第一篇:比例的应用教学设计1
比例的应用教学设计1 教学目标
1.使学生能正确判断应用题中涉及的量成什么比例关系.
2.使学生能利用正、反比例的意义正确解答应用题.
3.培养学生的判断推理能力和分析能力.
教学重点
使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.
教学难点
利用正反比例的意义正确列出等式.
教学过程
一、复习准备.(课件演示:比例的应用)
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.
2.路程一定,速度和时间.
3.单价一定,总价和数量.
4.每小时耕地的公顷数一定,耕地的总公顷数和时间.
5.全校学生做操,每行站的人数和站的行数.
(二)引入新课
我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.
教师板书:比例的应用
二、新授教学.
(一)教学例1(课件演示:比例的应用)
例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
1.学生利用以前的方法独立解答.
140÷2×5
=70×5
=350(千米)
2.利用比例的知识解答.
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长 千米.
=
=140×5
=350
答:两地之间的公路长350千米.
3.怎样检验这道题做得是否正确?
4.变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(二)教学例2(课件演示:比例的应用)
例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?
1.学生利用以前的方法独立解答.
70×5÷4
=350÷4
=87.5(千米)
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的路程是一定的,_________和_________成_________比例.
所以两次行驶的_________和_________的_________是相等的.
3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程? =70×5
=87.5
答:每小时需要行驶87.5千米.
4.变式练习
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?
三、课堂小结.
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.
四、课堂练习.(课件演示:比例的应用)
(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
(二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?
(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.
1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?
2.王师傅4小时生产了200个零件,照这样计算,_______?
五、课后作业.
1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?
2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?
3.某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?
六、板书设计.
教案点评:
本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。
在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。
探究活动
鱼池有多少条鱼?
活动目的
1.培养学生应用所学知识解决实际问题的能力.
2.培养学生的判断推理能力和分析能力.
活动形式
以小组为单位讨论.
活动题目
养鱼场有很多鱼池,要知道一个鱼池有多少条鱼.渔业人员想出了一个巧妙的办法,他们先在一个鱼池里捞起30条鱼来,给每条鱼做个记号,然后把它们放回鱼池里.鱼回到水里,向四面八方游开了,过了几天,这30条鱼就平均分布在鱼池的各个地方.渔业人员又在这个水池里捞起50条鱼来,如果其中有2条带记号的鱼,就可以算出这个池里大约有多少条鱼.为什么?
活动过程
1.学生分小组讨论原因.
2.学生汇报讨论结果.
3.讲述生活中应用比例知识的事例.
参考答案
解:设水池里面共有 条鱼.
= 750
答:水池里面共有750条鱼.
第二篇:比例的应用 教学设计
《比例的应用》教学设计
五常市特殊教育学校 樊照彬
一、教材分析
《比例的应用》为全日制聋校数学第十五册第一单元的第三部分内容,这一部分的教学内容从构建上更注重学生技能的养成和知识的运用。把通过三个相关联的量求第四个量的运算,用方程的方法呈现为比例的形式,这样从视觉上更附和了聋生的认识特点,同时也把复杂的等量关系更清晰的更简单的体现在比例的内容里。让学生轻松的理解比例就是在等号两边表示两组相等的比。这样的方法也是比例应用题的一大特点。同时更有助于学生从理论知识到技能操作的转变,使新课程理念融入于特教课堂。
二、教学方法
情趣导入法、总结法、问题导入法及指导法。
三、教学目标
1、知识目标:理解应用题中比例的意义,并根据比例的性质解决应用问题。
2、能力目标:
①通过对应用题中已知条件与未知条件的分析并确定数量关系,培养学生逻辑思维能力和分析解决问题的能力
②通过求解的过程,培养学生的运算能力。
3、情感目标:培养学生的数学兴趣,激发自主探索的求知欲。
4、缺陷补偿:通过对问题的分析,积累语言发展思维。重点:利用比例的意义确定等量关系。难点:数量间的运算关系。
四、教学流程:
1、兴趣入题
“同学们有没有想过毕业后未来的生活呢?现在我请大家为自己的将来设想一下,你准备做什么呢?”。
2、初探新知
出示根据学生的理想加工的题例。
董健昕同学经营一服装店,卖3件衣服可以盈利150元,按这样的收入计算,每月卖出80件可以盈利多少元?
