第一篇:9、2反比例函数的图像与性质教案
„„„„„„„„„八年级(下)数学学案N0.23 9.2反比例函数的图象与性质(2)教案
备课时间:2008-1-24上课时间 主备: 审核:备课组 班级 姓名 学习目标:1.综合运用一次函数和反比例函数的知识解决有关问题;
2.通过看图(象)、识图(象)、读图(象),体会用“数、形”结合思想解答函数题. 重点:反比例函数图形、性质的应用 难点:用“数、形”结合思想解答函数题 【温故·知新】 反比例函数 ① y=21031、② y=、③ y=、④ y= 的图像中: xx100x3x(1)在第一、三象限的是,在第二、四象限的是.(2)在其所在象限内,随增大而增大的是.【探究·研讨】
问题一:已知正比例函数y=ax和反比例函数y交于点(1,2).(1)你会求a、b的值吗?(2)如何求出另一个交点坐标?
问题二:如图是反比例函数 yb的图象相x2m 的图像的一支.x(1)你知道它的另一支在第几象限吗?请求出常数m的取值范围;(2)点A(-3,y1)、B(-1,y2)和C(2,y3)都在这个反比例函数的图像上,比较y1、y2、y3的大小.完成“问题二 ”后,请探索“比较y1、y2、y3的大小”有哪些方法?
【归纳】 综合运用一次函数和反比例函数的知识解题,一般先根据题意画出图象,借助图象和题目中提供的信息解题.
第二篇:反比例函数的图像与性质教案
《反比例函数的图象与性质》
授课教师:还地桥镇松山中学卢青
【教学目的】
1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。
2、能力目标:提高学生的观察、分析能力和对图形的感知水平。
3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。
【教学重点】
探索反比例函数图象的主要性质及其图像形状。
【教学难点】
1、准确画出反比例函数的图象。
2、准确掌握并能运用反比例函数图象的性质。
【教学过程】
活动
1、汇海拾贝
让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。(列表、描点、连线),对照图象回忆一次函数的性质。
活动
2、学海历练
让学生仿照画一次函数的方法画反比例函数y=2/x和y=-2/x的图像并观察图像的特点 活动
3、成果展示
将各组的成果展示在大家的面前,并纠正可能出现的问题。
活动
4、行家看台
1.反比例函数的图象是双曲线
2.当k>0时,两支双曲线分别位于第一,三象限内
当k<0时,两支双曲线分别位于第二,四象限内
3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交
活动
5、星级挑战
1星:
1、反比例函数y=-5/x的图象大致是()
2、函数y=6/x的图像在第象限,函数y=-4/x的图像在第象限。2星:
1、函数y=(m-2)/x的图像在二、四象限,则m的取值范围是
2、函数y=(4-k)/x的图像在一、三象限,则k的取值范围是3星:
1、下列反比例函数图像的一个分支,在第三象限的是()
A、y=(3-π)/xB、y=2-1/xC、y=-3/xD、y=k/x2、已知反比例函数y=-k/x的图像在第二、四象限,那么一次函数y=kx+3的图像
经过()
A、第一、二、三象限B、第一、二、四象限
C、第一、三、四象限D、第二、三、四象限
4星:
1、在同一坐标系中,函数y=-k/x和y=kx-k的图像大致是
2、反比例函数y=ab/x的图像在第一、三象限,那么一次函数y=ax+b的图像大致
是
5星:
1、反比例函数y2m
1xm28,它的图像在一、三象限,则
2、反比例函数y
活动
6、回味无穷 k4k2,它的图像在一、三象限,则k的取值范围是x
1.反比例函数的图象是双曲线
2.当k>0时,两支双曲线分别位于第一,三象限内
当k<0时,两支双曲线分别位于第二,四象限内
3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交
活动
7、终极挑战
如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=(k2-5k-10)/x的图像上,若点A的坐标是(-2,-2)则k的值为
第三篇:2、函数的图像与性质
高考必备:
二、函数的图像和性质
要点强记
思想方法:
1、函数与方程的思想:若问题中含有解析式,应考虑使用函数的图像和性质解决问题,若不含解析式,可构造函数,再用函数的图象和性质解题。
