第一篇:公开课教学设计6下
材料封面:
公开课教学设计
(六年级下册)
霍邱县三流乡曹墩学校
时
峰
《莫泊桑拜师》第二课时教学设计
三流乡曹墩学校
时峰
一、教学目标:
1、有感情地朗读课文。
2、通过朗读莫泊桑拜师的故事,知道仔细观察、不断积累、勤奋练习是提高写作水平的必由之路。
3、理解课文内容,感受福楼拜的循循善诱和莫泊桑虚心好学、勤奋练习的精神。
二、教学过程:
(一)谈话导入:
1、大家想不想写出一手好文章?为什么?
2、你觉得目前自己的习作有哪些不足或写作时有哪些困惑?
3、莫泊桑曾经也和大家一样,有过这些困惑,于是他就(引导学生把课题说具体)那么福楼拜给予他怎样的教益呢?我们一起随莫泊桑去求教,聆听大师的教诲,也从而解决我们心中的困惑。
(二)研读课文。
1、自己用心研读2-9节,走进莫泊桑三次求教,看看福楼拜大师每一次都针对他的什么不足或困惑,给予了怎样的指导和忠告?画出关键词句也可自己用词概括。
(1)同桌交流,告诉同桌你的看法,征求同桌的意见,互相切磋,取长补短。
(2)全班交流,指名回答。师相机引导概括并板书:
第一次文章不生动勤学苦练
第二次没什么好写 仔细观察
第三次文章没特色善于发现
2、在这三次指导中,哪一次最能撞击你的心、恰好解决了你目前写作中的困惑?你就反复读那部分的描写,用心咀嚼大师的话,简要写下你的心得。
3、交流
预设一(第一次指导)
A、交流心得。
B、要想通过朗读,再现这一次指导的情景,在读时你有哪些好的建议?
交流:
①抓提示语。“直截了当”什么意思?该怎么读福楼拜的话,“急切地问”又该怎么读?生练读,指名读。指生评价。
②师友情提示:除了抓提示语体会人物心情、语气外,还应联系人物的品质来读,这样才能把人物读得淋漓尽致。从“福楼拜直截了当地说”可看出他是个怎样的人?(待人坦诚)
根据提示自由练读,指名分角色读,相机指导。
预设
(二)(第二次指导)
A、交流心得。
B、大师的话该怎么读?讨论(引导学生从下面两方面考虑把握)
①“滔滔不绝”的话要求读得连贯,流利,但要注意语速不能太快,给人吸收消化和时间。
②从这可看出大师是个怎样的人?(耐心、真诚)朗读体现出耐心和真诚
练读大师的话。
师生分角色读,师当莫泊桑,学生当大师。
C、莫泊桑从此仔细观察生活中的每一个细节,这在他的很多作品中都有体现。现在我们一起欣赏他在《骑马》中的一段细节描写(出示《骑马》片断)赏析。
D、指名说说你认为细节描写好的地方。
预设
(三)(第三次指导)
A、交流心得。
B、有什么问题吗?
预设:什么叫“发现别人没有发现和没有写过的特点”?
指导理解:
①于是福楼拜对此举了两个例子,你好好读读这两个例子一定会有启发的。
②交流、引导学生明白:没有两片相同的树叶,任何一种事物,哪怕再普通,再平凡,它也有自己与众不同的地方,这就是这里所说的特点。
③出示《羊脂球》中的片断,让学生阅读,通过“马夫”形象进一步感悟如何写出与众不同的特点。
(三)、回顾这三次求教的过程,你认为莫泊桑成功的主要原因是什么?
讨论,交流。
你积累了哪些成语送给他们?交流总结并板书。
板书:虚心好学、勤学苦练
循循善诱、真诚提携
(四)、你从中受到了什么启发?
