第一篇:正比例函数的图像和性质教学设计专题
教学目标
(一)知识与能力
1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。
2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。
(二)过程与方法
通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。通过观察、探究、分析、引导学生发现正比例函数的性质。
培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。
(三)情感态度及价值观
培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。2学情分析
教材分析:
正比例函数图象是在学习正比例函数解析式的后续内容,这一节内容是正比例函数与直角坐标系的完美结合。学生在这节课中如果能内化和感悟数形结合的思想,将会为以后研究更为复杂的反比例函数及二次函数的图象打下坚实的基础。学生分析:
在这节课之前,该班学生已经较好的拥有了解决平面坐标系的一些基本问题的能力,理解了变量以及常量和代数式的内容,因此在学习新知识的时候也不存在多大的问题,形成了较理想的先决条件,但学生运用数学知识解决实际问题以及推理总结的能力有待进一步加强。3重点难点
教学重点:正比例函数图象的画法及性质的探索。教学难点:发现、归纳正比例函数的性质。4教学过程
4.1 正比例函数的图象和性质
教学活动
活动1【导入】
(一)温故知新,引入课题
1、下列函数哪些是正比例函数? ①
②
③
④
⑤
2、(学生回答完上述问题后提问概念)
一般地,形如y=kx(k≠0)的函数,叫正比例函数,其中k叫做比例系数。
3、画函数图象的一般步骤(1)列表(2)描点(3)连线 学生回答后:
教师引导:现在我们已经知道正比例函数的意义及画图象的步骤,那么正比例函数的图象有什么特征呢? 出示课题
活动
2(二)探究正比例函数的图象和性质
例
1、画出下列正比例函数的图象。(1)y=x(2)y=2x(2)学生练习画出函数y=-x和y=-2x的图象。(3)提出问题
师:观察图象回答:正比例函数y=x与y=2x的图象是什么图形?是否经过原点?分别经过哪些象限?自左向右上升还是下降? 生甲:一条直线
生乙:过原点的直线,y=2x的图象过一、三象限,y=-2x的图象过二、四象限。师:点评学生后,总结出正比例函数的图象性质:(1)当k>0时,正比例函数的图象经过第一、三象限,自变量x逐渐增大时,y的值也随着逐渐增大。
(2)当k<0时,正比例函数的图象经过第二、四象限,自变量x逐渐增大时,y的值则随着逐渐减小。思考: 师:通过前面的探讨,同学们发现画正比例函数图象有更简单的方法吗?为什么? 生乙:过原点画一条直线。
生丙:过原点和(1、k)两点画一条直线。
师:点评后师生共同归纳出一般规律:一般地,正比例函数y=kx(k≠0)的图象过(0,0)和(1、k)两点的直线,我们把函数y=kx的图象叫直线y=kx,以后画y=kx图象时通常选取(0,0)和(1、k)两点。
活动3【练习】
(三)学生动手实践“两点法”画正比例函数图象。
(1)y=3/2x(2)y=3x 评论(0)活动4【练习】巩固练习
若A(-1,y1),B(3,y2)都在直线 上,则y1与y2的大小关系是()A、y1≤y2 B、y1=y2 C、y1
4、正比例函数y=(m-1)x的图象过一、三象限,则m的取值范围是()A、m=1 B、m>1 C、m<1 D、m≥1
5、在正比例函数y=(2a-2)x中,若y随x增大而减小,则a的取值范围是()A、a<1 B、a>1 C、a=1 D、不能确定
6、函数y=(k+2)x,当k 时,y随x的增大而增大,图象经过 象限; 当k 时,y随x的增大而减小,图象经过 象限.7、画函数y=-5x的图象,你认为过 与 两点画直线最简单.8、若函数y=kx的图象经过点(2,6),则k=,y随x的增大而。