2、形结合的思想:把数量关系的问题转化为图形的性质问题来研究,或者把图形问题转化为数量关系问题来处理,数形结合的思想在解选择、填空题具有得天独厚的优势。
3、等价转化的思想:等价转化要求转化前后互为充要条件。
4、分类讨论思想:当问题不能进行统一,则应分类研究。
常规方法
1、定义域:定义域分默认型(式子有意义)、实际型(由实际有意义定)、规定型(无条件规定)。求函数表达式时务必写出定义域。对于复合函数,如:已知fgx的表达式,求此时关于x定义域就是gx的值域;已知fx的表达式,求fgx的fx表达式,表达式,此时关于x定义域就是使得gx的值域为fx的定义域的全体x的取值。
2、值域:函数的最值问题是函数各种性质的综合反映,求函数的值域和最值的常用方法有常数分离法(一次分式法)、配方法(二次函数)、换元法(包括三角换元)、判别式法(二次分式函数)、单调法、,利用重要不等式、导数法、图象法,利用几何意义等。
3、解析式:求解析式的方法有换元法和配凑法两种,近几年分段函数是高考的热点。
4、函数的图像:有些函数虽然不能画出其正确的图像,但是我们可以通过对导函数的研究,画出原函数的图像走向,这样我们仍然可以求出函数的极值、最值等。
5、奇偶性:判断函数的奇偶性应从两方面考虑,即定义域和判别恒等式。奇偶性的应用主要是通过局部看整体。
奇函数若在x=0处有定义,则f00。
6、单调性:①求单调区间时,必须先挖定义域,常用的方法有:定义法、导数法、图象法、复合函数单调性质和利用重要不等式法。②作为单调性的应用,主要有:比大小,求最值,求值域。③有了导数这一工具后,给求函数的单调性带来了极大的方便。
7、周期性:①判断函数的周期性应从两方面考虑,即定义域和判别恒等式;②周期性的应用是通过局部看整体。
8、对称性:有两种对称,关于点对称和关于直线对称。若求对称后的曲线(与原曲线不同)的方程,通常利用间接法(转移法)。若要证明曲线自身关于点或直线对称,通常是先设曲线上一点,再求出对称点,然后证明对称后的点也的在曲线上。
9、抽象函数的性质:①若fxfx,则函数图像关于y轴对称;②若fxfx,则函数图像关于原点对称;③若fxafbx,则函数图像关于x④若fab对称;2xafab,0对称;⑤若bx函数图像关于点,则
2fxaf⑥若fxafxb,则函数还是周期xb,则函数为周期函数。函数。
10、抽象函数解题策略:①利用函数的单调性,作等价转化,最后脱离函数符号f;②利用函数的对称性,通过数形结合,使抽象函数具体化;③利用函数的周期性,以点推面,回归已知;④合理赋值,构造方程,解出抽象函数的表达式。
11、图像的变换:常见的变换有平移、放缩、对称,这些变换可以用间接法求之,要学会用向量法解决平移问题。另外还要掌握yfx的图像与yfx,yfx,yfx,y|fx|,yf1x,yf'x之间的关系。
特别警示
1、研究函数的性质,要注意先确定函数的定义域,如奇函数的必要条件是定义域关于原点对称。
2、函数的单调性是对某一个区间而言的。如函数f(x)在(-1,0)上是增函数,在(0,1)上是增函数,但在
(-1,0)∪(0,1)上却不一定是增函数。
3、在反函数的运算中,要注意yfx1与yf反函数是
1x1不是互为反函数;yfx1的yf1x1;yf1x1是函数yf1x中自变量x换为x1的结果。
第四篇:《20.7反比例函数的图像、性质和应用》
《20.7反比例函数的图像、性质和应用》教学设计
一、指导思想:
《数学课程标准(2011年版)》指出:“课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴含的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。”在学习反比例函数的图像时,要组织学生画出反比例函数的图像,给学生提供体验反比例函数图像的画法。在学习反比例函数的性质时,引导学生经历由具体到抽象的过程,通过恰当的问题引导学生归纳出反比例函数的性质。通过几何画板进行直观展示,使学生获得几何直观。在选择教学内容时,要考虑中考和期末考试的需要。
二、学情分析:
学生参与课堂学习的积极性比较低,特别是11班的学生更加明显。他们不能认真听讲,不能独立思考。学生缺乏有效的学习方法。不会进行观察、不会进行抽象概括,不会预习,不会学习,不会复习,不能按时完成作业,不能接受老师的批评教育,逆反情绪明显。
因此,在本单元教学过程中要组织学生开展预习、复习活动。在教学过程中,要注意引导学生认真听讲,对没有认真听讲的学生进行提醒。
三、教材分析:
(一)、地位和作用
