第一篇:二次函数的图像与性质教学设计
第二章 二次函数
2.2 二次函数的图象与性质(1)
一、知识点
1.用描点法画函数 的图象
2.根据图象认识和理解二次函数 的性质
二、教学目标 知识与技能
1.能够利用描点法画函数 的图象,能根据图象认识和理解二次函数 的性质.
2.猜想并能作出 的图象,能比较它与 的图象的异同.
过程与方法:
1.经历探索二次函数 的图象的作法和性质的过程,获得利用图象研究函数性质的经验.
2.由函数 的图象及性质,对比地学习的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维. 情感与态度:
1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.
三、重点与难点 重点:作出函数 的图象,并根据图象认识和理解二次函数 的性质.难点:由 的图象及性质对比地学习的图象及性质,并能比较出它们的异同点.、四、温故知新(放幻灯片2)1.正比例函数,一次函数与反比例函数图象特征,请同学们谈谈它们的图象有哪些特征? 2.画函数图象的主要步骤是什么? 3.你会用描点法画二次函数 的图象吗? 活动目的:回忆、思考学习过的内容,激发学生的求知欲,为学习新知识奠定基础.五、探究新知
1.作函数 的图象(放幻灯片3、4)(1)列表:观察 的表达式,选择适当的x值,填写下表:(2)描点:在直角坐标系中描点:
(3)用光滑的曲线连接各点,便得到函数 的图象.活动目的:运用启发式教学,让学生参与的到学习过程中,加深对知识的理解,体现数学活动充满着创造与探索.2.对于二次函数 的图象(放幻灯片5、6)
(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?
(3)当0x时,随着值的增大,的值如何变化?当0x时呢?
(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请找出几对对称点,并与同伴进行交流.活动目的:让学生在实践中检验自己得到的结论 的图象的性质(放幻灯片7)
(1)图像形状是,开口方向是 .(2)它的图象有最 点(填高或低),最 点坐标是()(3)它是 对称图形,对称轴是 .
在对称轴左侧,y随x的增大而 ; 在对称轴的右侧,y随x的增大而 .
(4)图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的,同时也是图象的最低点,坐标为(0,0).
(5)因为图象有最低点,所以函数有最 值(填大或小),即当 时,最小y.活动目的:学生总结性质,培养学生归纳、整理知识的意识.4.做一做(放幻灯片8~10)
二次函数 图象是什么形状?先想一想,然后作出它的图象.它与二次函数 的图象有什么关系?与同伴进行交流.活动目的:学生分工合作,共同解决问题,激发学习热情.函数与的 图象的比较.(放幻灯片11)
我们观察函数2xy与2xy的图象,并对图象的性质作系统的研究,现在我们再来比较一下它们的图象的异同点.(1)开口方向不同,2xy开口向上,2xy开口向下.(2)函数值随自变量增大的变化趋势不同,在2xy图象上,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x着的增大而减小,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而增大.在2xy的图象上正好相反.(3)在2xy中y有最小值,即0x时,y最小值=0;在2xy中,y有最大值.即当0x时,y最大值=0.(4)2xy有最低点,2xy有最高点.相同点:(1)图象都是抛物线.(2)图象都与x轴交于点(0,0).(3)图象都关于y轴对称.联系:它们的图象关于x轴对称.活动目的:让学生发现处理问题的方法.6.思考拓展.二次函数的图象的开口方向跟什么有关? 对于2axy这类二次函数来说,a与其张口大小、张口方向都有关系.活动目的:通过探索问题获得解决旧知识的方法.六、课堂练习
七、课堂小结(放幻灯片12)1.二次函数2xy的图象及性质.2.二次 函数2xy与2xy的图象的异同点.八、课后作业
第二篇:二次函数的性质和图像教学设计
《二次函数的性质和图像》教学设计
一、设计理念:
本节课遵循“探索—研究——运用“亦即“观察——思维——迁移”的三个层次要素,侧重学生的“思”、“探”、“究”的自主学习,由旧知识类比得新知识,自主探究二次函数图象及其性质。学生动脑思和究,动手探。教师的“诱”要在点上,在精不用多。通过本节学习,学生更进一步的掌握二次函数性质及其图象特征。
二、学情分析:
学生在初中学习中,已有二次函数的基础,了解二次函数图象及其相关性质,接受起来较快。基于此,教师应在学生原有基础上拓宽知识面,引入新概念,帮助学生加深并提高对二次函数的认识。
