第一篇:北师版四上数学第七单元正数与负数教案
第七单元
生活中的负数
第 23 课时:
[教学内容] :温度。
90——91页
[教学目地]:
1.了解生活中零下温度的表示方法,并会正确读写。2.会比较两个以下温度的高低。
[教学重点和难点]:会比较两个零下温度的高低。,[教学过程]:
一,创设情景,引入新知。
1,课课前组织学生采取各种方法调查、收集、记录全国一些大城市的气温情况。
2,让学生查看地图找到调查的城市的位置,帮助了解温度与位置的关系。
二,探索温度的读法和表示方法。
1,把学生记录的温度进行简单交流,并抽出2组数据与零度进行比较,从中了解和掌握5℃比零度高,零下2℃比零度还要低2℃的一些知识。2,教师准备一份天气预报图,引导学生观察温度的表示方法。分小组讨论怎样读温度,并读一读,写一写。
三,试一试
组织大家读出温度计上显示的温度,再写出来,增加一些直观的认识。四.练一练。
第一题,比较温度的高低时,引导学生先从零上温度开始,逐步过渡到零下温度的比较。如:2℃
和5 ℃的比较,1℃
和0 ℃的比较,0 ℃ 和 零下2 ℃ 的比较,零下2℃
和零下5℃的比较等。五
小调查。
首先鼓励学生选择某种调查方法获取数据,然后,组织大家讨论从数据中获得了哪些信息,并在地图找出这些信息的对应地理位置,能从地理位置上认识各地气温的特点。
[板书设计]
温度
2℃○5℃
1℃0℃
0 ℃〇─2℃ ―2℃〇―5℃
第二篇:北师版四上数学第七单元正负数教案
[教学内容]:正负数
[教学目的]:1在熟悉的生活情景中,进一步体会负数的意义。
2会用负数表示一些日常生活中的问题。
[教学重·难点]:体会负数的意义,会用负数表示一些日常生活中的问题。[教学过程] 一,收集数据,课前安排学生调查记录相关的数据,如储蓄卡上记录的存、取款数据,海拔高度的记录等,了解生活中的负数,以增加一些感性认识,激起学生探素负数奥秘的兴趣,了解数字的作用。二,认识负数在生活中的作用。引导学生回忆复习温度的知识,通过对气温中的一组数据的比较,讨论。从中抽象出负数的概念。组织学生交流信息。说说这些数据的意义,进一步认识负数在生活中的作用和生活中负数的表示方法。
三,探素正负数的读和写。
1,组织学生读温度记录表。小组讨论归纳正负数的读法。并读出下列各数:
+
5、—
5、+500、—100等
2有了读的基础后,让学生自主探素正负数的写法。同桌练习,一人读。一人写。交换轮流。
。(适当提示正数的“+”可以省略)
四,试一试。
1,通过读题,学生理解了高出海平面的高度用正数表示,从而推出低于海平面的高度和海平面的高度的表示方法。
2,收入用正数表示的话,负数怎样表示,让学生自己得出结论。说一说,写一写,本小组同学家庭每月收支情况。
3,让学生说一说,练一练。你的周围还有那些数可以用正负数来表示。如 电 梯的上升与下降等
五,巩固与练习。
练一练第一题,通过说一说、写一写的对应练习,使学生进一步熟练正负数读写。
练一练第二题,通过填表格记录小明家的收支情况,加深了解生活中的负数。
练一练第三题,此题先让学生找到开始的位置,然后按照题意在图上描出来,回答题。
[板书设计]:
100。
正负数 5、6、9、12、100、等都是正数,或记着+
5、+
6、+
12、+-
2、-
3、-
15、-123都是负数。
5或+5读做正5,-2读作负2 0既不是正数也不是负数。
第三篇:正数与负数 教案
1.1 正数与负数 教案(第1课时)署名
一、教学目标
知识与技能:使学生了解正数与负数是从实际需要中产生的;
过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力
二、教学重点和难点
负数的引入和意义
三、教学过程
创设情景,生活实例引入,观察猜想,合作探究
(一)、从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数? 学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4.87、……
为了表示“没有人”、“没有羊”、……我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.(二)、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进货物50吨,今天运出货物80吨,“运进”和“运出”,其意义是相反的.同学们能举例子吗? 学生回答后,教师提出:怎样区别相反意义的量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量筒明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进纲物62吨,记作+62;运出货物77吨,记作-77吨,教师讲解:什么叫做正数?什么叫做负数.强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号
(三)、运用举例
变式练习
例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7,,-8,12,-;
正数集合:
负数集合:
此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正
数
集
合:{
…},负
数
集
合:{
…}
四、课堂小结
由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“-”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃
五、作业布置
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度
2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3.在下列各数中,哪些是正数?哪些是负数?-16,0,004,+,-,25,8,-3,6,-4,9651,-0,1.4.如果-50元表示支出50元,那么+200元表示什么? 5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位温0.1米记作什?
6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?
7.一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)“记作8米”表明什么?
