第一篇:17.4高三物理概率波教案
§17.4 概率波
【教学目标】
(一)知识与技能
1.了解微粒说的基本观点及对光学现象的解释和所遇到的问题. 2.了解波动说的基本观点及对光学现象的解释和所遇到的问题.
3.了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性. 4.了解光是一种概率波.
(二)过程与方法 1.领悟什么是概率波
2.了解物理学中物理模型的特点初步掌握科学抽象这种研究方法 3.通过数形结合的学习,认识数学工具在物理科学中的作用
(三)情感、态度与价值观
理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 【重点难点】
1、重点:人类对光的本性的认识的发展过程.
2、难点:对量子化、波粒二象性、概率波等概念的理解 【授课内容】
一、经典的粒子和经典的波
在经典物理学的观念中,人们形成了一种观念,物质要么具有粒子性,要么具有波动性,非此即彼。任意时刻的确定位置和速度以及空中的确定轨道,是经典物理学粒子运动的基本特征。与经典的粒子不同,经典的波在空间中是弥散开来的,其特征是具有频率和波长,也就是具有时空的周期性。
显而易见,在经典物理学中,波和粒子是两种不同的研究对象,具有非常不同的表现。那么,为什么光和微观粒子既表现有波动性又表现有粒子性的双重属性呢?
学生跟随老师的讲述对于原来所学的相关知识进行自主的回顾和归纳整理。
点评:对于已经学习过的知识可以穿插在平常的教学过程中时常进行温习反思和类比迁移,多次反复一定可以帮助学生更好的掌握和利用知识。
[问题]:在微观世界中,如何把波的图象与粒子的图象统一起来呢? 学生思考、讨论后给出一些答复,就各种答案加以分析提炼总结。
点评:给学生一定的自主学习的时间和空间效果比被动的接受知识要好,能够更加有效的培养他们的学习主动性和能动性。
二、概率波
1、德布罗意波的统计解释
1926年,德国物理学玻恩(Born,1882--1972)提出了概率波,认为个别微观粒子在何处出现有一定的偶然性,但是大量粒子在空间何处出现的空间分布却服从一定的统计规律。
展示演示文稿资料:玻恩
点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。
2、概率波对光的双缝衍射现象的解释:
光是一种粒子,它和物质的作用是“一份一份”地进行的.用很弱的光做双缝干涉实验.从光子打在胶片上的位置,我们发现了规律性.实验结果表明,如果曝光时间不太长,底片上只出现一些无规则分布的点子,那些点子是光子打在底片上形成的,如果曝光时间足够长,我们无法把它们区分开,因此看起来是连续的.单个光子通过双缝后的落点无法预测,但是研究很多光子打在胶片上的位置,我们发现了规律性:光子落在某些条形区域内的可能性较大.这些条形区域正是某种波通过双缝后发生干涉时振幅加强的区域.这个现象表明,光子在空间各点出现的可能性的大小(概率),正是由于这个原因,1926年德国的物理学家波恩指出:虽然不能肯定某个光子落在哪一点,但由屏上各处明暗不同可知,光子落在各点的概率是不一样的,即光子落在明纹处的概率大,落在暗纹处的概率小。这就是说,光子在空间出现的概率可以通过波动的规律确定,所以,从光子的概念上看,光波是一种概率波。
物理学中把光波叫做概率波.概率表征某一事物出现的可能性.经过长期的探索,人们对光的认识越来越深入了.光既是一种波,又是一种粒子,光既表现出波动性又表现出粒子性.而在我们的经验中找不到既是波,又是粒子的东西.这是因为我们的经验局限于宏观物体的运动,微观世界的某些属性与宏观世界不同,我们从来没有过类似的经历.随着人类的认识范围不断扩展,不可能直接感知的事物出现在我们面前.在这种情况下我们就要设想一种模型,尽管以日常经验来衡量,这个模型的行为十分古怪,但是只要能与实验结果一致,它就能够在一定范围内正确代表所研究的对象.3、光的波动性与粒子性是不同条件下的表现:
讲述:大量光子行为显示波动性;个别光子行为显示粒子性;
光的波长越长,波动性越强;光的波长越短,粒子性越强 4、概率波对物质波的双缝衍射现象的解释
对于电子和其他微观粒子,由于同样具有波粒二象性,所以与它们相联系的物质波也是概率波。也就是说,单个粒子位置是不确定的。对于大量粒子,这种概率分布导致确定的宏观结果。
总之,按光子的模型,用统计观点看待单个粒子与粒子总体的联系,并将波的观点与粒子观点结合起来了,但这里的波是特殊意义的波,因而被称为“概率波”. 这种对物质波衍射与实物粒子的波粒二象性的理解,称作统计解释或概率解释.
