第一篇:反比例函数图像的性质的教学设计与反思
反比例函数图像的性质的教学设计与反思
反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:
(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?
(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?
(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?
从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串 联起来,提高学生综合能力。运用多媒比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。
体会: 通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。
第二篇:反比例函数的图像与性质教学设计与反思
反比例函数的图像与性质教学设计与反思
反比例函数的图象与性质教学设计及反思
一、教材分析: 本节课学习的主要内容是画反比例函数的图象,让学生经历画图、观察、猜想、思考等数学活动,初步认识具体的反比例函数图象的特征。反比例函数的图象是在学生已经知道了研究函数图象的一般方法,以及一次函数的图象是一条直线的基础之上进一步去研究的。同时,反比例函数的图象也与众不同。针对教材及学生的实际情况,本节课的设计是让学生多动手去探索规律。
二、教学目标: 1:会画出反比例函数的图象。2:经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征。3:让学生体会事物是有规律地变化着的观点。
三、教学重点和难点:教学重点:会画出反比例函数的图象。教学难点:会出画反比例函数的图象。(因为前面学习过的一次函数的图象是一条直线,而反比例函数的图象有两个分支,并且是曲线。学生初次接触有一定的难度。)
四、教学过程:
(一)、创设情境、提出问题:我们已经知道一次函数的图象是一条直线,那么反比例函数(k为常数,k≠0)的图象是什么呢?猜猜看,应该怎么画呢? 让学生根据已有的知识经验,回忆画函数图象的一般方法与步骤,类比一次函数的图象进行猜想
(二)、动手实践、解决问题: 1:画图: 画出反比例函数 的图象 在教师的引导下,让学生通过亲自动脑、动手实践去科学地验证自己的猜想,培养学生科学的态度与精神。师:画函数图象的第一个步骤是什么?生:列表。师:(大屏幕投影:表格)根据前面学习一次函数的经验,列表时应注意什么?生:应注意自变量x的取值范围,本题当中x≠0。师:是不是把所有的x不等于零的值全都列举出来?生:不是。师:那怎么取值呢?(学生讨论)生:为了便于计算和描点,我们通常取x>0和x<0的一些整数值。师:(大屏幕投影)那么,对应的y值分别是多少呢?(学生填表、口答答案。)【目的】: 让学生回忆、类比,注意比较与画一次函数的图象时列表的相同点与不同点。师:列表之后,我们得到了几组x、y的对应值,即几组有序实数对,如何用直角坐标系中的点把它们表示出来呢?也就是如何描点?生:以表中x的值作为点的横坐标,y的值作为点的纵坐标依次描点。(①学生描点、②教师利用多媒体课件演示描点的动画过程。友情提醒:描点可要细心哦﹗)【目的】: 让学生独立描点,观察描出的点的位置。培养学生细心的良好品质。师:如何把描出的点连接起来,从而画出它的图象呢?(①学生连接、②教师利用实物投影仪展示学生成果。)师:这里有同学们画的一些反比例函数 的图象,我从中选出了四幅图象,请同学们仔细观察并进行讨论这四幅图象画得对还是不对?如果不对,它们分别错在哪里?为什么?(学生分析讨论)生 :第一幅图象是对的;第二、三、四幅图象都是错误的,错误的原因是:没有注意到自变量x的取值范围是x≠0的全体实数师:一位同学有这样一种想法:“在相邻的两点之间用线段来连接。”