摆摆看。在不同的摆法中,把每个杯子里面吸管的枝数记录下来,当某个杯子中没放吸管时可以用0表示。

2.学生动手操作,自主探究。师巡视,了解情况。

3.汇报交流 指名演示。

4.思考:再认真观察记录,有什么发现?

课件出示:总有一个杯子里至少有2根吸管。

5.理解“总有”、“至少”的含义

总有一个杯子:一定有一个杯子,但并不一定是只有一个杯子。

至少2根吸管:最少2枝,也可能比2枝多

6.讨论、交流:刚刚我们是把每一种放法都列举出来,知道了总有一个杯子里至少有2枝吸管。那为什么会出现这种情况呢?可不可以每个杯子里只放1枝吸管呢?和小组里的同学说说你的想法。

7.汇报:

吸管多,杯子少。

课件演示:如果每个杯子只放1枝吸管,最多放3枝。剩下的1枝吸管不管放进哪个杯子里,一定会出现“总有一个杯子里至少有2枝吸管”的现象。

8.优化方法

如果把5枝吸管放进4个杯子,结果是否一样呢?怎样解释这一现象?

师:把4枝吸管放进3个杯子里,把5枝吸管放进4个杯子里,都会出现“总有一个杯子里至少有2枝吸管”的现象。那么

把6枝吸管放进5个杯子里,把7枝吸管放进6个杯子里,把100枝吸管放进99个杯子里,结果会怎样呢?

9.发现规律

师:从上面的几个问题中,你发现了什么相同的地方?

条件都是吸管数比杯子数多1;结果都一样:总有一个杯子里至少有2枝吸管。

课件出示:只要放的吸管数比杯子的数量多1,不论怎么放,总有一个杯子里至少放进2枝吸管。

10.想一想:如果要放的吸管数比杯子的数量多2,多3,多4或更多呢?这个结论还成立吗?(只要求学生能说出自己的看法,并不要求一定是正确的)

师:是不是像同学们想的那样呢?我们接着进入下面的学习。

11出示自学提示:结合刚才所学,大胆猜一猜,也可动手摆一摆,并结合书上例2进行小组合作学习,完成表格,试着探索求“至少数”的方法。

学生小组学习,填写表格,讨论规律。

指生汇报得出结论:至少数=商+1

三、归纳总结抽屉原理

把m个物体放进n个抽屉里,用算术表示m/n=a......b,总有一个杯子里至少放a+i个物体,也就至“少数=商+1”

四、拓展应用:

课件一:填空1、34个小朋友要进4间屋子,至少有()个小朋友要进同一间屋子。

2、13个同学坐5张椅子,至少有()个同学坐在同一张椅子上

3、新兵训练,战士小王5枪命中了41环,战士小王总有一枪不低于()环。

4、从街上人群中任意找来20个人,可以确定,至少有()个人属相相同

课件二:

从扑克牌中取出两张王牌,在剩下的52张扑克牌任意抽牌。

(1)从中抽出18张牌,至少有几张是同花色?

(2)从中抽出20张牌,至少有几张数字相同?

课件三:

六(2)班有学生39人,我们可以肯定,在这39人中,至少有 人的生日在同一个月?想一想,为什么?

课件四:

六年级四个班的学生去春游,自由活动时,有6个同学在一起,可以肯定。为什么?

五、课堂总结

同学们,通过本节课的学习,你有哪些收获?

六、生成创新

课后搜集生活中有关抽屉原理的应用,试着自己编写一些利用抽屉原理解决的问题。

第四篇:人教新课标六年级下册数学教案_抽屉原理_6教学设计

(人教新课标)六年级数学下册教案 抽屉原理 6

教学内容:义务教育课程标准实验教科书六年级下册《抽屉原理》。教学目标:

1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教具学具:课件、扑克牌、每组都有相应数量的笔筒、铅笔、书。教学过程:

一、创设情景 导入新课

师:同学们玩过扑克牌吗?扑克牌有几种花色?取出两张王牌,在剩下的52张扑克牌中任意取出5张,我不看牌,我敢肯定的说:这5张牌至少有两张是同花色,大家相信吗?(师生演示)

师:想知道老师为什么能做出如此准确的判断吗?这其中蕴含一个有趣的数学原理——抽屉原理。(板书课题)这节课我们就一起来研究这个数学原理。

师:通过今天的学习,你想知道些什么?

二、自主操作 探究新知 1.活动1 课件出示:把4枝铅笔放到3个笔筒里,可以怎么放?

师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。(1)学生动手操作,师巡视,了解情况。(2)汇报交流 说理活动

①师:有什么发现?谁能说说看?

师根据学生的回答用数字在黑板上记录。板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)

师:你们是这样记录的吗?