点评:存疑——求解,人类社会的不断发展和科学技术的日益进步都是在这样的情景下取得。
三、课堂小结
教师活动:光既具有波动性,又具有粒子性。
既不可把光看成宏观观念中的波,也不可把光看成宏观观念中的粒子。
学生在老师进行小结的同时可以同步把自己对于本节课的内容小结进行参照对比,查漏补缺。
点评:课堂小结有利于学生对当堂课的内容形成完善的知识框架,强化理解和把握一些知识重点和难点。
四、作业:完成讲义相应练习★教学体会
第二篇:高三物理振动和波公式总结
高三物理振动和波公式总结
摘要:在高三总复习的第一阶段,同学们应从基础知识抓起,扎扎实实,一步一个脚印地过物理原理关。复习时,把高三物理振动和波公式的内容熟练运用,相信可以提高物理成绩!
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角100;lr}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=f=/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
总结:高三物理振动和波公式都是高考非常重要的内容,欢迎同学们及时关注查字典物理网为您编辑的知识点归纳讲解,运用到考试中,取得优异成绩!
第三篇:专题二 统计与概率教案4
专题二 统计与概率(2)
【教学目标】:
1、计算和分析材料中的数据
2、用树状图、列表法计算简单事件的概率 【教学重点】:用树状图、列表法计算简单事件的概率 【教学难点】:用树状图、列表法计算简单事件的概率 【教学过程】:
一、知识点回顾:
1、描述数据常用的统计图:、、2、方差公式:
2、一般的,在一次实验中,可能出现的结果有n种,并且它们发生的可能性,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=
二、典型例题:
中招考点:条形统计图、扇形统计图分析、计算数据
1、学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:
(1)在统计的这段时间内,共有 万人到市图书馆阅读,其中商人所占百分比是,并将条形统计图补充完整
(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?
中招考点:用树状图、列表法计算简单事件的概率
2、为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
请你根据统计图解答下列问题:
(1)在这次调查中一共抽查了 名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是 人;
(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.
中招考点:用树状图、列表法计算简单事件的概率
3、西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调查了 名同学;(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.
三、当堂检测:
1、中招考点:方差公式:说明与检测P78第3题
2、中招考点:求简单事件的概率:说明与检测P79第6、7题
3、中招考点:分析、计算统计图中的数据:说明与检测P81第13题
四、延伸拓展:
1、高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:
(1)该校近四年保送生人数的极差是 .请将折线统计图补充完整;
(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.
五、课后作业
1、见学案
第四篇:概率教案
概率的预测
一、教学目标
掌握通过逻辑分析用计算的方法预测概率,知道概率的预测,概率的频率含义,所有事件发生的概率和为1;经历各种疑问的解决,体验如何预测一类事件发生的概率,培养学生分析问题解决问题的能力;
二、重点:通过逻辑分析用计算的办法预测概率
三、难点:要能够看清所有机会均等的结果,并能指出其中你所关注的结果
四、教学方法:讲练结合法
五、教学器具:多媒体、扑克
六、教学过程
(一)关注我们身边的事:
1)如果天气预报说:“明日降水的概率是95%,那么你会带雨具吗?” 2)有两个工厂生产同一型号足球,甲厂产品的次品率为0.001,乙厂产品的次品率是0.01. 若两厂的产品在价格等其他方面的条件都相同,你愿意买哪个厂的产品?