三、教学目标
(一)、知识目标
1、使学生掌握研究二次函数的一般方法——配方法。进一步掌握二次函数y=ax2+bx+c(a)的图象的顶点坐标,对称轴方程,单调区间和最值的求法。
2、会用描点法画出二次函数图像,能通过图像认识二次函数的性质
3、通过具体例子,在探索二次函数图像和性质的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)^2+k的形式,从而确定二次函数图像的顶点和对称轴。
4、通过一般式与顶点式的互化过程,了解互化的必要性。培养学生认识“事物都是相互联系、相互制约”的辩证唯物主义观点。
5、在经历“观察、猜测、探索、验证、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。
(二)、情感目标
1、通过主动操作、合作交流、自主评价,改进学生的学习方式及学习质量,激发学生的兴趣,唤起好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动获取知识。
2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与的意识、协同合作的意识、勇于创新和实践的科学精神。
(三)、能力目标
1、拟通过本节课的学习,培养学生的观察能力、探索能力、数形结合能力、归纳概括能力,综合培养学生的思维能力及创新能力。
2、培养学生运用运动变化的观点来分析、探讨问题的意识。教学重点:二次函数的性质
教学难点:研究二次函数图象和性质的重要方法——配方法。
对于任何一个二次函数,只要通过配方变形为:(x-h)2 + k的形式,就可以知道函数的图象特征和有关性质。通过本节课的学习,学生从理论上加深了对函数的理解,也可利用所学知识解决日常生活中常见的实际问题,提高自身分析问题,联系实际的能力,从而达到学习目的。
四、教学过程:
(一)、复习
1、二次函数定义、表达式。
2、求二次函数y= a(x-h)2+ k(a0)的对称轴和顶点坐标。(教师通过多媒体展示问题,通过对旧知识的回顾为新知识的学习做好认知铺垫,学生思考后回答)
(二)、导入新课
1、教师展示问题,要求在同一坐标系中做出下列函数图象:y=-3x2 ,y=-2x2 ,y=-x2 , y=3x2 ,y=2x2 ,y= x2.回答下列问题:
问题一 :函数y= ax2 的单调性、奇偶性、最值与图象开口方向、对称性、顶点?
问题二:函数图象随a 值变化,如何变化? 问题三:y= ax2 与 y=-ax2 图象有何关系?
(教师借助多媒体手段,放映问题答案,展示函数图象随a 值变化的过程,即函数y= ax2(a)的图象和性质。)函数y= ax2(a)的图象和性质: 1.函数是偶函数,图象关于y轴对称.2.顶点坐标(0,0)
3.当a >0 时,开口向上,在上是减函数,在上是增函数,当时,有最小值0。4.当a <0 时,开口向下,在上是增函数,在上是减函数,当时,有最大值0。
5.当a >0 时,抛物线在x轴上方,开口随 a增大逐渐减小;当a<0 时,抛物线在x轴下方,开口随 a增大逐渐减大。
教师提问:若将函数的图象进行平移,则函数的哪些性质将不发生变化?哪些将发生变化?(学生讨论回答),研究一般的二次函数的性质和图象:
1、研讨二次函数的性质和图象。
2、研讨二次函数的性质和图象。教师设计问题,学生探究:
问题一:指出两个函数的开口方向,并说明哪个函数图象的开口较大? 问题二:分别将二次函数与配方,然后分别求出两个函数的最值以及与x轴交点。
问题三:列表画图,分别在直角坐标系中作出两个函数的图象:
1、推测两个函数图象的对称轴,并给出证明。
2、y= a(x-h)2+ k(a)的顶点坐标是________,对称轴是________。
3、分别指出两个函数的单调区间。
问题四:将二次函数y=ax2+bx+c(a)配方,并回答下列问题:
1、函数图象的顶点坐标和对称轴分别是_______、_______。
2、对于a>0和a<0分别指出函数图象的开口方向,和最值。
(学生完成以上问题的过程中教师要适时启发,并在最后加以总结。)
二次函数性质如下:
1、图象是一条抛物线,顶点坐标是,对称轴是直线
2、当a >0 时,抛物线开口向上,函数在处取最小值;在区间上是减函数,在区间上是增函数;
3、当a <0 时,抛物线开口向下,函数在处取最大值;在区间上是增函数,在区间上是减函数;概念深化:
(教师指出配方法是研究二次函数性质的通法,对于二次函数性质的有关结论不必死记硬背,关键在于如何运用配方法来研究二次函数性质,组织学生分组讨论。)“配方法”是研究二次函数的主要方法,熟练的掌握配方法是掌握二次函数的关键,对一个具体的二次函数,通过配方就能知道这个函数的主要性质。应用举例:
例:求函数的最小值和它的图像的对称轴,在哪个区间上是增函数?在哪个区间上是减函数?