让学生运用“三步”解题法,分析问题。1看
已知条件包括:3件、盈利150元、80件 求知条件:盈利多少元? 2找
从名数看包括四种数量:件数、盈利总额、件数、盈利总额。且四种数量是两两重复的。
确定数量关系:总额与件数间的关系是除法,进一步确定比例关系,总额 :件数=总额 :件数。
等号左边的总额为150元,件数为3件,等号的右边总额为,件数为80件。
3解
解:设盈利元。150 :3= :80 3=150×80 =150×80÷3 =4000 答:可以盈利4000元。巩固方法:
出示文本中的例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
让邻座的学生间进行比较分析,确定数量及数量间的关系并求解。即时小结:
比例的形式就是:比=比,应用题中的比例即为:左边的数量关系等于右边数量关系。如何利用比例来解应用题就是看是否有两两相对的数量,并确定对应的数量间是否存在正、反比例关系。让学生从抽象到直观的掌握方法。
课业布置:
紧扣学生的理想出示题例二:职业课上,每天做8面国旗,要10天完成,如果每天做10面要几天完成呢?
板书设计:
比例的应用
1看:(已知:3件、盈利150元、80件)(未知:盈利元?)2找:(总额 :件数=总额 :件数)3解
解:设盈利元。150 :3= :80 3=150×80 =4000 答:可以盈利4000元。
第三篇:比例的应用教学设计
比例的应用
教学目标:
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情感、价值观的发展。
教学重点:
使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。
教学难点:
利用比例的基本性质来解比例。
教学过程
一、旧知铺垫
1.前面我们学习了比例的基本性质,你能说说它的具体内容吗?
2.请你用比例的相关知识判断下列哪两个比可以组成比例,并且说明理由。
5:7和8:13
1/2:1/3和1/4:1/6
2、想一想,括号里该填几:
14:()=35:5
():5=4:10
二、导入新知
我们知道比例中共有四项,如果知道其中的任何三项,就可以求出比例中的另外一个未知项。求比例中的未知项,叫做解比例。这节课我们就一起来探究解比例的方法,大家对自己有信心吗?
三、探索新知
1.教学例题。
呈现情境图,解决实际问题。
⑴呈现情景图。
⑵你如何理解4个玩具汽车换10本小人书?
⑶尝试解答。
学生尝试解答,教师巡视。
⑷学生交流。
(5)尝试用比例的方法解决问题。尝试解答。学生交流,形成方法。解:设14个玩具汽车可以换x本小人书。4:10=14:x 4x=14×10 4x=140 x=35 答:14个玩具汽车可以换35本小人书。
教师指出:求比例中的未知项,叫做解比例。板书:解比例。
2、比较、小结。
(1)提问:解比例的方法和解方程的方法有哪些相同处和不同处?
(2)方法小结:解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)。其实,比例就是一种特殊的方程,不论在书写格式还是验算方法上他与解方程都是相同的。
三.学以致用,巩固新知。1.解比例。:8 = X :40 X/9 = 7/3 1/2:X = 1/6:2/5 1.5:0.6=x:0.4 2.按下面的条件组成比例,并求未知数的值。
(1).12和5的比等于3。6和X的比。
(2).X和1/3的比等于4 :3。
3、拓展延伸。
(1)、在一个比例中,两个外项正好互为倒数,已知一个内项是3,另一个内项是多少?(2)、在一个比例中,两个内项的乘积是最小的质数,已知一个外项是2,另一个外项多少?
四、课堂总结:
(1)这节课主要学习了什么内容?什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)(2)现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例)
五、作业。第20页 练一练。
第四篇:比例的应用教学设计
《比例的应用》教学设计
教学内容 :
《九年义务教育六年制小学教科书 • 数学》(北师版)第十二册 教学目标:
1、使学生学会解比例的方法,进一步理解和掌握比例的内项积与外项积之间的关系。
2、联系学生的生活实际创设情境,体现比例在生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情感、态度、价值观的发展。
教学重点、难点:用比例的知识解决实际问题。教学过程:
一、复习
1、什么叫做比例?
2、比例的基本性质是什么?(答得好的,要注意适当表扬;答得不好,要注意引导鼓励)
3、怎样确定两个比是否成比例?