上述事例告诉我们知道了一件事情发生的概率对我们工作和生活有很大的指导作用.(二)热身运动:
我们三(1)班有21位同学,其中女同学11名,老师今天早上正好看见我们班一位同学在操场锻炼身体,问:我遇到男同学的机会大,还是女同学的机会大?
遇见男生的概率大还是女生的概率大?我们需要做实验吗?我们能否去预测?
复习上节课概率的计算方法
(三)热点探讨:
问题 2006年10月6日,经过三年的建设,由世界建筑大师贝聿铭老先生设计的苏州市博物馆新馆在百万苏州市民的热切期盼中正式开馆.为了让大家能一睹这一被贝老喻为“最亲爱的小女儿”的方容,老师准备带一部分同学去参观苏博新馆,那么带哪些同学去呢?老师准备这么做: 在我们班里有女同学11人,男同学10人。先让每位同学都在一张小纸条上写上自己的名字,放入一个盒中搅匀。如果老师闭上眼睛从中随便的取出一张纸条,想请被抽到的同学等会上讲台和老师一起去参观,这个方法公平吗?那么抽到男同学名字的概率大还是抽到女同学的概率大?
分析 全班21个学生名字被抽到的机会是均等的.
11解
P(抽到女同学名字)=,2110
P(抽到男同学名字)=,所以抽到女同学名字的概率大. 请思考以下几个问题:,表示什么意思? 21如果抽一张纸条很多次的时候,平均21次就能抽到11次女同学的名字。
2、P(抽到女同学名字)+P(抽到男同学名字)=100%吗?
如果改变男、女生的人数,这个关系还成立吗? 请学生回答
所有等可能事件发生的概率之和是1
1、抽到女同学名字的概率是
四、你能中奖吗:
1.一商场搞活动促销,规定购物满一百元可以抽一次奖,规则如下,在一只口袋中放着8只红球和16只黑球,抽到红球即获奖,这两种球除了颜色以外没有任何区别.袋中的球已经搅匀.蒙上眼睛从口袋中取一只球,取出黑球与红球的概率分别是多少?
162解 P(取出黑球)==, 2
431 P(取出红球)=1-P(取出黑球)=,321所以,取出黑球的概率是,取出红球的概率是. 想一想:
33如果商场换成以下的抽奖方案:甲袋中放着20只红球和8只黑球,乙袋中则放着20只红球、15只黑球和10只白球,这三种球除了颜色以外没有任何区别.两袋中的球都已经各自搅匀.蒙上眼睛从口袋中取一只球,取出黑球才能获奖,你选哪个口袋成功的机会大呢?
解题过程见课件
下面三位同学的说法,你觉得这些同学说的有道理吗?
1.A认为选甲袋好,因为里面的球比较少,容易取到黑球;
2.B认为选乙袋好,因为里面的球比较多,成功的机会也比较大。3.C则认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.
幸运抽奖:老师手上有两组扑克,一组有7张,其中两张A,另一组16 张,其中四张A,现在老师抽一名同学上来选择一组抽一张,抽到A获奖。
小试身手
在分别写有1到20的20张小卡片中,随机地抽出1张卡片.试求以下事件的概率.(1)该卡片上的数字是5的倍数;(2)该卡片上的数字不是5的倍数;
(3)该卡片上的数字是素数;(4)该卡片上的数字不是素数.学生上黑板书写,纠正学生的不规范书写
注意关注所有机会均等的结果和所需要关注的事件个数 试一试
1、任意翻一下2005年日历,翻出1月6日的概率为________;翻出4月31日的概率为___________。翻出2号的概率为___________。
2、掷一枚普通正六面体骰子,求出下列事件出现的概率:(1)点数是3;(2)点数大于4;(3)点数小于5;(4)点数小于7;(5)点数大于6;(6)点数为5或3.