(人物品质方面、写好文章的方法方面都可以说。)
三、作业安排
1、书写生字
2、有感情地朗读课文
第二篇:6下3-1《解比例》教学设计
《解比例》教学设计
【教学内容】《义务教育教科书·数学》(青岛版)六年制六年级下册第三单元信息窗1第三个红点《解比例》
【教学目标】
1.学生进一步理解解比例的意义。
2.引导学生掌握解比例的方法,会解比例。
3.强调解比例的书写规范和计算中的灵活性,以提高学生的审美能力和计算能力。
【教学重点】使学生掌握解比例的方法,学会解比例。
【教学难点】引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式。
【教学过程】
一、回顾整理,再现新知
1.解简易方程,并口述过程。
4x=120
6x=24×5
2.回忆:什么叫做比例?什么叫做比例的基本性质?
3.应用比例的基本性质,判断下面每一组中的两个比是否可以组成比例?
6∶10和9∶15 20∶5和4∶1
4.根据比例的基本性质,将下列各比例改写成其他等式。
3∶8=15∶40
1.5∶0.2=30∶4
【设计意图】多角度多样化的复习比例的意义及比例的基本性质。关注学生已有的知识经验,使知识全面系统化,为新知的建构做好铺垫。
二、自主探究,合作交流
(一)揭示解比例的意义。
1.将上述两题中的任意一项用x来代替(可任意改换一项)
讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由。
2.学生交流得出:
根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,就可以求出这个比例中的另外一个未知项。
3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例。(板书课题)
(二)合作交流。
1.出示例题:解比例20∶25=4∶x 学生自主探究,解答。
说一说:如何转化为已学过的含有未知数的等式,并求出未知数的解?
2.组织学生交流并明确.
(1)根据比例的基本性质,可以把比例改写为:20x =25×4.
(2)改写时,含有未知项的积一般要写在等号的左边,再解。
3.规范并板书解比例的过程。
【设计意图】激发学生学习积极性,提供充分从事数学活动的机会。在教学过程中潜移默化培养良好的书写习惯。
4.独立完成:解比例4:5=9:x。
学生完成后,要适当追问思考的过程,突出比例基本性质在解比例过程中的作用。
5.小结:
引导:同学们,通过解决前面的两个问题,你能说说什么是解比例,怎么解比例吗?
小组讨论交流。预设:
(1)求比例中的未知项,叫做解比例。
(2)解比例时,根据比例的基本性质,先把比例式转化成方程的形式,再通过解方程求出未知项的值。(板书:转化)
三、巩固应用,拓展提升
1.自主练习第11题
独立完成在练习本上,指名个别学生板书。
2.补充练习:在一个比例中,两个外项正好互为倒数。已知一个内项是16,另一个内项是多少?
【设计意图】把解比例的知识和有关倒数的知识结合起来,培养学生灵活解决问题的能力。
3.自主练习第12题
练习时,可引导学生根据比例的基本性质思考:先确定等式一边的两个数作为比例的内项,另一边的两个数就作为比例的外项,然后灵活写出多个比例。
【设计意图】这是一道巩固比例知识的开放题。引导学生寻找其中的规律,培养学生逻辑思维能力。
四、全课小结,畅谈收获。
通过本节课的学习,你有哪些收获?