9、若函数y=(2m+6)x2+(1-m)x是正比例函数,则其解析式是,该图象经过 象限,y随x的增大而.10、已知正比例函数 的图象经过第二、四象限,则m =.活动5【讲授】小结(1)当k>0时,正比例函数的图象经过第一、三象限,自变量x逐渐增大时,y的值也随着逐渐增大。
(2)当k<0时,正比例函数的图象经过第二、四象限,自变量x逐渐增大时,y的值则随着逐渐减小。
活动6【练习】拓展练习
1、已知正比例函数y =(2+2m)x(1)m为何值时,函数图象经过第一、三象限?(2)m为何值时,y随x的增大而减小?(3)若函数图象经过(-1,4),求此函数的解析式并画出函数的图象。
活动7【作业】布置作业
A:课本习题19.2第1、2题,B:学习辅导第55-56页。
第二篇:正比例函数图像和性质教学反思1
《正比例函数的图象与性质》教学反思
正比例函数的图象与性质,对学生学习一次函数有着重要的影响,是学好函数的基础。
在教学过程中,考虑到学生在理解能力上还有一定的局限性,处于形象为主逐步向经验型的抽象思维过渡的阶段。而正比例函数性质的学习要有一定的逻辑思维能力。因此本节课我采用了 “观察发现法”和“实践归纳法”。即在教师引导下使学生通过自己的观察探索来发现问题、解决问题的教学方法。由于学生亲自来发现事物的特征和规律,能使学生产生兴奋感、自信心,激发学生兴趣,产生自行学习的内在动机,更有利于发展学生的创造性思维能力。
(一)温故知新
引入新课
学生学习数学的方式方法是随着他们思维的发展而变化的。处于经验型思维的初中生,学习数学新知识时,需要已有的知识和经验作支持,否则还难以接受。本节课是通过复习正比例函数的概念和画函数图象的步骤引入新课的。在复习导入时,又设计了简单函数式,让学生判断是否是正比例函数。
(二)观察推理
探究新课
在明晰了正比例函数概念后,教学进入到学习正比例函数图象环节。通过多媒体教学手段使“函数的图象可以清晰、直观描述函数的关系。正比例函数从形式上具有共同的特性,那么它们的函数图象是否也有共同的地方呢?
于是,教师先引导学生画y=2x的图像,然后让学生练习画出 y=-2x的图像(在坐标纸上画)。同时,说明画图的具体要求,此间,老师巡视指导,帮助学生解决画图中遇到的问题。
看到绝大多数学生都完成了任务。于是,教师提出问题:“观察你所画的图象,它们是什么图形?”使学生观察到正比例函数图像是
“过原点的直线。”
教师接着问道:“是不是所有的正比例函数图象都是过原点的直线呢?”学生沉默了片刻,有人打破了僵局,说道:“应该都是过原点的直线。”看到有些学生还有些半信半疑,于是老师用多媒体在大屏幕演示正比例函数图象。观察后,学生进一步明确了上述结论。
从上述过程可以看出,教师只是向学生提供了观察的素材---函数图象,正比例函数图像的特点完全是由学生自己观察、分析、归纳概括得到的,因此,这些思维能力在上述过程中得到了发展。
(三)讨论发现
得出结论
通过观察所画图像,学生发现了正比例函数图像是一条过原点的直线教师继续引导:“大家再看这两个函数图象有什么不同?”有学生回答:“y=2x的图象经过一、三象限,y=-2x图象经过二、四象限。”
值得关注的是,教师提醒学生观察k值正负与其对应图象之间的关系,进而发现了其中的规律:k﹥0时,直线y=kx的图象经过一、三象限;k﹤0时,y=kx的图象经过二、四象限。
在这一环节,教师再提出这样的问题:大家再看看两个函数图象还有什么不同?看到学生陷入思考,有的还在小声研究讨论,但没有结果,于是,老师提示学生回顾函数的概念:“什么叫函数?”学生道:“在一个变化过程中有两个变量y和x,给定x一个值y有唯一的值与之对应且y随x的变化而变化.”教师追问:正比例函数中y如何随x的变化而变化的?这样提问再一次指明了观察和思考的方向。
通过研讨,学生得出结论:从图象还可看出k﹥0时y随x的增大而增大,k﹤0时y随x的增大而减小。
从以上环节师生互动的情况看,通过图像的走势,发现变量之间的变化规律,这一过程对于学生的观察、分析、归纳概括等数学思维能力是十分有价值的。虽然教师追问时所提问题指明了观察思考的方向,从而压缩了思考空间,但在一定程度上,仍旧促进了上述能力的 2
发展
(四)课堂小结,完善构建
