第一篇:变频器恒压供水教学演示系统设计
变频器恒压供水教学演示系统设计.txt31岩石下的小草教我们坚强,峭壁上的野百合教我们执著,山顶上的松树教我们拼搏风雨,严寒中的腊梅教我们笑迎冰雪。本文由shinyqb123贡献
pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
第 31 卷第 2 期 2010 年 2 月
通化师范学院学报 JOURNAL OF TONGHUA TEACHERS COLLEGE Vol 31 №2.Feb.2010 变频器恒压供水教学演示系统设计
王立忠 ,王广德 ,刘洪波 ,韩 ,孟昭晖 ,丛
强 琳(吉林师范大学 信息技术学院 ,吉林 四平136000)摘 : 为了锻练学生的职业技能 ,在分析和比较国内外供水自动控制系统的发展现状和特点的基础上 , 结合城市供水的现 要 状 ,设计了一套以变频调速技术为基础的恒压供水控制系统.该系统综合运用继电控制技术、变频调速技术以及自动控制技术 , 实 现了恒压供水的参数整定 ,保证了供水系统维持在最佳运行状况 ,同时培养了学生的系统设计能力和对专业的学习兴趣.关键词 : 恒压供水;变频调速;节能 中图分类号 : T M301.2 文献标志码 : A 文章编号 : 1008002310),男 ,吉林公主岭人 ,硕士 ,吉林师范大学信息技术学院副教授.传统的小区供水方式有恒速泵加压供水、水塔 高位水箱供水、气压罐供水等.这些传统的供水方式 不同程度的存在效率低、可靠性差、自动化程度不高 等缺点 ,难以适应当前人们生活中供水的需要.目前 的供水方式正朝着高效节能、自动可靠方向发展.因 此开发自动的变频调速恒压供水系统 , 越来越受到 人们的重视.为满足供水质量的要求 , 降低能耗 , 实 现全自动、可靠稳定的供水 ,利用变频恒压供水具有 全自动恒压运行、自动工频运行、远程手动控制和现 场手动控制等功能.结合学生职业技能训练 , 在教师指导下学生设 计并安装调试变频恒压供水系统 , 可以锻炼学生的 综合设计能力和工程意识.作为教学演示系统也可 以通过演示效果激发学生对专业知识兴趣 , 了解变 频器的应用方法.系统通过对变频器内置 P I 模块参数的预置 , D 利用远程压力表的水压反馈量 ,构成闭环系统 ,根据 用水量的变化 ,在全流量范围内利用变频泵的连续 调节实现恒压供水.1 变频恒压供水演示系统的构成 [14] 成.系统构成如图 1 所示.变频恒压供水系统能 够实现水泵的软启动 , 进而减小水泵启动时的冲击
系统启动时首先闭合空气开关 , 把转换开关达 到变频位置 ,三相交流电通过开关送到交流接触器 和热继电器加载到变频器上 , 变频器输出驱动变频 电机启动运行 ,把蓄水池的水抽到上水池中 ,在此过 ?23? 1994-2010 China Academic Journal Electronic Publishing House.All rights reserved.http://www.xiexiebang.comki.net 1
All rights
第二篇:基于ABB变频器的恒压供水系统的设计
基于ABB变频器的恒压供水系统的设计
齐亚德·阿西·奥贝德,纳斯里苏莱曼和M.N.哈米顿
博特拉大学工程学院,电气与电子工程部
摘要
变频器恒压供水系统是一个比传统供水方式更加高效,节能的解决方案,相对传统方式能够节能50%以上。根据在特定的速度下,出水口和管道内水压与电机转速和运动频率之间的关系这一性能,可以实现变频调速恒压供水。这里介绍了恒压供水系统中使用ABB的ACS510驱动器和控制器。实际运行表明,所设计的系统,可以在误差允许的范围内,实现对设定的压力进行跟踪。假如一年工作8000小时,该系统可比阀门节流方式降低能耗54.4%。
1.引言