预设:学生可能会回答知道了什么是解比例,怎么解比例,教师运用课件出示“知识”;学生可能回答转化是很好的学习方法,教师运用课件出示“方法”„„(教师根据学生的回答适时出示关键词,引导学生会从方法、知识、能力、情感态度等方面对课堂进行回顾整理)
【设计意图】引导学生从知识、方法、感受等方面全面总结。帮助学生积累一些基本的活动经验,养成全面回顾的习惯,体验学习的成功感,培养自我反思、全面概括的能力。
第三篇:6下2-1圆柱和圆锥认识教学设计
《探究圆柱和圆锥的特征》教学设计
【教学内容】《义务教育教科书·数学》(青岛版)六年制六年级下册第二单元信息窗1。【认知基础】在一年级认识圆柱和圆锥的样子基础上进行教学的。【教学目标】
1.通过圆柱、圆锥实物让学生操作实践,探究它们的特征。
2.通过剪、展等探索圆柱、圆锥特征的过程实践活动,建立空间观念。
3.在观察与操作、猜测与验证、交流与反思等活动中,体验圆柱、圆锥由面到体的形成过程,体验比较的数学学习方法。
【教学重难点】
重点:在各种体验活动中自主探索并掌握圆柱和圆锥的特征。难点:对圆柱、圆锥侧面和高的认识。
【教具学具准备】圆柱、圆锥、学具模型、长方形纸等。(提前让学生回家找或自制并穿上外衣)【教学过程】
一、自主探究圆柱的特征。1.看一看,摸一摸圆柱有什么特征。预设:生1:上下两个面,一个面弯弯着。生2:两个圆大小一样。
谈话:弯弯着的这个面叫曲面,上下两个面叫平面。也可以说圆柱的组成:生2:两个平面+一个曲面 谈话:这两个平面是 ……曲面是…… 预设:两个底面+一个侧面
概括圆柱特征:两个底面和一个侧面
【设计意图】通过看一看,摸一摸让学生自主探究圆柱特征,有表及里,有整体到局部。
2.验证上下两个底面相等
提问:刚才有的同学说两个底面大小相等,你怎么知道的? 生验证:
预设:外衣上下两个圆面完全重合,上面画下来,跟下面重合。生上台展示
预设:侧面展开是长方形(平行四边形)生上台展示 追问:展开后长方形的长是什么? 预设:直径、底面圆的周长 方法:倒回去重卷,再次观察 3.教学圆柱的高
根据圆柱特征教师画出圆柱的数学图示 你刚才怎么剪的侧面 预设:直着剪得。
师:你感觉圆柱的高在哪里上来指着说一说 预设:圆上、圆内、圆外三个概念
(1)上面圆上一点,下面圆上对应的点之间(无数条)
(2)圆内对应的点之间,还有吗? 预设:有,有无数条 提问:有没有特殊的高 预设:圆心到圆心。
小结:因此咱们说两个底面之间的距离叫作高(板书高)4.总结特征,提升认识
谈话:刚才我们从底面、侧面、高三个方面研究了圆柱的特征,现在哪位同学能说一说圆柱有哪些特征?
学生回答,教师适时评价
二、按照上面方法探究圆锥特征 1.看一看,摸一摸圆锥有什么特征。
预设:生1:一个底面,一个侧面(侧面是扇形)提问:上底面哪去啦? 生:缩成了1个顶点。2.验证侧面是扇形
谈话:你怎么知道侧面是扇形?
预设:生把晚上自己做的上台展示(扇形)(不准重叠)3.找圆锥高 注意数学语言描述
预设:生1:从圆锥一个顶点到圆心的距离是圆锥的高 追问:那个词可以省去 预设:从圆锥顶点到圆心的距离是圆锥的高 4.总结特征,提升认识
谈话:刚才我们从底面、侧面、高三个方面研究了圆锥的特征,现在哪位同学能说一说圆柱有哪些特征?
【设计意图】教师积极地创造机会让学生自己去学习或者去探究问题。通过观察、操作、比较等活动,让学生根据问题有目的地大胆猜想、动手实践、自主探究、真正让学生置身探索者、发现者的角色,在“做”数学中培养了学生自主学习能力,发展了其空间观念。圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆锥之前及时地引导学生回顾圆柱的研究过程,通过交流使学生对学习方法进行有效地迁移,学习的积极性得到有效地激发,兴趣盎然地投入到观察、研究之中。
三、巩固练习
1.课本18页第二题下面的那些是圆柱?哪些是圆锥?(要求回答时不是圆锥圆柱的要说明为什么)第二个是圆台
2.用一张长20厘米,宽15厘米的长方形纸卷成一个圆柱形纸筒。纸筒的底面周长和高各是多少?