这种想法对吗?如果不对,错在哪里?为什么?学生分组讨论。学生相互讨论生:除了线段两个端点的坐标满足函数解析式之外,线段上其余各点的坐标都不满足函数解析式。所以用线段连接的方法是错误的。师:除了已描好的点之外,你还能不能找到其它坐标满足函数解析式 的点,比如横坐标在大于1小于2之间? 师:那么,应当用什么样的线来连接呢?生:应当用平滑的曲线顺次连接。【目的】: 师生互动、生生互动,让学生充分参与、经历画图的过程,体会知识的形成过程;通过对学生画图个案的评析、多媒体课件填充点的过程演示、以及学生的认真观察、思考,探索得出重要的结论:应当用平滑的曲线顺次连接。学生自发的为自己发现的结论鼓掌,让学生品尝到成功的喜悦,增强学生的自信心。)(教师利用多媒体课件演示连接的过程:用平滑的曲线先顺次连接第一象限内的各点,得到图象的一个分支;然后再顺次连接第三象限内的各点,得到图象的另一个分支。把两个分支组合在一起就得到了反比例函数 的图象。
二、描点:
三、连接 2:猜想:反比例函数 的图象在什么象限?请你在下面的平面直角坐标系内画出它的图象。师:刚才,我们画出了k=6时,反比例函数 的图象。请同学们猜想一下,k=﹣6时,反比例函数 的图象在什么象限?为什么?生:图象分布在二、四象限。由k=﹣6 得x.y=﹣6 所以x、y异号 所以反比例函数 的图象分布在二、四象限。师:请同学们画图验证自己的猜想。(①学生画图验证、②相互交流成果检验自己的猜想是否正确。)【目的】:让学生先类比k=6时,反比例函数 的图象的位置,猜想k=﹣6时,反比例函数 的图象的位置;然后,再独立画图验证自己的猜想。培养学生类比、猜想、说理、独立画图验证的能力。师:(大屏幕投影:显示画图象的全过程)请同学们观察反比例函数 的图象,注意比较与一次函数图象有哪些不同?讨论反比例函数 的图象具有那些特征(学生分组讨论)生:①一次函数的图象是一条直线,反比例函数 的图象是由两个分支组成的,而且都是曲线;②一次函数的图象与x、y轴有交点,反比例函数 的图象与x、y轴没有交点;③反比例函数 的图象的两个分支关于原点成中心对称。④反比例函数 的图象的两个分支被坐标轴隔开,它们可以无限地靠近x、y轴,但是永远不能与x、y轴有交点;⑤„„ 师:反比例函数 的图象有许多的特征,在今后的学习当中,我们会逐步地去认识它。【设计目的】:通过观察图象并比较与一次函数图象的不同点,让学生初步认识具体的反比例函数图象的特征。)3:思考:反比例函数 与 的图象有什么共同特征?师:(大屏幕投影:显示这两个反比例函数的图象)请同学们思考:反比例函数 与 的图象有什么共同特征?(学生经过短暂的讨论:①都是由两个分支组成的,而且都是曲线;②都与x、y轴没有交点;③都是中心对称图形;④都被坐标轴隔开,都无限地靠近x、y轴;⑤„„ 师:反比例函数 与 的图象的共同特征很多,最主要的共同特征是:它们都是由两个分支组成的,而且都是曲线。教师小结:一般地,反比例函数(k为常数,k≠0)的图象是由两个分支组成的。反比例函数的图象属于双曲线。(三、本节课你学到了什么?有哪些收获? 生:①画反比例函数的图象的方法;②知道了反比例函数的图象是双曲线;③反比例函数的图象不与坐标轴有交点;④反比例函数的图象是中心对称图形;⑤„„
五、教后反思:《新课程标准》强调教学过程是师生交往、共同发展的互动过程。在教学过程中要处理好传授知识与培养能力的关系,注重培养学生的独立性,引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程。课堂应较多地出现师生互动、平等参与的生动局面,学习方式开始逐步多样化,乐于探究、主动参与、勤于动手成为教学过程中教师的共识。为此,本节课主要通过开放式的提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点。用科学的方法解决问题,培养学生科学的态度与精神。《新课程标准》要求,我们应该努力提高计算机技术应用于数学教学过程的水平,把现代信息技术作为学生学习数学和解决问题的强有力的工具,改善学生的学习。为此,本节课大量运用了现代信息技术,如:学生画图个案的评析、多媒体课件填充点的过程演示、用平滑的曲线连接的过程等等。让学生更能直观的知道图象的形成过程,有助于学生对数学知识的理解和掌握。在整个课堂教学过程中,教师讲的多,给学生提问的时间和机会很少。