无论是在生产上还是生活上,恒压供水系统被广泛使用。相比传统的水塔和高水箱的方式,新的变频恒压供水供电系统具有设备投资少,系统的稳定性强,自动化程度高的优势。该泵是一个典型的平方转矩类负载,这意味着它的扭矩和速度的平方成正比,和流动速度成正比,因此功率损耗是和速度是成正比的。当使用节流阀方式时,无论阀门开度如何,电机始终为额定转速。假设供水系统是理想态,阀门开度为80%,在这一点上,速度为n1,功率为p。在相同的情况下,当涉及到变频的方式,不仅降低电机额定转速的80%,而保持阀全开能满足供水需求。与这一点上的功率损耗P2与P1具有下列关系,p2n20.8n10.512p1n1n1(1)33从公式(1)可以看出,与传统供水方式相比,阀门的开度是80%,变频控制方式损耗功率只有传统方式的0.512倍。通常情况下,电动机的容量因留有一定的余量而比实际需求更大,也就是说电机不能正常工作在额定状态和速度达不到最高,即使是在用水高峰期。变频恒压供水系统节能潜力巨大。本文所设计的供水系统运行了半年多,相比传统的方式,本系统节能54.4%。目前,形成广泛的变频恒压供水系统由PLC,单片机,其他特殊控制器加逆变器这些额外的控制器不仅增加了成本,而且还系统的故障率。在本文中,我们要设计一个恒压供水系统,并根据实际运行结果证明,舍弃专用控制器只使用逆变器还可以实现稳定的恒压供水,达到同样的节能。
2.恒压原理
2.1、供水系统的特点
供水系统的特点如图1所示,保持阀门打开不变,电机速度改变,反映扬程H和流量Q之间的关系。保持电机转速不变,改变阀门的开度,反映扬程H和流量Q之间的关系。在扬程和流量的变化交汇点,系统同时满足两者,水消耗和水供给达到平衡,从而可以稳定运行。交叉点被称为供水系统的工作点,用水量是根据用户的需要随时间变化的。因此供水系统的任务是准确控制水流,使流量与耗水量动态平衡,以确保系统稳定运行。
图1 供水系统工作点特性,H是指供水系统的扬程,Q是系统的流量。2.2、变频供水系统的原理
从上一节中,供水系统稳定运行压力不变可以实现对供水流量的精确控制。当阀门开度不变,改变电机的转速可以改变流量。电机转速n与频率f的关系,其中p是极对数,s为转差率。公式(2)n(2)60f1sp
根据改变电机的电源频率变化的速度,然后改变供水流量,这是变频供水系统的原则。
3.变频恒压供水系统的设计
3.1、耗水量的计算和分析
居住区用水量主要包括生活,消防用水,绿化用水和其他不确定水等几部分组成。生活用水量是最重要的用水需求分析依据,因为生活用水占总用水量的比例最高。根据建筑学标准供水流量的计算方法——公式(3),作为流量最高时的水流量。
KhQd3QhmhT(3)
Qh是在一个小时内,水的最大消耗量,它的单位是立方米/小时。Qd是一天的水流量,假设住宅区有600户居民,平均每户3.5个人,人口总数为2100个人。根据城市住宅标准:在日常生活中每人不应该少于230升的供水量,在这个系统里,我们假设每人300升,照公式(3)所示,Qd是630立方米。Kh是小时变化系数,这意味着一天中最大小时用水量比例高于平均一小时的用水量,在我们的城市的Kh可以选择为2.5。T是在一天中的水的使用时间,选择为20小时。然后可以计算出Qh值是78.75立方米/小时。居住最高的12层,根据每一层3.5米高,则扬程为48米的水泵满足要求。泵和电机的效率和系统的免税额的综合考虑,选择三个45KW泵能满足供水需求。3.2、系统结构
变频调速恒压供水系统的原理如图2所示。系统由控制器,执行器和检测环节组成,形成一个闭环控制系统。变频器作为整个系统的控制核心,根据一个给定的压力和泵速变化频率及泵转速之间的偏差,实现精确的压力控制。变频调速恒压供水系统的主电路如图3所示。图2.变频调速恒压供水系统示意图。它是由逆变器,水泵电机和压力表组成的闭环控制系统。
图3 恒压供水系统ACS510主电路是系统的控制核心,它的输出是直接到三台电机,根据实际压力反馈决定应该是启动电机还是启动变频电机。