3.新课堂3(3)把圆柱的侧面沿高展开可以得到一个长方形,长方形的长等于圆柱的()长方形的宽等于圆柱的()。因为长方形的面积等于()X(),所以原著的侧面积等于()X()
四、引领回顾,总结提升
谈话:同学们,这节课我们认识了圆柱和圆锥,你有哪些收获? 学生可能会说:
知识:我知道了圆柱和圆锥的特征是什么。
方法:我学会了研究立体图形的方法,看一看,摸一摸,数一数,剪一剪,比一比等都是很好的方法。
感受:我知道在研究学问的过程中只有猜想不行,还要想办法验证。……
谈话:相信这节课的学习对你今后探究立体图形会有很大的帮助,让我们满载着这些收获,下课!
【设计意图】引领学生从“知识”“方法”“情感”等几个方面全面回顾梳理,帮助学生积累一些基本的活动经验,养成全面回顾的习惯,培养自我反思、全面概括的能力。
【设计意图】基本练习,引导学生区分圆柱和圆锥,认识圆柱、圆锥的侧面展开图,培 养学生的想象力,建立空间观念。提高练习让学生在动手卷一卷的过程中进一步思考长方形的长和宽与圆柱侧面的关系,为下一节课圆柱侧面积的学习进行铺垫,同时这一练习的设计也渗透了化曲为直的思想。拓展练习,板书设计:探究圆柱圆锥的特征
2个底面 +侧面 无数条高 底面+ 侧面 1条高
完全形同 长方形 扇形
圆柱立体图 圆锥立体图
第四篇:6下1-相关链接《利息》教学设计
《利 息》教学设计
教学内容:《义务教育教科书·数学》(青岛版)六年制六年级下册第一单元--相关链接。教学目标:
1.了解储蓄的意义,理解本金、利率、利息的含义。2.掌握利息的计算方法,能够正确的计算存款利息。
3.注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的作用,提高应用意识和实践的能力。
教学重难点:掌握利息的计算方法以及弄清本金、利息和利率的关系。教学准备:多媒体课件、实物投影 教学过程:
一、创设情境,提出问题
谈话:老师攒了5000元钱暂时不用,放在家里又不太安全,哪位同学帮老师想个办法,如何更好的处理这笔钱?
预设:放在银行、买基金、买理财 谈话:把钱放银行有什么好处呢? 预设:可以长利息 揭示课题:利息
谈话:老师这里有一张以前的银行存单,(课件出示情景图),下面请同学们仔细观察,看看你能发现哪些信息?根据这些信息你能什么问题?
预设:生1:到期后能得到多少利息?
生2:到期后一共能从银行拿到多少钱?
【设计意图】以这种谈话的方式导入,不仅让学生感到亲切,而且从课的开始就让学生感受到数学与生活的密切联系。起到了开动思维、使学生乐于参与数学活动的作用。
二、自主探究,解决问题
(一)了解意义。
谈话:在银行存款,要弄清楚三个概念:本金、利率和时间,谁能说一说在上面的信息中,哪是本金?哪是利率?哪是时间?哪是利息?先自己想一想,再把你的想法和同桌说一说。
学生思考、交流。
预设:存到银行的钱叫本金,取钱时多给的钱叫利息,银行规定的百分数叫利率,谈话:存入银行的钱叫本金,取款时银行除还给本金外另外付给的钱叫做利息,单位时间内,利息与本金的比值叫做利率。
(二)解决红点问题:到期时小丽的爸爸可以取回多少钱?学习利息的计算方法
谈话:利息的多少与什么有关?该怎样计算呢? 学生思考、交流。
预设:利息的多少与本金、利率、时间有关 教师出示:利息 = 本金 ×时间 ×利率 学生独立解答。
利息:8000×4.25%×3=1020(元)追问:这一步求的是什么?