第三篇:反比例函数的图像和性质教学反思
反比例函数的图象和性质教学反思
刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图象,二是由图像得出反比例函数的性质。而难点是反比例函数图象的画法及探究反比例函数的性质。
首先,本节课在反比例函数图象的画法这一难点的处理上,我先让学生自学课本内容,根据自学指导完成练习,再由教师利用多媒体演示列表、描点、连线过程,特别注意自变量x的取值范围,然后,学生在给出的坐标纸中描点画图,我运用多媒体及时矫正,学生很容易发现自己画图中的错误,最后概括总结水到渠成。本节课在探究反比例函数的性质这一难点的处理上,学生通过自主完成图像的画法,观察、比较归纳出反比例函数的性质。我感到课前确定的教学目标基本达成。
其次,通过引导学生自主探索反比例函数的性质,全班学生都能够主动地去观察、感受、讨论、发现、探究、总结,表现了他们的学习兴趣和信心。实现了学习中让学生自己动手、主动探索、合作交流的目的。同时通过练习让学生理解“在每个象限内”这句话地必要性,学生再一次体会数学的严谨性。根据新课标精神,“人人学有用的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”最后在练习时给出有梯度的练习,以满足不同层次学生学习的需要。如应用性质“题组训练 巩固练习”都能很好的体现分层教学的要求。
然而,由于学生刚刚接触反比例函数的图像,图像的外在形式(双曲线)与一次函数的图像(直线)之间存在较大的差异,学生还缺乏对反比例函数图像“整体形象”的把握。一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图像“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的两个函数值的大小时,学生还不能有意识地从“自变量的正负”来考虑问题,导致学生在课后完成作业时,对部分问题的解决可能出现偏差。这些在接下来的教学中要加强引导。
第四篇:教学反思-反比例函数的图像和性质
教学反思
我在本周星期三下午第六节课上了《9.2.反比例函数的图像和性质(2)》这节课,感受很深。这节课是在学习过反比例函数图象之后,展开对反比例函数性质的研究。本节课的重点是分析反比例函数的图象得出性质,难点是灵活运用反比例函数的图象的性质解决问题。我感到课前确定的教学目标基本达成。下面我就谈谈上完这节课以后的体会。
上一节课学习过反比例函数图象之后我特意留给学生画6个反比例函数的图象,这节课就以这6个函数图象入手,让学生观察图象并对其进行分类,并要求阐述理由。以此由一般到特殊的引出反比例函数的性质。在这一环节上学生能够主动地去观察、感受、讨论、发现、探究、总结,表现了他们的学习兴趣和信心。实现了学习中让学生自己动手、主动探索、合作交流的目的。让他们充分感受到知识的生成过程。
在例题教学这个过程中,我准备了两个例题,第一个较为基础,主要考察反比例函数的基本性质,花费时间较少。我在板书时也是简单的写一些重点过程,并没有完全按照解答题的完整步骤展示给学生,在这一方面处理得不是很妥当。在处理第二个例题时,我考虑了反比例函数中k决定面积的不同变式,而且由浅入深,一步一步引导学生理解矩形和三角形的面积与k之间的关系。学生对于这个知识点也理解得比较透彻,我认为这是我这节课的一个亮点。
最后在当堂检测这一环节我出示了5个练习,从不同的方面考察了反比例函数的性质,包括k决定函数图象的位置,反比例函数的增减性和中心对称性。这样就基本上完成了这节课的教学目标。在处理练习时,我把主动权交给学生,以学生讲解为主,让他们在练习的过程中感受到运用所学知识的过程中需要注意的问题。由于时间问题,在处理最后一个关于反比例函数的中心对称性的问题时有些仓促。