二、导入新课
教师谈话:本节课我们将应用这些知识来学习“比例的应用”(板书课题),大家有没有信心把它学好?
三、创设情境,探究新知。
1、出示课件:淘气和明明用玩具汽车换小人书的图片。
2、教师谈话:这道题可以用哪些方法来解?说说解的理由。(同桌合作,交流解答方法)
3、指名学生说解答过程,其他同学举手补充。
(如果有学生用比例的方法解,要让学生说出解题理由,并引导学生归纳其解法;若没有学生用比例解,则进行下一步的教学)
4、用比例知识解
(教师谈话:如何用比例知识来解呢?我们在家一起来分析一下。)(1)题中有哪两种相关联的量?可以找出哪几组对应量?
(2)谁和谁成什么比例关系?
(3)不知道可以换多少本小人书的页数该怎么办?(教师根据学生的回答进行板书)
(4)可以列出什么样的比例?(教师根据学生的回答进行板书)(5)学生独立解答。
(6)小结:怎样解比例?(学生回答,老师补充)
解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数。
5、练习:解下面的比例。
24:0.3=x:0.4
x3.5=47
四、巩固练习
1、作业本上的6个小星星可以换2面小红旗。淘气的作业本上已经有了15个小星星。
(1)15个小星星可以换多少面小红旗?说说你的想法。
(2)假设15个小星星可以换 面小红旗,你能列出比例并解决问题吗?
2、写出比例,并求出未知数。
3、解方程。
4:9=x:3.6
927=x18 111:=x:6412
4、淘气和笑笑收集的邮票张数的比是3:5。淘气收集了36张邮票,笑笑收集的邮票有多少张?
五、课堂小结 本节课你有哪些收获?
六、作业布置
题签
板书设计:
比例的应用
解:设14个玩具汽车可以换x本小人书。
: 10 = 14 : x x =140
X = 35 答:14个玩具汽车可以换35本小人书。
教学设计思路说明:
比例的应用是比和比例知识的综合运用,应以比例的意义和性质为基础进行教学。其基本思路是:复习——探索——归纳——实践。因此首先应全面复习比例的有关知识,为学生应用比例知识解答应用题作好充分准备,然后以与学生的学习息息相关的例题进行教学,并让学生交流多种解法,充分表达各自的解题思路,接着弄清根据什么列比例后,放手让学生解答并订正,最后,引导学生归纳应用比例知识解答应用题的方法和要领,使学生对所学知识有全面系统的掌握,要求学生用所学知识进行作业实践。
本节课的特点 :
1、组织学生参与学习过程,让学生合作学习,充分发挥学生的主体作用;
2、注意学习兴趣和概括能力的培养;
3、鼓励学生寻找不同解法,体会解决问题的不同策略;
4、以与学生的学习息息相关的例题为例,让学生感受生活中的数学,体验数学的应用价值。
第五篇:《比例的应用》教学设计
《比例的应用》教学设计
教学内容:比例尺 知识与技能:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,能根据比例尺求出图上距离或实际距离。
情感态度与价值观:学会用比例尺知识解决问题,培养学生解决实际问题的能力。
教学重点、难点:理解比例尺的含义,能根据比例尺求出图上距离或实际距离。
教学过程:
一、导入(略)
二、探索新知
1、教学比例尺的意义(1)、教师讲解:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们给它起一个名字叫做“比例尺”。(板书)
(2)、教师指导学生看教科书,让学生说出它们的比例尺各是多少,表示什么意思。
(3)、教师指出:比例尺与一般的尺不同,这是一个比,不应带计量单位。
2、线段比例尺与数值比例尺的改写。
出示例1:把教材第49页线段比例尺改写数值比例尺。(1)、说一说方法。(2)、改写 图上距离:实际距离=1㎝:50㎞=1㎝:5000000㎝ =1:5000000
3、教学根据比例尺求图上距离或实际距离。教学例2 出示例2,指名读题,并说出题目已知什么,要求什么。教师板书解答过程
解:设地铁1号线的实际距离为Xcm。10:x=1:500000 X=500000×10 X=5000000 5000000㎝=50㎞ 巩固练习。做第52页的“做一做”。指名做,集体订正。
三、布置作业
完成《练习册》第19页的练习。