到期时可以取回的钱:8000+1020=9020(元)追问:这一步求的是什么? 谈话:谁能对照你列的算式说一说,怎样求利息?计算利息需要哪些数据? 【设计意图】为学生营造自我发现、自我总结的空间,让学生从实践中概括公式,在合作中分享自己与他人思考的成果,体会成功的快乐。
三、巩固练习,应用拓展
1.自主练习第1题。练习时,首先让学生认真读题,弄清题意,按照计算利息的基本方法“利息=本金×利率×时间”,让学生独立完成。
2.自主练习第2题。练习时先向学生介绍有关国债的知识,然后让学生独立解决,交流时让学生说一说各自的想法,从中体会国债利息的计算方法。
【设计意图】结合实际解决有关利息的问题,把握求利息的几个关键的条件,建立并掌握求利息的基本数量关系式,让学生更好的理解、掌握求“利息”的计算方法,提高学生分析和解决问题的能力。
四、全课总结,梳理小结
谈话:通过这节课的学习,你都有哪些收获?
【设计意图】:学生对自己获得的知识与方法进行回顾反思,总结经验,取长补短。
第五篇:公开课教学设计
公开课教学设计
《 练习三 》
(新北师大版四年级上册数学)
亳州八中 张卫东
二零一五年十月
教学内容:练习三 教学目标:
1.练习乘法竖式、乘法估算。
2.乘法竖式、乘法估算。用乘法解决实际问题。教学重点:练习乘法竖式、乘法估算。教学难点:
1.乘法竖式、乘法估算;2.用乘法解决实际问题。教学过程:
一、乘法口算、竖式练习
做第1题:
做第2题:
二、乘法估算练习
教师注意解析题目内容,学生注意听讲: 1.第3题:不用计算判断乘法计算的对错。独立完成,订正时说估算的方法。
2.第4题:出示题目,让学生观察图上的信息,特别是两只挂钟上的时间。
学生观察后,可以让他们回答笑笑与淘气的问题。鼓励学生交流估计的方法。
3.第6题:解决该问题的关键是会观察图上的信息。首先让学生说说图中的信息,其次再让他们估计结果。
三、数学游戏:
这个游戏的策略主要是两方面: 一是,先占领棋盘上的哪个格子;
二是,怎样估计格子上的积是哪两个数相乘的结果。
板书设计: 练习三
乘法竖式、乘法估算
四年级班主任工作总结
张卫东
在学校整体思想的指导下,取得了一定的成绩。现将本学期总结如下:
一、热爱学生、尊重学生、相信学生。
我相信学生在我的主导作用下能管好自己,所以,首先,我充分发挥班干部的主体作用。在一定意义上说,创建和谐的班集体,班干部是决定性的因素于是,我着手对管理体制进行“放权”:通过几次班干部例会,要求班干部敢想,敢做,不仅要做实干家,更要做决策者,只要能发动同学们自觉参与班级管理,有利于同学们的学习和各种爱好的发展,什么想法和活动都可以讨论。这样一来发挥了班干部的主体性,调动了班干部的积极性,工作起来轻松许多,而且效果也较好,除了学校组织的活动外,在班内还开展各种活动,鼓励同学们积极参加,这些活动大都由学生们自己策划、组织、总结、收到较好的效果。
二、以强化常规训练带动教育教学工作。
良好的常规是进行正常的学习和生活的保障,一个学生调皮捣蛋、不合常规的举动往往会使一堂好课留下遗憾,使整个集体活动宣告失败,甚至使全班努力争取的荣誉付诸东流,直接影响到班集体的利益。因此,要扎实有效地加强一个学生的常规训练。训练的内容包括《小学生守则》和《小学生日常行为规范》要求的常规、课堂常规、集会常规、卫生常规、劳动常规等等诸多方面。训练可以通过集体或个人、单项强化或全面优化相结合的方式进行(根据具体情况选择),务必使每个学生具有“服从集体,服从命令”的思想,具有自我约束力,形成习惯。
三、激发学生竞争意识。