3、李琳的妈妈在李琳上学时总是叮咛她:“注意,别被来往的车辆碰着”,但李琳心里很不舒服,“哼,我市有300万人口,每天的交通事故只有几十件,事件发生的可能性太小,概率为0。”你认为她的想法对不对?
4、小强和小丽都想去看电影,但只有一张电影票,你能用手中的扑克牌为他们设计一个公平游戏决定谁去看电影吗?(方法多种多样,让学生自己分析)
以上两题组织学生讨论
幸运笑脸:有一个幸运翻板,参与同学回答老师一个问题,答对可以获得一次翻板机会,20个板块中有5个后面试笑脸,翻到笑脸可获得奖品。(是否公平,为下节课埋个伏笔)
五、小 结
1. 要清楚所有等可能结果; .要清楚我们所关注的是发生哪个或哪些结果; 3 . 概率的计算公式:
六、布置作业
教学反思:
用样本估计总体(1)知识技能目标
1.进一步体会随机抽样是了解总体情况的一种重要的数学方法,抽样是它的一个关键; 2.根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流.
重点和难点
通过随机抽样选取样本,绘制频数分布直方图、计算样本平均数和标准差并与总体的频数分布直方图、平均数和标准差进行比较,得出结论.
教学过程
一、创设情境
有这么一个笑话:妈妈让一个傻儿子去买一盒火柴,走的时候特别嘱咐这个傻儿子:“宝贝,买火柴的时候要注意买好火柴,就是一划就着的火柴,别买那划不着的火柴啊.”傻儿子答应了妈妈,就去买火柴了.回来的时候,他兴高采烈地喊:“妈妈,妈妈,火柴买回来了,我已经把每一根火柴都划过了,根根都是一划就着的好火柴!” 这虽然是一个笑话,但告诉了我们抽样的必要性. 再请看下面的例子:
要估计一个湖里有多少条鱼,总不能把所有的鱼都捞上来,再去数一数,但是可以捕捞一部分作样本,把鱼作上标记,然后放回湖中,过一段时间后,等带有标记的鱼完全混入鱼群后,然后再捕捞一网作第二个样本,并计算出在这个样本中,带标记的鱼的数目,根据带标记的鱼所占的第二个样本的比例就可以估计出湖中有多少条鱼.
在刚才讲的笑话中,傻儿子其实只要抽取一盒火柴中的一部分来考察火柴是否一划就着就可以了.
二、探究归纳
像这样,抽取一部分作为样本进行考查,用样本的特性去估计总体的相应特性,就是用样本估计总体.为了更好地学习本节知识,我们来回顾一下:什么是平均数、总体平均数、样本平均数、方差、标准差?
平均数:一般地,如果有几个数X1、X2、、X3、„„、Xn,那么x1(x1x2x3xn),n叫做这几个数的平均数.
总体平均数:总体中所有个体的平均数叫做总体平均数. 样本平均数:样本中所有个体的平均数叫做样本平均数.
方差:对于一组数据,在某些情况下,我们不仅要了解它们的平均水平,还要了解它们波动的大小(即偏离平均数的大小),这就是方差.
s21(x1x)2(x2x)2(xnx)2 n标准差:方差的算术平方根.
s1(x1x)2(x2x)2(xnx)2 n
三、例题解析
让我们仍以上一节300名学生的考试成绩为例,考察一下抽样调查的结果是否可靠.
假设总体是某年级300名学生的考试成绩,它们已经按照学号顺序排列如下(每行有20个数据):
如图1所示,根据已知数据,我们容易得到总体的频数分布直方图、平均成绩和标准差.