课堂小结不仅可以使学生从总体上把握知识,强化知识的理解和记忆,还可以培养学生良好的个性和思维品质。它应是一节课的深化甚至是升华,同时对教学目的的落实也起到一定的保证作用。认知心理学家早就提出:教学过程是学生运用他已有的知识加经验,对面临的新知识进行观察、分析,然后把它内化成为自己的知识过程。适时引导学生抽象概括事物的本质特征,引导学生将新知识纳入已有的知识结构。引导学生将知识类比、归纳、整理,从而得出规律,掌握有关知识,而不是孤立地记忆某些知识。同时,为下节课学习一次函数的图象与性质建立一个框架。
第三篇:正比例函数图像和性质教学反思1
《正比例函数的图象与性质》的教学反思
商南县初级中学 孟超
正比例函数的图象与性质,是学生学习的第一个函数,它对下面学习一次函数有着重要的影响,是学好函数的基础。
在教法上,课前考虑到八年级学生的年龄特征,他们的可塑性大、求知欲旺盛,但在理解能力上还有一定的局限性,处于形象为主的逐步向经验型的抽象思维过渡的阶段。而正比例函数性质的学习要有一定的逻辑思维能力。因此本节课我采用了 “观察发现法”和“实践归纳法”。即在教师引导下使学生通过自己的观察探索来发现问题、解决问题的教学方法。由于学生亲自来发现事物的特征和规律,能使学生产生兴奋感、自信心,激发学生兴趣,产生自行学习的内在动机,更有利于发展学生的创造性思维能力。
本节课的教学过程由以下六个环节组成:
(一)温故知新
引入新课
学生学习数学的方式方法是随着他们思维的发展而变化的。处于经验型思维的初中生,学习数学新知识时,需要已有的知识和经验作支持,否则还难以接受。本节课是通过复习正比例函数的概念和画函数图象的步骤引入新课的。多媒体展现最近发生的国家实事: “神舟八号”的顺利发射,据此提出思考题。在解决这一问题的过程中,1
学生能直观地体会到点形成线的过程,了解画函数图象的一般步骤,由此揭示课题。这一引入使学生懂得数学来源于实践又反作用于实践,同时提高了学生的爱国主义热情和民族自信心,并且对下面新知识的学习产生了浓厚的兴趣。在复习导入时,我设计了简单函数式,让学生判断。
(二)观察推理
探究新课
在明晰了正比例函数概念后,教学进入到学习正比例函数图象环节。教师说道:“函数的图象可以清晰、直观描述函数的关系。正比例函数从形式上具有共同的特性,那么它们的函数图象是否也有共同的地方呢?想研究这个问题应该怎么办呀?”
学生答道:“画函数图象。”
于是,教师先引导学生画y=2x的图像,然后让学生练习画出 y=-2x的图像(在坐标纸上画)。同时,说明画图的具体要求,此间,老师巡视指导,帮助学生解决画图中遇到的问题。
看到绝大多数学生都完成了任务。于是,教师提出问题:“观察你所画的图象,它们是什么图形?”
学生异口同声地说:“过原点的直线。”
教师接着问道:“是不是所有的正比例函数图象都是过原点的直线呢?”学生沉默了片刻,有人打破了僵局,说道:“应该都是过原点 的直线。”看到有些学生还有些半信半疑,于是老师用多媒体在大屏幕演示正比例函数图象。观察后,学生进一步明确了上述结论。
从上述过程可以看出,教师只是向学生提供了观察的素材---函数图象,正比例函数图像的特点完全是由学生自己观察、分析、归纳概括得到的,因此,这些思维能力在上述过程中得到了发展。
(三)讨论发现
得出结论
通过观察所画图像,学生发现了正比例函数图像是一条过原点的直线这一结论后,教师继续引导:“大家再看这两个函数图象有什么不同?”
有学生回答:“y=2x的图象经过一、三象限,y=-2x的图象经过二、四象限。”
值得关注的是,教师提醒学生观察k值正负与其对应图象之间的关系,进而发现了其中的规律:k﹥0时,直线y=kx的图象经过一、三象限;k﹤0时,y=kx的图象经过二、四象限。
在这一环节,教师再提出这样的问题:大家再看看两个函数图象还有什么不同?看到学生陷入思考,有的还在小声研究讨论,但没有结果,于是,老师提示学生回顾函数的概念:“什么叫函数?”学生道:“在一个变化过程中有两个变量y和x,给定x一个值y有唯一的值与之对应且y随x的变化而变化.”教师追问:正比例函数中y如何随x 3 的变化而变化的?这样提问再一次指明了观察和思考的方向。
通过研讨,学生得出结论:从图象还可看出k﹥0时y随x的增大而增大,k﹤0时y随x的增大而减小。
接下来,教师又问道:“还有别的方法看出来吗?”