使孩子形成比学赶帮超的良好学习氛围,一一对应的帮助差生活动,互相促进,共同提高。重视对后进生的教育工作,针对每一个学生的基础和特点,进行正确的指导和必要的帮助,使每个学生都能得到良好的充分的发展。由于本班男生较多,差不多占全班的三分之二,一部分男生不但难于管理,而且学习不刻苦,成绩也较差,所以利用课间、课后找他们谈心,深入细致地做他们的思想工作,让他们树立学习的信心和勇气,帮助他们制定学习计划,和划分学习小组,提高他们的学习成绩。
四、重视与家长的联系
班主任只凭自己的威信和力量是不可能取得教育成功的,必须力争本班科任老师和家长对学生有一致的要求和态度,并时常同他们交换意见。家长会是学校与家长联系的重要途径,应高度重视,确保会议质量,尽量与家长取得共识。会上可以请个别优秀家长介绍成功教育孩子的经验,可以谈教改的方向,谈本期教学内容及要求,谈本期整体情况,进行作业展览或者谈学校对家庭教育的建议均可。充分调动家长的积极性,配合学校教育好孩子,这样班主任工作才能更加顺利轻松。
当然我做的还很不够,有时是缺少了会发现的眼睛,因此才让班级管理出现了很多不尽人意的地方,可以说班主任工作是任重道远。有人曾说,能发现问题,并解决问题,就是一个成长进步的过程。通过这半年的学习锻炼,相信在以后的工作中,我将会以更大的信心和热情投入到其中。
浅谈初中数学思想方法的教学
张卫东
开展数学思想方法教育应作为新课改中所必须把握的教学要求,它是数学教育教学本身的需要,是以人为本的教育理念下培养学生素养为目标的需要,是提高学生解题能力的需要。初中数学教学中要注意在知识发生过程中渗透数学思想方法,在思维教学活动过程中挖掘数学思想方法,在问题解决过程中强化数学思想方法,并及时总结以逐步内化数学思想方法。
一、对数学思想方法的认识。
所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。
数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。初中数学思想方法教育,是培养和提高学生素质的重要内容。新的《课程标准》突出强调:“在教学中,应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。”因此,开展数学思想方法教育应作为新课改中所必须把握的教学要求。
中学数学知识结构涵盖了辩证思想的理念,反映出数学基本概念和各知识点所代表的实体同抽象的数学思想方法之间的相互关系。数学实体内部各单元之间相互渗透和维系的关系,升华为具有普遍意义的一般规律,便形成相对的数学思想方法,即对数学知识整体性的理解。数学思想方法确立后,便超越了具体的数学概念和内容,只以抽象的形式而存在,控制及调整具体结论的建立、联系和组织,并以其为指引将数学知识灵活地运用到一切适合的范畴中去解决问题。数学思想方法不仅会对数学思维活动、数学审美活动起着指导作角,而且会对个体的世界观、方法论产生深刻影响,形成数学学习效果的广泛迁移,甚至包括从数学领域向非数学领域的迁移,实现思维能力和思想素质的飞跃。
可见,良好的数学知识结构不完全取决于教材内容和知识点的数量,更应注重数学知识的联系、结合和组织方式,把握结构的层次和程序展开后所表现的内在规律。数学思想方法能够优化这种组织方式,使各部分数学知识融合成有机的整体,发挥其重要的指导作用。因此,新课标明确提出开展数学思想方法的教学要求,旨在引导学生去把握数学知识结构的核心和灵魂,其重要意义显而易见。
那么,初中数学思想方法有哪些呢?