(例题由学生版演,教师给予纠正。让学生充分体验研究二次函数的方法——配方法。通过学生版演,可以发现解题过程中出现的问题,及时给予纠正)解:因为:
所以 函数图象的对称轴是直线,它在区间上是减函数,在区间上是增函数。
(三)、随堂练习:
1、用配方法,求下列函数的最大值或最小值:
(1)1.根据二次函数的顶点坐标公式确定下列函数的对称轴和顶点坐标:
(1)y=2x2-12x+13(2)(2)y=-5x2+80x-319
2、求下列函数图象的对称轴和顶点坐标,并做出图象:
(1)y=2x2-2x-2.5(2)y=-2x2-4x+8(学生做完练习后,教师进行及时评价)
(四)、归纳小结:
方法:研究二次函数的主要方法——配方法。
知识:二次函数的图象与性质的有关结论。
(1)抛物线,当x=()时,y有最()值,是 .(2)当m=()时,抛物线 开口向下.
(3)已知函数 是二次函数,它的图象开口(),当x()时,y随x的增大而增大.
(4)抛物线的开口(),对称轴是(),顶点坐标是(),它可以看作是由抛物线 向()平移()个单位得到的.(5)函数,当x()时,函数值y随x的增大而减小.当x()时,函数取得最()值,最()值y=().
(6)抛物线 可由抛物线 向()平移()个单位,再向平移()个单位而得到.
(7)二次函数 的图象的顶点是(),当x()时,y随x的增大而减小.
(五)、作业: P22习题27.2 第2题(1)、(3)、(5)及第3题
第三篇:二次函数的图像和性质3教学设计
22.1.3二次函数y=a(x-h)2+k的图象和性质
教学设计
知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;
过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质; 情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。学情分析
学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。重点难点
教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。4教学过程
一、复习导入新课
师:同学们,在学习新课之前,我们先来做这样一道题。观察y=-x2、y=-x2-
1、y=-(x+1)2
这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。(指名学生回答)。
师: 同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生: 向左平移一个单位,再向下平移一个单位。
师:这个猜想是否正确呢?这节课我们一起来验证一下。(板书课题)
二、探究 探究一(大屏幕出示)(自探问题部分)
1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.
x y=-(x+1)2-1 函数
… …
-4
-3
-2
-1
0 1 2 …
…
开口方向 顶点 对称轴最 值 增减性
y=-(x+1)2-1(学生口头展示以上问题)
2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________. 通过刚才的演示,可以证明我们前面的猜想是正确的。那也就可以说明抛物线y=a(x-h)2+k与y=ax2之间也具备这样的平移关系,那么我们是不是可以借此探究一下抛物线y=a(x-h)2+k的性质呢?(小组合探问题)
1.抛物线y=a(x-h)2+k与y=ax2形状___________,位置________________. 2.函数 开口方向 顶点 对称轴 最值 增减性
y=a(x-h)2+k(板演展示,评价,教师点评归纳)如果掌握了上面这些内容,我们就可以快速准确的完成下面的练习了。(大屏幕)3.快速抢答
说出下列抛物线的开口方向、对称轴及顶点(1)y=2(x+3)2+5;(2)y=-3(x-1)2-2;(3)y=4(x-3)2+7;(2)y=-5(x+2)2-6;
师:像这种形式的抛物线我们可以直接确定他的顶点坐标,所以我们把它称为二次函数的顶点式。已知抛物线的解析式可以快速确定顶点坐标,反之,已知顶点坐标可以怎样确定解析式呢? 我们来看一道实际问题。探究二 合探完成例4.(大屏幕)
例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?(小组合作探究完成)
教师巡视过程中注意发现不同的建立直角坐标系模型的方法,并指明不同建模方法的同学进行板演和评价。
重点探究实际问题的建模过程,引导学生用不同的方法建立直角坐标系。
教师点拨归纳:结合我们刚才解决这道题的过程,我们一起来归纳一下解决二次函数实际问题的一般方法。首先,我们要根据实际问题建立数学模型(建模),然后结合所建模型,选择恰当的解析式形式;接下来根据已知条件(已知点的坐标)求解析式,最后,找出实际问题的答案。
三、拓展运用
1.顶点坐标为(-2,3),开口方向和大小与抛物线y=x2相同的解析式为()A.y=(x-2)2+3 B.y=(x+2)2-3 C.y=(x+2)2+3 D.y=-(x+2)2+3 2.二次函数y=(x-1)2+2的最小值为__________________.
3.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.