总体的平均成绩为78.1分,标准差为10.8分
图1 用简单随机抽样方法,得到第一个样本,如5个随机数是111,254,167,94,276,这5个学号对应的成绩依次是80,86,66,91,67,图2是这个样本的频数分布直方图、平均成绩和标准差.重复上述步骤,再取第二和第三个样本.
第一个样本的平均成绩为78分,标准差为10.1分
图2 图3是根据小明取到的第二和第三个样本数据得到的频数分布直方图.
第二个样本的平均成绩为74.2分,标准差为3.8分
第三个样本的平均成绩为80.8分,标准差为6.5分
图3 思考 图2、3与图1相像吗?平均数以及标准差与总体的接近吗?
发现 不同样本的平均成绩和标准差往往差异较大.原因可能是因为样本太小.
用大一些的样本试一试,继续用简单随机抽样方法,选取两个含有10名学生的样本,图4是根据小明取到的两个样本数据得到的频数分布直方图.
第一个样本的平均成绩为79.7分,标准差为9.4分
第二个样本的平均成绩为83.3分,标准差为11.5分
图4 发现 此时不同样本的平均成绩和标准差似乎比较接近总体的平均成绩78.1分和标准差10.8分.
猜想 用大一些的样本来估计总体会比较可靠一点.
让我们用更大一些的样本试一试,这次每个样本含有40个个体.图5是根据小明取到的两个样本数据得到的频数分布直方图.
第一个样本的平均成绩为75.7分,标准差为10.2分
第二个样本的平均成绩为77.1分,标准差为10.7分
图4 发现 图4中样本的平均成绩和标准差与总体的平均成绩和标准差的差距更小了. 结论 样本大更容易认识总体的真面目. 下面请同学们也用自己的抽样数据分析一下.
四、交流反思
随着样本容量的增加,由样本得出的平均数、标准差会更接近总体的平均数、标准差. 样本大更容易认识总体的真面目.因此,可以通过选取恰当的样本来估计总体.
五、检测反馈
1.某校50名学生的体重记录如下(按学号顺序从小到大排列)(单位:kg)
试用简单的随机抽样的方法,分别抽取5个、15个、30个体重的样本各两个并计算样本平均数和标准差.把它们与总体平均数和标准差作比较,看哪个样本的平均数和方差较为接近.
2.某校九年级(1)班45名学生数学成绩如下(单位:分)
(1)请你用简单的随机抽样方法选取2个样本容量为10的样本,2个样本容量为20的样本,2个样本容量为30的样本,并将你选取的各样本的数据和相应的样本的平均数和标准差填入下表(精确到0.1)
(2)求出九年级(1)班45名学生数学的平均成绩和标准差.分别将表格中不同样本容量的平均数、标准差与总体的平均数、标准差进行比较,从比较中你发现些什么?
六:教学反思:
第五篇:概率教案
一、授课题目
1.4等可能概型(古典概型)
二、目的要求
教学目的:(1)理解基本事件、等可能事件等概念;
(2)会用枚举法求解简单的古典概型问题;
教学要求:要求学生熟练掌握等可能概率, 会计算古典概率
三、重点、难点
教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;
教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、授课内容
等可能概型
1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件;
2.等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件;
3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型
①所有的基本事件只有有限个;
②每个基本事件的发生都是等可能的; 具有以上两个特点的试验是大量存在的,这种试验称为等可能概型(古典概型)。计算公式:
若事件A包含k个基本事件,即A={ei1}∪{ei2}∪„∪{eik},这里i1,i2,„ik是1,2,„,n中某k个不同的数,则有
PAknA包含的基本事件数
S包含的基本事件数例题1:将一枚硬币抛掷3次。(1)设事件A1为“恰有一次出现正面”,求P(A1)(2)事件A2为“至少有一次出现正面”,求P(A2)。解:(1)我们考虑样本空间:
S2={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}.而A1={HTT,THT,TTH}.S2中包含有限个元素,且由对称性知每个基本事件发生的可能性相同,故由古典概率的计算公式可得 P(A1)=
(2)由于A2={TTT},于是 P(A2)=1-P(A2)=1-=
当样本空间的元素较多时,我们一般不再将S中的元素一一列出,而只需分别求出S中与A中包含的元素的个数(即基本事件的个数),再由公式求出A的概率。
例题2:一个口袋装有6只球,其中4只白球,2只红球,从袋中取球两次,每次随机的取一只,第一次取一只球,观察其颜色后放回袋中,搅匀后再取一球,这种取球方式叫做放回抽样。试分别就上面的情况求(1)取到的两只球都是白球的概率;(2)取到的两只球颜色相同的概率;(3)取到的两只球中至少有一只是白球的概率。解:放回抽样的情况。
以A、B、C分别表示事件“取到的两只球都是白球”,“取到的两只球都是红球”,“取到的的两只球中至少有一只是白球”。易知“取到两只颜色相同的球”这一事件即时A∪B,而C=B.在袋中依次取两只球,每一种取法为一个基本事件,显然此时样本空间中仅包含有限个元素,且由对称性知每个基本事件发生的可能性相同,由此可计算出事件的概率。
每一次从袋中取球有6只球可供抽取,第二次也有6只球可供抽取。由组合法的乘法原理,共有6×6种取法,即样本空间中元素总数为6×6。对于事件A而言,由于第一次有4只白球可供抽取,第二次也有4只白球可供抽取,由乘法原理共有4×4个元素。同理B中包含2×2个元素。于是
444 P(A)= =
669
P(B)=
221= 669
由于AB=,得 P(A∪B)=P(A)+P(B)= P(C)=P(B)=1-P(B)=
9例题3:将一个骰子先后抛掷2次,观察向上的点数。
问:⑴两数之和是3的倍数的结果有多少种? 两数之和是3的倍数的概率是多少?
⑵两数之和不低于10的结果有多少种? 两数之和不低于10的的概率是多少?
分析:建立模型,画出可能出现结果的点数和表
解:由表可知,等可能的基本事件的总数是36种
(1)设“两次向上点数之和是3的倍数”为事件A,事件A的结果有12种,故121P(A)
363(2)设“两次向上点数之和不低于10”为事件B,事件B的结果有6种,故61P(B)
366思考:对于此题,我们还能得到哪些相关结论呢? 变式一:总数之和是质数的概率是多少?
变式二:点数之和是多少时,概率最大且概率是多少?
变式三:如果抛掷三次,问抛掷三次的点数都是偶数的概率,以及抛掷三次得点数之和等于16的概率分别是多少?
例题4:一个口袋内装有大小相同的5个红球和3个黄球,从中一次摸出两个球
(1)共有多少个基本事件?
(2)求摸出的两个球都是红球的概率;(3)求摸出的两个球都是黄球的概率;(4)求摸出的两个球一红一黄的概率。
分析:可用枚举法找出所有的等可能基本事件.
解:(1)分别对红球编号为1、2、3、4、5号,对黄球编号6、7、8号,从中任取两球,有
如下等可能基本事件,枚举如
(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(1,7)、(1,8)
(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)
(3,4)、(3,5)、(3,6)、(3,7)、(3,8)
(4,5)、(4,6)、(4,7)、(4,8)
(5,6)、(5,7)、(5,8)
(6,7)、(6,8)
(7,8)
共有28个等可能基本事件
(2)上述28个基本事件中只有10个基本事件是摸到两个红球(记为事件A)的事件
m105 n2814(3)设“摸出的两个球都是黄球”为事件B,事件B包含的基本事件有3个,m3故P(B)
n28(4)设“摸出的两个球是一红一黄”为事件C,事件C包含的基本事件有15m15个,故P(C)
n28故 P(A)思考:通过对摸球问题的探讨,你能总结出求古典概型概率的方法和步骤吗?
五、授课小结
1.学生反映古典概率比较难求。2.古典概型、等可能事件的概念;
六、布置作业
Page26习题19