二、认识初中数学思想方法。
初中数学中蕴含多种的数学思想方法,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化的思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓。
1、数形结合的思想
数形结合是一种重要的数学思想方法,其应用广泛,灵活巧妙。”数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括 [1]。在数学教学中,许多定律、定理及公式等常可以用图形来描述。而利用图形的直观,则可以由抽象变具体,模糊变清晰,使数学问题的难度下降,从而可以从图形中找到有创意的解题思路。如代数列方程解应用题中的行程问题,往往借助几何图形,靠图形感知来”支持”抽象的思维过程,从而寻求数量之间的相依关系。例如:小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明追上小彬?此时,我们可画出如下的线路图: 依据线路图,我们可以找出其中的等量关系 S小明=S小彬+10,然后设未知数列方程即可。
2、分类讨论的思想
分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想。对数学内容进行分类,可以降低学习难度,增强学习的针对性。因此,在教学中应启发学生按不同的情况去对同一对象进行能够分类,帮助他们掌握好分类的方法原则,形成分类的思想。如当取何实数时,对当时,;当<3时,的值的分类讨论:。
3、转化思想
数学问题的解决过程就是一系列转化的过程,中学数学处处都体现出转化的思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,是解决问题的一种最基本的思想。因此在教学中,首先要让学生认识到常用的很多数学方法实质就是转化的方法,从而确信转化是可能的,而且是必须的;其次结合具体的教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法。例如:当求
时,的值。该题可以采用直接代入法,但是更简易的方法应为先化简再求值,此时原式。
4、函数的思想
辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。华东师大版教材把函数思想已经渗透到初一、二教材的各个内容之中。因此,教学上要有意识、有计划、有目的地培养函数的思想方法。例如:进行求代数式的值的教学时,通过强调解题的第一步“当„„时”的依据,渗透函数的思想方法--字母每取一个值,代数式就有唯一确定的值。如代数式x2-4中,当x=1时,则x2-4=-3;当x=2,则x2-4=0„„通过引导学生对以上问题的讨论,将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生的头脑中就形成了以运动的观点去领会,这就是发展函数思想的重要途径。
我们又该如何进行数学思想方法的教学呢?我认为可着重从以下几个方面入手:
三、数学思想方法的教学实践体会。
1、在知识发生过程中渗透数学思想方法
由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如华东师大版第二章《有理数》,与原来部编教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。
2、在思维教学活动过程中,揭示数学思想方法
数学课堂教学必须充分暴露思维过程,让学生参与教学实践活动,揭示其中隐含的数学思想,才能有效地发展学生的数学思想,提高学生的数学素养,下面以“多边形内角和定理”的课堂教学为例,简要说明。
教学目标:增强运用化归思想处理多边形问题的一般策略;掌握运用类比、归纳、猜想思想指导思维,发现多边形内角和定理的结论;学会用化归思想指导探索论证途径,掌握化归方法;加强数形结合思想的应用意识。
教学过程:(1)创设问题情境,激发探索欲望,蕴涵类比化归思想。教师:三角形和四边形的内角和分别为多少?四边形内角和是如何探求的?(转化为三角形)那么,五边形内角和你会探索求吗?六边形、七边形„„ n 边形内角和又是多少呢?(2)鼓励大胆猜想,指导发现方法,渗透类比、归纳、猜想思想。教师:从四边形内角和的探求方法,能给你什么启发呢?五边形如何化归为三角形?数目是多少?六边形„„ n 边形呢?你能否用列表的方式给出多边形内角和与它们边数、化归为三角形的个数之间的关系?从中你能发现什么规律?猜一猜 n 边形内角和有何结论?类比、归纳、猜想的含义和作用,你能理解和认识吗?(3)暴露思维过程、探索论证方法,揭示化归思想、分类方法。我们如何验证或推断上面猜想的结论呢?既然多边形内角和可化归为三角形来处理,那么化归方法是否唯一的呢?一点与多边形的位置关系怎样?(分类思想指导化归方法的探索)哪一种对获取证明最简洁?(至此,教材中在多边形内任取一点 O,连结点O与多边形的每一个顶点,可得几个三角形的思维过程得以充分自然地暴露)(4)反思探索过程,优化思维方法,激活化归思想。教师:从上面的探索过程中,我们发现化归思想有很大作用,但是,又是什么启发我们用这种思想指导解决问题呢?原来,我们是选择考察几个具体的多边形,如四边形、五边形等,发现特殊情形下的解决方法,再把它运用到一种特殊化思想当中。我们再来考察一下式子: n 边形内角和 =n×180°-360°,你能设计一个几何图形来解释吗?对于 n 边形内角和=(n-1)180°-180°,又能作怎样的几何解释呢?(至此,我们又可探索出另一种思维方法,即”在多边形某一边上任取一点 O,连结点O与多边形的每一个顶点来分割三角形)让学生亲自参加与探索定理的结论及证明过程,大大激发了学生的求知兴趣,同时,他们也体验到“创造发明”的愉悦,数学思想在这一过程中得到了有效的发展。