1.1.2正数和负数
——(第2课时)
一、教学目的
1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。
2、数学思考:体会数学符号与对应的思想。
3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。
二、教学重难点
教学重点:进一步理解正、负数及零表示的量的意义 教学难点:理解负数及零表示的量的意义
三、教学过程习题引入: 1.给出一组数,请学生说说哪些是正数、负数。2.学生举例说明正、负数在实际中的应用。【例1】
1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。
2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)【例2】1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个
月的体重的增长值。2.2001年 商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%.英国减少—3.5%,意大利增长0.2 %,中国增长7.5%,在学生已初步掌握新知识的前提下,由问题1、2提高学生综合解决实际问题的能力2.课堂练习: P5.4 5教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行四.课堂小节这堂课我们学习了那些知识?你能说一说吗?教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。五.作业布置P5 7、8题
正数与负数
正数与负数导学案设计
第四篇:正数与负数教案
第一课时正数与负数
一、教学内容:
正数与负数。
二、教学目标:
1.知识与技能:能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
2.过程与方法:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
3.情感态度与价值观:培养学生积极思考,合作交流的意识和能力。
三、重、难点与关键:
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2.难点:正确理解负数的概念.
3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.
四、教具准备:
投影仪、课件
五、教学过程:
(一)负数的引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,„;为了表示“没有物体”、“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为此产生了分数和小数.
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.
像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,„就是3,2,0.5,„一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号。
(二)加深对数字0的认识
数字0既不是正数,也不是负数,但0是正数与负数的分界数。
0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
(三)用正负数表示具有相反意义的量
把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m。记录账目时,通常用正数表示收入款额,负数表示支出款额。
你能再举一些用正负数表示数量的实际例子吗?
例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除 0外),在正数前放上“-”号,就是负数,•但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.
七、课堂活动。
以小组为单位,说说生活中具有相反意义的量。
八、课时作业设计
(一)填空题。
1.如果向北走5米记作+5,那么向南走10米记作________. 2.如果节约30千瓦•时电记作+30千瓦•时,那么浪费10千瓦•时电记作_____.
3.如果-26.80表示亏损26.80元,那么+100元表示________. 4.如果体重增加1.5千克记作+1.5千克,那么-0.5 千克表示__ ______.
(二)选择题.
5.下列说法正确的是().
A.0是正数
B.0是负数C.0是整数D.0不是自然数 6.有四个数:-5,0,3,-0.3,其中正数的个数是(). A.1
B.2
C. 3
D.4 7.有四个数:-7,5,0,-6.3,下列说法完全正确的是(). A.-7,是负整数
B.5,0,是正数 C.-7,-6.3,是负整数
D.只有-6.3是负分数
(三)解答题.
8.指出下列各数中哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?
0,-2,3,-0.08,-,-4,3.14,77,-103. 9.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,你对此怎样理解?
10.若把公元1997年记作+1997,那么-97表示什么?
第五篇:初一数学 正数与负数教案
正数与负数
【教学目标】
了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数;会用正负数表示生活中常用的具有相反意义的量;培养学生的数学应用意识。
【内容简析】
本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。能正确识别负数、用正负数表示具有相反意义的量是本节的难点。教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。教学中应多结合实例加深对负数的认识。
【流程设计】
一、情景创设
1.引导学生回忆小学学过的数,并回答小学学过的最小的数是谁?是否存在比零小的数?在小学遇到0-
2、3-5这类题会算吗?
2.你看过电视或听过广播中的天气预报吗?(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25°C,10°C,零下10°C,零下30°C。
为书写方便,将测量气温写成25,10,-10,-30,再如中国地形图上的海拔标注数据8848.13,-155之类的数是什么意思?怎样用数学来区分高出警戒水位1米与低于警戒水位1米呢?
二、新知探索
1.教师由以上实例归纳出正数与负数的描述性概念。
像25,10,8848,大于0的数叫正数;像-10,-30,-155这样在正数前面加上“-”(负号)的数叫做负数;0既不是正数也不是负数。
给出板书:
正数——大于0的数
负数——正数前面加“-”号的数(小于0的数)
0——既不是正数,也不是负数
说明:①负数前面的“-”号的读法,“-5”应读作“负5”;
②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;
③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。
小资料:世界各国对负数的认识和接受也有一个过程。如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。直到1831年还有数学家认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x=-2,他认为这个结果是荒唐的,他不懂得x=-2正是说明两年前父亲的岁数将是儿子的两倍。
三、范例共做
例1:所有正数组成正数集合,所有负数组成负数集合。把下列各数中的正数和负数分别填在表示正数与负数集合的圈里:
-11,4.8,+7.3,0,-2.7,-,-8.12,-„„
正数集合负数集合例2:自己任意写出六个正数与六个负数分别填入相应的大括号里:
正数集合{„}
负数集合{„}
注:由于正数和负数都有无数个,在表示正数和负数的集合中常加上省略号。
例3:规定向前走为正,两个学生一组做游戏,如
甲:向前走2步乙:2
甲:向后走3步乙:-3
甲:-4乙:向后走4步
甲:0乙:原地不动
注:通过设计类似的游戏活动使学生加深对负数的认识。
四、巩固练习
1.-10表示支出10元,那么+50表示
如果零上5度记作5°C,那么零下2度记作
如果上升10m记作10m,那么-3m表示 ;
太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米)。
比海平面高50m的地方,它的高度记作海拨 ;
比海平面低30m的地方,它的高度记作海拨 ;
2.下面说法正确的是()
A.正数都带有“+”号
B.不带“+”号的数都是负数
C.小学数学中学过的数都可以看作是正数
D.0既不是正数也不是负数
3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。
4.某物体向右运动为正,那么-2m表示,0表示。
5.一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。
五、小结提高
1.正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。如果把一种意义规定为正,则相反意义的量规定为负。常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;
2.正数是比零大的数,正数前面加“-”号的数叫负数。所有负数小于零,零既不是正数也不是负数。
六、课后思考
1.-a一定是负数吗?
2.在月球表面,“白天”的温度可达127°C,太阳落下后的“月夜”气温竟下降到-183°C,请问在月球上温差是多少度?