学生:“看表格也可看出:当k﹥0时,y随x的增大而增大;当k﹤0时,y随x的增大而减小。”
从以上环节师生互动的情况看,通过图像的走势,发现变量之间的变化规律,这一过程对于学生的观察、分析、归纳概括等数学思维能力是十分有价值的。虽然教师追问时所提问题指明了观察思考的方向,从而压缩了思考空间,但在一定程度上,仍旧促进了上述能力的发展
(四)巩固提高
形成技能
在学生初步掌握了正比例函数的图象与性质后,我设计了一组由浅入深、由易到难的题组,逐题递进,落实本节课的教学重点。在教学形式上采用学生口述、互评等多种方法,激活学生思维,营造良好的课堂气氛。
(五)课堂小结,完善构建
课堂小结不仅可以使学生从总体上把握知识,强化知识的理解和记忆,还可以培养学生良好的个性和思维品质。它应是一节课的深化甚至是升华,同时对教学目的的落实也起到一定的保证作用。认知心理学家早就提出:教学过程是学生运用他已有的知识加经验,对面临的新知识进行观察、分析,然后把它内化成为自己的知识过程。适时引导学生抽象概括事物的本质特征,引导学生将新知识纳入已有的知识结构。我设计了一个表格,引导学生将知识类比、归纳、整理,从而得出规律,掌握有关知识,而不是孤立地记忆某些知识。同时,为下节课学习一次函数的图象与性质建立一个框架。
在整个小结过程中,对学生不同的小结,都给予激励性的评价,激发上进心和自信心。
(六)布置作业
发展深化
根据教学内容,我布置了对应知识的练习。本节课,知识容量较大,所以布置的作业以落实基础为主,进一步的提高训练放在下一节课。同时,根据学生情况(A类和B类)分层布置作业。
埃得加富尔在《学会生存》一书中认为: “未来的文盲不再是不识字的人,而是没有学会怎样学习的人。”作为数学教师不仅仅在于向学生教知识,更重要的是教会学生学知识,最后让他们自己独立去获取知识。本案例的设计是在学科知识传授的同时注意到学生原有的经验基础、学生的需求的多样化和个别差异,对教学法知识和学科 5
知识的结合作了尝试。正如一位教育家所说:数学教师往往最能激发起学生的求知欲望,在他们的 “最近发展区”内点燃思维的火花。也往往是数学教师才能够使学生相信自己的力量并信服未知的东西是引人入胜的,才最能够让学生得到和谐、简单、奇异之美的享受。对于学生来说,发现数学之谜,掌握数学知识,体会数学之美,应当是一种快乐,而不是一种惩罚。这也正是我所努力追求的。
由于本人学识和能力有限,不足之处恳请领导、同行批评、指正。
第四篇:正比例图像教学设计
《正比例图像》教学设计
教学内容: 教材第58页例2,随后的练一练和练习十三的第4、3题 教学目标:
1、认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学重点、难点:
1、认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。教学准备:课件 教学过程设计:
一、复习导入
1、正比例的意义?
2、如何确定两个相关的量成正比例关系?
3、有没有更直观的方式来展现正比例?(板书课题--正比例的图像)
二、学习新知
(一)理解横轴、纵轴表示的含义
1、谈话:像例1的表格中的数据有时候也可以用图像的形式来表示。
2、请同学观察黑板上的只标有横轴和众轴的图。
提问:图上的横轴表示的是什么意思?(时间)横轴上的每一段表示多长时间?(都表示1小时)纵轴呢?(路程,每一段都表示80千米)
3、教师先示范描一两个点(边讲解边示范),你们会描点吗?
4、提问:例1表格中第一列的数据应该在图上的哪一个位置?你是怎么想的?
追问:表示3小时行的路程的点肯定在哪一列?5小时呢?7小时呢?
(二)根据图像,类推判断
1、提问:请同学们仔细观察刚才所描出的点,这些点的排布有没有什么规律?
(所描的点在一条直线上)
根据学生的回答请同学们将自己所描的点用直线连起来验证。
2、根据图像判断,这辆汽车2.5小时行驶多少千米?行驶440千米需要多少小时?