4.抛物线y=-3(x+4)2+1中,当x=_______时,y有最________值是________. 5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)
6.若抛物线y=a(x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为。
(学生独立完成,集体校对答案,发现问题组内解决)
四、学科代表对本节课的学习情况做出归纳总结。板书设计:
22.1.3二次函数y=a(x-h)2+k的图象和性质 ——顶点式
函数 开口方向 顶点 对称轴 最值 增减性
y=a(x-h)2+k 学生展示区 学生展示区
教学反思:二次函数的知识一直是初中数学教学的一个重点、难点。本节课为了更好的让学生接受并理解,我在设计上总体遵循的原则是从易到难,从已知到未知的思路。体现了数学当中的类比思想,分类讨论思想,建立数学模型的思想。注重了以学生为主体,教师为主导。前面性质的得出部分,主要想法是依照学生的认知规律,让学生根据已有经验进行猜想,引起学生求知的兴趣,亲手画图象感受从直观到抽象的过程,降低理解难度,验证猜想,获得成功的体验,侧重中等及中等偏下的学生,夯实基础。后面的实际问题部分,由于学生是初次接触二次函数的实际问题,必然会存在这样那样的问题,所以我重在引导学生学会建立二次函数的模型,用不同方法解决问题的思想。教学中取得了满意的效果,不同层次的学生都学有所得。通过这节课的教学,我感受到一个真正优秀的教师,不单只是一个知识的载体,更应该是学生吸纳知识的一根导线,让学生通过我们的引领,真正的进入知识的殿堂!
第四篇:《二次函数的图像与性质》教学反思
《二次函数的图像与性质》教学反思
《二次函数的图像与性质》教学反思
本节课的学习内容是在前面学过一次函数、反比例函数的图像和性质的基础上运用已有的学习经验探索新知识。《二次函数的图像与性质
(一)》是二次函数性质研究的第一步,为后面研究较为复杂的函数类型作了必要的铺垫,具有承上启下的作用。
讲课中首先一起回顾一次函数与反比例函数的图像与性质,然后让学生动手在坐标系中作二次函数y=x2和y=-x2的图象,从感性上结识抛物线.再后又对两个特殊的二次函数的图象和性质进行了归纳和总结,从理性上再次结识抛物线.利用几何画板揭示了两个抛物线之间的联系,使本节课的知识得到了升华。
成功之处:
1.课前的引课很精彩,几句简短的语言使学生感受数学就在我们的身边,并激起学生学习数学的兴趣.2.对二次函数图象的作图,通过学生作品的展示、思考、讨论、讲评起到指导全体学生的作用.作图后让学生反思自己的作图过程,加深学生对作图的理解,规范作图,同时培养学生严谨治学的精神.3.二次函数的图象和性质掌握起来有一定的难度,因此我设计一系列问题串,让学生观察图象回答,以突出重点分散难点.同时借助课件的动态展示能帮助学生更形象地理解和掌握二次函数的图象和性质,也为今后探讨其他类函数的性质提供思路.4.在教学中注重多种学习信息的捕捉,引导学生从图与形,表达式、表格、图像等多角度地去分析理解数学知识,使学生对抛物线有一个丰满的认识。
5.几何画板很好的展示了两个函数之间的关系,动态的演示有助于理解难点,是这节课的亮点。
不足之处:
1.在学生作图教学时,课堂上有一部分学生没有进行完,此处给学生的时间少一些.2.作图展示时只说明了有问题的部分而没有展示优秀的部分,无法使学生获得成功的喜悦。3.在探索二次函数的图象和性质的活动中,没有让学生有更多的思考交流和评价的过程,限制了学生思维的发展.通过这节课,我认为要使课堂真正成为学生展示自我的舞台,还学生课堂的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己的舞台,充分利用合作交流的形式,使教师帮助学生不断积累学习经验,完善学习的过程,最终使“要我学”变为“我要学”。
第五篇:二次函数的图像和性质教学反思
二次函数的图像和性质教学反思
本节的学习内容是在前面学过二次函数的概念和二次函数y=ax2、y=ax2+h、y=a(x-h)2的图像和性质的基础上,运用图像变换的观点把二次函数y=ax2的图像经过一定的平移变换,而得到二次函数y=a(x-h)2+k(h≠0,k≠0)的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意 “类比”前几节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。
通过本节课教学,得出几点体会:
1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。
2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。
3、要使课堂真正成为学生展示自我的舞台
还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课
堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。
1、某些记忆性的知识没记住。
2、学生稍遇到点难题就失去做下去的信心。题目较长时就不愿意仔细读,从而失去读下去的勇气
3、学生的识图能力、读题能力与分析问题、解决问题的能力较弱。
4、解题过程写得不全面,丢三落四的现象严重。针对上述问题,需要采取的措施与方法是:
1、根据实际情况,对于中考升学有希望的学生利用课余时间做好他们的思想工作。并对他们进行面对面的单独辅导,增强他们的自信心,以此来提高他们的数学成绩。
2、结合自己的学习经验对他们进行学法指导和解题技巧的指导。
3、根据不同的学生情况,搜集典型题让他们单独做,并给予及时的辅导与矫正。
4、与其它任课教师联手一起想对策,指导学生读题的方法与分析问题,解决问题的方法。
5、无论是做练习还是考试之前,都告诉学生要认真仔细的读题,从图形中获取信息。