师:还可以用图记录。我把用图记录的用课件展示出来。②再认真观察记录,还有什么发现? 板书:总有一个笔筒里至少有2枝铅笔。

③怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。)板书:4÷3=1(枝)„„1(枝)

④师:这种方法是不是很快就能确定总有一个笔筒里至少有几枝铅笔呢?(学生交流)

⑤把5枝铅笔放进4个笔筒里呢?还用摆吗?板书:5÷4=1(枝)„„1(枝)⑥课件出示:把6枝铅笔放进5个笔筒呢? 把7枝铅笔放进6个笔筒呢? 把10枝铅笔放进9个笔筒呢? 把100枝铅笔放进99个笔筒呢? 板书:7÷6=1(枝)„„1(枝)10÷9=1(枝)„„1(枝)100÷99=1(枝)„„1(枝)⑦观察这些算式你发现了什么规律? 预设学生说出:至少数=商+余数

师:是不是这个规律呢?我们来试一试吧!(3)深化探究 得出结论

课件出示:5只鸽子飞回3个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么? ①学生活动 ②交流说理活动

预设:生1:题目的说法是错误的,用商加余数,应该至少有3只鸽子要飞进同一个鸽笼。

生2:不同意!不是“商加余数”是“商加1”.③师:到底是“商加余数”还是“商加1”?谁的结论对呢?在小组里进行研究、讨论。

④师:谁能说清楚?板书:5÷3=1(只)„„2(只)至少数=商+1 2.活动二

课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(1)分组操作后汇报

板书:5÷2=2(本)„„1(本)7÷2=2(本)„„1(本)9÷2=2(本)„„1(本)

(2)那么探究到现在,大家认为怎样才能确定总有一个抽屉至少有几本书? 生:至少数=商+1 2(3)师:我同意大家的讨论。我们这个发现就是有趣的“抽屉原理”,(点题)。“抽屉原理”又称“鸽笼原理”,最先是由19世纪德国数学家狄里克雷提出的,所以又称“狄里克雷原理”。这一原理在实际问题中有着广泛的应用。用它可以解决许多有趣的问题,让我们来试试好吗?

三、灵活应用 解决问题 1.解释课前提出的游戏问题。

2.课件出示:8只鸽子飞回3个鸽舍,不管怎样分,总有一个鸽舍至少有几只鸽子? 3.课件出示:任意13人中,至少有两人的出生月份相同。为什么?

4.课件出示:任意367名学生中,一定存在两名学生,他们在同一天过生日。为什么?

四、畅谈感受 教学结束

同学们,今天这节课有什么感受?(抽生谈谈,师总结。)

第五篇:六年级下册《抽屉原理》教学反思

抽屉原理是人教版六年级下册数学广角中的内容,由于初次接触新教材,对这部分内容不太理解.在教学设计中我亦有着一些困惑与问题:

1、如何定位教学目标,抽屉原理原属奥数内容,使学生初步感受一些基本的数学思想方法是“数学广角”的主要教学目标之一,但在具体的课堂中如何适度把握教学要求。我虽然在课前已经钻研了教参,也已经上完了课,但这个还是我值得探究的一个问题。

2、如何设计教学活动使学生在观察、操作中建立起解决“抽屉原理”问题的一般解决问题的方法的同时发展学生的思维也是值得思考的一个问题。

于是我通过翻阅奥赛书籍和在网上查询,终于弄清了原委。上课有了把握和信心。

一生活情境导入激发学习兴趣

新课标指出,数学来源于生活,服务于生活。引入新课时我设计了与生活有关的小问题,给学生造成悬念,激发他们积极思维,很快进入学习情境。

二从简单问题着手发现一般规律

在解决复杂问题时,为寻找规律可从简单情况入手分析,直到找到规律,再加以运用。本节课就是从较小的数据变化中探索规律、发现规律的。

三加强说理帮助学生弄清所以然

本节课从始至终我都要学生说理,叙述自己的思维过程。重在让学生真正理解什么叫“最不利”的情况。我觉得让学生弄清原因,比直接知道结果更重要。

由于此内容属于奥数范畴,某些学生理解起来还是不很轻松。这一现象说明他们还没有真正掌握抽屉原理的内涵,需要在今后的教学中进一步改进。真的希望自己能让学生们感受到学习奥数的快乐。

下载人教版六年级数学下册抽屉原理教学设计(大全)word格式文档
下载人教版六年级数学下册抽屉原理教学设计(大全).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教版六年级下册抽屉原理教学设计(推荐五篇)

    《数学广角——抽屉原理》教案 城区小学 李忠 【教学内容】: 人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。 【教学目标】: 知识与技能:经......

    人教版六年级下册《抽屉原理》教学设计(精选五篇)

    《抽屉原理》教学设计 教学内容:教科书第70,71页 教学目标: 1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。 2.过程和方法:经历抽屉原理的探究过程,通过动......

    六年级数学下册抽屉原理教材分析

    抽屉原理教材分析 抽屉原理:把(n+1)个苹果放入n个抽屉中,那么必有一个抽屉中至少含有2个苹果。这个原理就是抽屉原理。 1。原理的证明:首先,若某个抽屉中被放入有2个苹果,那么原理......

    六年级上册抽屉原理——数学广角 教学设计

    数学广角---抽屉原理 【教学内容】 《义务教育课程标准实验教科书·数学》六年级下册第70、71页,例1、例2. 【教材分析】 抽屉原理是人教版六年级下册第五单元数学广角的内容......

    小学数学抽屉原理教学设计

    “抽屉原理”教学设计 山东省济南市民生大街小学 张荣明 山东省济南市市中区教研室 董惠平【教学内容】 《义务教育课程标准实验教科书·数学》六年级下册第68页。 【教学......

    《数学广角---抽屉原理》教学设计

    《数学广角---抽屉原理》教学设计 教学内容: 《义务教育课程标准实验教科书 数学》六年级下册第70-71页。 教学目标 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用......

    抽屉原理教学设计

    抽屉原理 【教学内容】 义务教育课程标准实验教科书数学六年级下册第70、71页,例1、例2。 【教学目标】 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理......

    抽屉原理教学设计

    《抽屉原理》教学设计 【教学内容】《义务教育课程标准实验教科书〃数学》六年级下册第70--71页。 【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“......