先让学生独立思考后再交流。必要时指导:
(1)先在纵轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,与已知图像相交与疑点。
(2)再从交点起作横轴的平行线,与纵轴相交得到一点。
(3)最后依据与纵轴的交点进行估计。
(4)行驶440千米让学生独立完成,指名板演。
三、巩固练习
1、完成“练一练”。
(1)根据表中数据判断两种量是否成正比例。
(2)用描点法画出表中两种量的正比例图像。
(3)利用图像进行估计,体会正比例图像的意义和作用。
2、练习十三第4、3题
第4题的第(1)题,学生可以根据图像的特点来说明判断理由,也可以从图像上选取几个点,根据这些点所表示的路程与时间分别求出比值,再作判断。
第4题的第(2)题,要求学生根据图像进行估计,答案有些出入是允许的。
第3题,先让学生独立完成,在通过组织交流帮他们进一步明确方法,加深认识。还可以让学生再提出一些类似的问题,并进行解答。
四、全课小结
这节课你学会了什么?(正比例图像是一条直线)
五、课堂作业:
基础训练及相关练习
六、板书设计:
正比例图像 正比例的图像是一条直线
七、反思:
第五篇:正比例函数教学设计
19..1
东兴镇中学赵晗《2正比例函数》教学设计
《19.2.1 正比例函数》教学设计
教材分析
1.认识正比例函数的意义,掌握正比例函数解析式的特点及正确的表示方法.2.在学习了函数的基础上进一步学习研究正比例函数.3.正比例函数是一次函数的特殊形式,为下一课时学习一次函数做好准备.教学目标 知识与技能
1、理解正比例函数的概念,能在用描点法画正比例函数图象过程中发现正比例函数图象性质
2、能用正比例函数图象的性质简便地画出正比例函数图像
3、能够利用正比例函数解决简单的数学问题 过程与方法
学生通过探究实际问题中函数关系归纳得出正比例函数的概念,再通过动手操作画图象观察概括出正比例函数图象的性质。学生在探究合作中交流,体验知识的形成过程。情感态度与价值观
通过教师的主导作用,提高学生的合作学习效率,让学生体会合作学习的好处。
教学重难点:
重点:正比例函数的概念及其应用 难点:正比例函数的求法 教学过程设计
活动一:创设情境,引入课题
1.以土地沙漠化导出函数模型这一话题,进一步引出最简单的函数模型——正比例函数。2.出示课题
这一环节,首先通过问题情境引入课题,为学生在后面由特殊到一般,抽象出正比例函数奠定基础。
活动二:情境创设:生活中的数学
课件展示课本第86面至87面内容,解决以下问题:
1、了解什么样的函数叫正比例函数;
2、阅读理解正比例函数一般式的得出过程,体会从特殊到一般的数学思想。师生活动:教师提出问题,让学生思考。正比例函数的概念:
1、概括正比例函数的概念:
一般地,形如 y=kx(k 是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
2、对正比例函数的一般式y=kx(k 是常数,k≠0)进行解读: k≠0
x的指数是1 k与x是乘积关系 师生活动:教师提出问题,让学生思考。学生观察总结归纳出结论 设计意图:
1、通过这些实际问题使学生逐步加深对函数概念的理解,也为导出正比例函数概念做好铺垫。
2、通过学生观察、分析和归纳,发现正比例函数的特征,理解其解析式的特点。同时培养学生的观察、总结归纳能力。活动三:考考你
1.正比例函数的识别。给出了6个式子,其中包含正比例函数的几种变式,使学生进一步理解辨别正比例函数要注意的问题。
2.给出四个判断题,使学生进一步掌握正比例函数的概念。
师生活动:教师巡视、指导。学生完成、小组合作交流。师生评价。设计意图:及时的练习有利于学生巩固新知,反馈学习效果。活动四:求正比例函数解析式(待定系数法)
例1:已知y与x成正比例,当x=4时,y=8,试求y与x的函数解析式
例2.已知y与x成正比例,且当x =-1时,y =-6,求y 与x之间的函数关系式.小结:待定系数法求正比例函数解析式的一般步骤 活动五:习题竞赛 活动六:谈收获
1、谈谈这节课的收获;
2、关于正比例函数你还想知道些什么?
设计意图:让学生参与小结,可增强学生学习的积极和主动性,培养学生良好的学习习惯。通过小结也强化了本节的重点,有利于突破教学难点。让学生说说收获及发现的新问题,是对本节所学知识的总结和提升,为学生的后续学习拓展了空间。七.作业:
1.已知y与 x-1成正比例,当x=3时,y=4,写出y与x之间函数关系式。2.自编自解:自编一道有关正比例函数的习题并自己解答.3.预习正比例函数的图像及其性质.八.板书设计
19.2.1 正比例函数
一.正比例函数定义
1.定义:一般地,形如 y=kx(k 是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
2.结构特点:k≠0 x的指数是1k与x是乘积关系
二.数解析式的求法(待定系数法)