通过对反比例函数的学习,进一步丰富了研究函数的内容和方法。所以搞好反比例函数的图像和性质的教学,对将来进入高中后对出等函数全面深入的学习具有重要的意义。在教学过程中,不仅要注意对函数知识、技能的落实,更要注意对研究函数方法的渗透,比如画图像、分析函数解析式的特点、观察函数图象归纳函数性质,了解函数的变化规律和函数变化趋势。
(二)、考点分析。一次函数常常与反比例函数、三角形的面积结合在一起进行考察。
四、教学目标:
1.使学生在了解自变量和因变量的对应关系特点的基础上,掌握反比例函数图像的画法。能根据反比例函数的解析式正确了解它的图像分布规律以及图像与坐标轴的位置关系。会用待定系数法确定反比例函数的解析式。继续提高数学知识的应用意识,会把相关问题归结为反比例函数问题,并会运用反比例函数的性质加以解决。
2.经历反比函数的性质的形成过程。增强学生数形结合的数学思想。3.提高学习数学的兴趣,养成良好的学习习惯。
五、教学重点、难点分析
(一)、教学重点:反比例函数的图像、性质和应用。
(二)、教学难点: 反比例函数的增减性和反比例函数的应用。
(三)、教学关键:掌握图像的画法,熟悉解析式的参数和函数的图像形状、位置特征的关系是教学的关键。
六、多媒体准备:按课时准备好ppt课件。在学习二次函数的性质时,通过几何画板进行验证。
七、课时计划
本单元教学时间3课时。1.反比例函数的图像一课时; 2.反比例函数的性质一课时;
3.反比例函数的应用一课时。如果有必要可以增加一课时。
八、计划采取的措施 1.做好学生的思想工作。将反比例函数的学习作为新的学习起点,避免产生新的问题,防止问题成堆。
2.制作好课件。上网查阅资料,建立资料库。对搜集的课件进行整理,选择适合所教班级实际的教学方式。如果需要进行动态展示,就要进行动态展示,丰富学生的直观意识。在教学过程中,要将课件与板书进行有效整合。
3.做好三本练习册。做练习册有利于教师选择恰当的教学内容。在做练习册的过程中,教师一边做一边思考解题注意事项,并且在半数中体现出来,有利于学生积累解决问题的经验。2013年11月5日星期二
第五篇:反比例函数的图像和性质教学设计说明
教学设计说明
一、本课数学内容的本质、地位、作用分析
本节课内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,反比例函数的核心内容是反比例函数的概念、图象和性质.反比例函数的图象和性质的核心,是图象“特征”、函数“特性”以及它们之间的相互转化关系,这也正是反比例函数的本质属性所在.
反比例函数是最基本的初等函数之一,是继一次函数学习之后,对函数学习的一般规律和方法的再次强化.是学习后续各类函数的基础.反比例函数的图象和性质,蕴含着丰富的数学思想.首先,反比例函数图象和性质,本身就是“数”与“形”的统一体.其次,从本节课知识的形成过程来看,由“解析式”到“作图”,再到“性质”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,是转化思想的具体应用.再次,将函数中变量x、y之间的对应关系,通过图象的形状、变化趋势,借助平面直角坐 标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想.
因此,学好本节课内容将为今后的函数学习奠定坚实的基础.
二、教学目标分析
1.准确画出反比例函数的图象,是探究反比例函数性质的前提.虽然学生已经学过用描点法画函数图象,但是由于反比例函数图象的特殊性,会画反比例函数的图象,仍是学习中的目标之一.通过列表、描点、画出反比例函数的图象,进而观察、分析、探究、归纳、概括,得到反比例函数的性质,可以进一步加深对函数三种表示方法(列表法、解析式法和图象法)的理解;
2.数学思想的教学一般要经过渗透孕育期、领悟形成期、应用发展期、巩固深化期四个阶段,而非能复制与灌输.在探究反比例函数性质时,让学生领悟到数形结合思想、转化思想、变化与对应思想的存在,并能运用这些数学思想观察、分析反比例函数的图象,探究、归纳、概括反比例函数的性质.
3.通过对反比例函数性质探究,使学生经历观察、分析、探究、归纳、概括的认知过程,培养学生良好的思维品质,提高学生思维能力.
三、教学问题诊断
对于用描点法画函数的图象,学生已经学过,但对每步要求的理解并不深刻.因此,在画反比例函数图象时,常遇到如下的问题:(1)“列表”时确定自变量x的取值缺乏代表性及忽略x0等现象;(2)“连线”时,由于一次函数图象是一条直线,容易使学生产生知识上的负迁移,把双曲线画成折线;(3)对双曲线与x轴、y轴“越来越靠近”但不相交的趋势不易理解.