本节课结束之后,我也深深地感受到自身存在着一些不足和有待于改进的地方。主要有以下几点:(1)板书稍显凌乱;
(2)由一次函数的增减性引出反比例函数增减性的时候,没有充分利用一次函数中的k决定其增减性深化类比到反比例函数中的k决定其增减性上。在这个环节上我应该把一次函数与反比例函数的相同点带领学生挖掘出来,体现知识的相通性。(3)因为时间关系,最后没有进行总结。
在以后的教学工作中,我会扬长避短,让自己的课堂真正的成为高效的优质课堂。
第五篇:反比例函数的图像和性质教学反思
《反比例函数的图像和性质》的教学反思(2009-04-03 20:30:58)转载▼
刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图像,二是由图像得出反比例函数的性质。后者只需观察即可直观得出,显然画反比例函数的图像是本节课的重点,从教学目标的角度分析,本节课更应侧重于画图像技能的培养。
准确、美观的画出反比例函数的图像,也应是本节课的难点,原因之一画函数的图像第一步是列表,列表时取哪些点?不取哪些点?取多少?密集程度如何?对刚接触反比例函数的学生来说,都是必须解决好的问题,否则划出的图像必然是五花八门,错误百出。原因之二,学生画函数图像的经验源于正比例函数和一次函数,由于二者的图像均为直线,所以有可能对画反比例函数图像造成一定的干扰。
本节课在难点的处理上,我首先在列表时,直接给定了x的取值,这就把列表时应有的困惑化为无形,学生只需由y=4/x计算y值而已。其次,学生在坐标系中描完点后,我运用多媒体及时矫正,把问题分散,同时又为下面的连线清除了计算上的障碍。在此一句具有启发性的问话:这些点是否在一条直线上?怎样连接这些点?把学生分散而不着边际的思维集中在正确的轨道上来,图像的正确率自然大大增加。紧接着跟上矫正:同学们所画图像与老师图像不太一致,请对照老师正确的图像小组讨论,由于前面层层铺垫,加之有正确的图像作比较,学生很容易发现自己画图中的错误,最后概括总结注意点水到渠成。但仔细想想在学生对答如流的表面下,却掩盖了本应解决好的问题,这些问题暂时不暴露,就永远不会暴露吗?这对画图像技能的培养必然带来负面影响,在这里就出现了一个很现实的问题:教学中作为老师的我们,是掩盖问题还是暴露问题,答案是显然的。但我对这节课在以下方面还是很满意的:如列表时直接给定x的取值,连线时启发性的问话,使学生思维定向,避免了错误的不断尝试,使学生尽快步入正确学习的轨道,节省了学习时间等等…… 在教学中给我的感觉明快顺畅,但是这与教学中质疑解惑并不矛盾,有效教学的标志不仅是顺畅,更重要的是对问题的深入思考,最终达到技能的形成和情感目标的实现。
(回忆以往我在处理这个问题时的方法:列表、描点、连线由学生独立完成,然后老师提出问题,画反比例函数应该注意什么?列表时注意什么?为什么有的点取得密集?有的点取得疏松?描点时注意什么?连线时注意什么?用折线段连结所描的点可以吗?等等不一而足,教学中边问边答。这种做法至少有一点是可取的,我把画图应该注意的问题挖了出来,使学生在有疑处当疑。对第二种方法我试想作如此改进:如果我在教学中能通过情景的创设或正确的引导,由学生产生疑问,提出问题,并由学生讨论交流解决,效果自然更好,上面的教学就会由被动变为主动,出现令人满意的局面。)
下面附设了难点突破的课堂设计片段: 《反比例函数图像和性质》设计片断
在对反比例函数概念回顾的基础上,提出问题:我们知道正比例函数、一次函数的图像是一条直线,那么反比例函数图像怎样呢?
1、试画出反比例函数y=4/x的图像
分析自变量x的取值范围是x不等于0,所以x可以在正数和负数中选点,给定x值,列出表格。
学生独立完成作图,教师巡视搜集不规范的画图。
2、媒体展示正确画图。
3、实物投影展示学生的正确画图,主要类型: 学生探讨交流,逐一分析问题所在。
4、强化训练,画反比例函数y=-4/x的图像。