3、在问题解决过程中强化数学思想方法
在数学教学活动中,常常出现这样的现象:学生在课堂听懂了,但课后解题,特别是遇到新题型便无所适从。究其原因就在于教师在教学中仅仅是就题论题,殊不知授之以“渔”比授之以“鱼”更为重要。因此,在数学问题的探索的教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法。针对这种现象,教师应全面展示知识发生发展过程,并发挥学生的主体作用,充分调动学生参与数学的全过程,让全体学生能在躬行的探索中理解知识,掌握方法,感悟数学思想[2]。
例如:求下图中∠BCA的度数。
方法1:先求出∠BAC=600,后利用三角形内角和即可得∠BCA=1800-600-350=850 方法2:直接利用三角形外角性质,求得∠BCA=1200-350=850 显然上述的问题解决过程中,学生通过比较不同的方法,体会到了数学思想在解题中的重要作用,激发学生的求知兴趣,从而加强了对数学思想的认识。
4、及时总结以逐步内化数学思想方法
数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想做出归纳、概括是十分必要的。概括数学思想方法要纳入教学计划,应有目的、有步骤地引导学生参与数学思想的提炼概括过程,尤其是在章节结束或单元复习中对知识复习的同时,将统摄知识的数学思想方法概括出来,可以加紧学生对数学思想方法的运用意识,也使其对运用数学思想解决问题的具体操作方式有更深刻的了解,有利于活化所学知识,形成独立分析、解决问题的能力。
概括数学思想一般可分两步进行:一是揭示数学思想的内容、规律,即将数学对象共同具有属性或关系抽取出来;二是明确数学思想方法与知识的联系,即将抽取出来的共性推广到同类的全部对象上去,从而实现从个别性认识上升为一般性认识。比如,通过解方程(x-2)2 +(x-2)-2=0,发现也可用换元法来求解。在此基础上推广也可用换元法求解。由此概括出换元法可以将复杂方程转化为简单方程,从而认识到化归思想是对换元法的高度概括,还可进一步认识到数学思想是数学的灵魂,它是对数学知识的高度概括。
由于同一数学知识可表现出不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的知识点里,所以通过课堂小结、单元总结或总复习,甚至是某个概念、定理公式、问题数学都可以在纵横两方面归纳概括出数学思想方法。
四、数学思想方法教学的心理学意义。
美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构。”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理。”“学习结构就是学习事物是怎样相互关联的。”数学思想与方法为数学学科的一般原理的重要组成部分。下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义。
第一,“懂得基本原理使得学科更容易理解”。心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去。学生学习了数学思想、方法就能够更好地理解和掌握数学内容。
第二,有利于记忆。布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生。” 第三,学习基本原理有利于“原理和态度的迁移”。布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识。”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移。”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。
第四,强调结构和原理的学习,“能够缩挟‘高级’知识和‘初级’知识之间的间隙。”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义。而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等。因此,数学思想、方法是联结中学数学与高等数学的一条红线。
诚然,要使学生真正具备了有个性化的数学思想方法,并不是通过几堂课就能达到,但是只要我们在教学中大胆实践,持之以恒,寓数学思想方法于平时的教学中,学生对数学思想方法的认识就一定会日趋成熟。