在学习一次函数的时候,学生已经对研究函数性质所用的探究方法也有一定的了解,但由于反比例函数图象比一函数图象的形态丰富,结构复杂,具有自身的特殊性,故对性质的深刻理解和掌握,对性质探究中的数学思想的体会和运用,还存在一定的困难.
四、教法、学法特点分析 1.找准切入点
从正比例函数切入,通过类比学习揭示本节课学习内容,明确学习任务;渗透探究反比例函数图象和性质的方法.
2.抓住关键点
准确作出反比例函数的图象是探究性质的前提,探究性质的关键是“形”与“数”间的转化.
① 作图
(Ⅰ)描点法作图不是简单的复习与应用.“列表——描点——连线”体现的是描点法作图的一般步骤,而思维的真正起点在于对“解析式”中常量、变量以及变量间关系的分析(k0,x、y的取值以及x与y间的反比例关系),进而对函数图象的大致轮廓形成影象.这也是函数学习中作一般函数图象的思维规律.
(Ⅱ)连线时需防止学生受一次函数图象是一条直线的影响,而产生认识负迁移,把曲线连成折线.
(Ⅲ)图象由 “一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,折射出函数学习的深刻性,是继一次函数后,知识上的一次拓展,理解与认识上的一次升华,也是思维上的一次飞跃.
②“形”与“数”间的转化
(Ⅰ)反比例函数性质本身就是“数”与“形”的整合体.(Ⅱ)探究反比例函数性质的思维主线是“数”“形”间的转化.(Ⅲ)“数形结合”是研究函数性质的一般方法. 3.注重发散点
反比例函数的性质是教材中的一个发散点.可以给学生一个更广阔的思维空间,让学生经历观察、类比、猜想、知识拓展的过程,在思维的“最近发展区”内,提出更新的问题,得出更多的结论.但如何发散,有个“度”的把握问题,诸如:k的几何意义;反比例函数ykk与反比例函数y图象的对称关系,反比例函数增减性的严格证明等,我的想法
xx是作为下节内容或以后结合例题去研究.
4.教学过程紧扣“三条主线”
教学中突出三条主线,并注重三条主线的和谐发展.
一是知识的“产生(反比例函数的图象是什么样的?)——发展(描点法作图、探究)——形成(反比例函数的图象和性质)——应用”主线;二是学生“动手(作图)——探究(观察、类比、猜想、交流)——巩固(练习)”的活动主线;三是教师“指导作图(列表:自变量取值, 连线:曲线的间断、大致趋势等)——引导探究(类比)——解析(归纳、概括、)——评价”的因“学”施“教”过程.
4.注重思想方法的培养
反比例函数的图象和性质,蕴含着丰富的数学思想.首先,反比例函数图象和性质,本身就是“数”与“形”的统一体.通过对图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法.这在学习数轴、平面直角坐标系时,学生已经接触过,结合本课内容,可以进一步加强对数形结合思想方法的理解,发挥从“数”和“形”两个方面共同分析解决问题的优势.其次,从本节课知识的形成过程来看,由“解析式(确定自变量取值范围)”到“作图(列表、描点、连线)”,再到“性质(观察图象探究性质)”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,这种函数解析式及性质与函数图象之间的联系,突出体现了两者间的转化对分析解决问题的特殊作用,是转化思想的具体应用.再次,将函数中变量x、y之间的对应关系,通过图象的形状、变化趋势“细微”到点,借助平面直角坐标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想.
5.注重学法指导
对于反比例函数图象及性质的研究与学习,尽管还处于函数学习的初级阶段,但它所体现的函数学习的一般规律和方法,是继一次函数学习之后的再一次强化.教材中呈现的“函数概念——函数的图象和性质——函数的实际应用”的结构,是学习初等函数时不可或缺的.使学生理解这样的“同构现象”,对于明确学习任务,建立完善的认知结构也将是非常有意义的.再有,用描点法画反比例函数的图象时,先由函数解析式考虑自变量的取值范围,分析x、y的对应变化关系,然后构思函数图象的大致位置、轮廓、趋势,进而列表、描点、连线作出函数图象,反映了作函数图象的一般规律.另外,利用图象“特征”确定函数“特性”,也是初中阶段研究函数性质的常用方法.