根据变频器的输出第一个泵变频启动,当水压不足,变频泵改工频运行,变频启动第二个泵,如果水压压仍不足,第二台泵工频运行,变频启动第三泵。通过调整到泵的数量和调整水泵电动机速度,实现恒压供水。该系统不使用单独的控制器,但通过变频器内置PID调节功能,所以在硬件配置,根据住宅区的实际用水需求,系统由一个逆变器,三个45KW水泵电机,一个远程压力传感器,6个交流接触器,空气断路器和中间继电器和指示灯等辅助设备组成。选择ABB公司的ACS510,ACS510-01-088A-4系列标准变频器,系统I / O接线板如图4所示。
Fig.4变频器I/O接线图。该系统分为手动运行方式和自动运行方式,当系统手动运行,AI1是电机的给定速度,AI2压力传感器反馈的实际压力值,它是变频器输出频率的重要依据。
4.系统运行测试
4.1、出水口压力
系统已投入运行超过半年,现在仍然运行稳定,该恒压供水系统能够满足要求。图5所示为站点观察到一天不同时间出水口压力的记录曲线。从图5可知,根据实际需求,不断改变该系统的设定值,系统反馈值成功地实现了对设定压力的跟踪。为了保护电机,减少瞬间电流冲击,当电机加速和减速。变频器参数的上升和下降时间设置长为60秒。由于水流量变化的时刻和压力值波动两个原因,压力设定值和实际有一些偏差,但偏差在可接受的范围内。
图5.实时压力曲线,X轴表示一天的运行时间,Y轴表示实际的反馈和设定压力
值,他们都满足恒压供水。
4.2、节能效果
系统运行半年多,约50%的时间系统工作在80%的额定转速下,30%的时间在70%额定转速下工作,20%时间在60%额定转速下工作。假设系统全年8000工作小时,用单向阀控制消耗电力359兆瓦时,而使用频率控制系统消耗电力为164兆瓦时,节约能源54.4%。根据发出1兆瓦时电力二氧化碳排放量为0.5吨计算,变频恒压控制系统每年可减少二氧化碳排放量97吨。
5.结论
系统投入使用,已超过六个月,仍能稳定运行。并能满足一个住宅小区的水供。通过使用变频调速控制之前和之后的功耗比较,所设计的系统节能效果明显,是一种有效和可行的恒压供水计划。这种设计节省了目前广泛使用的PLC,以及其他特殊的控制器,但需使用内置PID频率调整功能的变频器,变频器成为控制系统的控制器和驱动器,由于不使用PLC或其他特殊的控制器,使系统成本降低显着,操作更简单,更易于维护和减少系统的故障。
第三篇:基于PLC与变频器的恒压供水系统
基于PLC与变频器的恒压供水系统
摘要:阐述了恒压供水的构成框图、工作原理及软件构成,侧重于给出恒压供水的实现思路。
关键词:PLC 变频器 恒压供水
中图分类号:TM921.51 文献标识码:A 文章编号:1007-9416(2014)04-0018-01
PLC作为新一代工业自动化控制装置,具有可靠性高、编程简单、通用性好、维护简单等优点,被广泛应用于冶金、化工、机械、电子、电力等几乎所有的工业领域;触摸屏技术的发展,也为人机对话提供了良好的平台。
我公司大部分设备需用循环冷却水,但又受生产淡旺季、产品结构变化等因素的影响,经常出现冷却水供应、使用的不平衡,这主要表现在冷却水管网水压上,用水量大时,水压偏低、流量偏小;用水量小时,水压则偏高、流量偏大。将其控制系统进行改造,采用PLC、变频器、触摸屏等控制后,不但解决了上述水压不稳的问题,还有操作界面友好、节能降耗、降低维护成本等优点。构成框图
该系统由触摸屏、PLC、变频器、压力变送器等组成,其构成框图如图1所示。
PLC:采用三菱FX1N-24MR,且选用配套的FX0N-3A模块,采集冷却水供水总管上的水压信号,并将其转换为4~20mA的电信号给PLC。变频器:采用三菱FR-A540系列。触摸屏:采用三菱F930GOT,显示设定水压、实际水压、水泵的运行时间、转速、报警信号等。工作原理
公司冷却水供应由2个泵组成,安装在公司冷却水供水总管上的压力变送器,采集水压信号,并将其转变为电信号给PLC,PLC将该信号与触摸屏上的设定值进行比较并计算,并将结果输出给变频器,控制变频器的频率值,从而控制水泵电机的转速,进而控制冷却水的压力。如用水量增大,1#泵转速达到额定转速也无法满足工艺要求时,系统自动将1#泵切换到工频电网上,同时启动、调节2#泵,直到采集到的水压稳定在水压设定值。如用水量减小,2#泵运行到下限频率时,系统自动将1#泵停运,2#泵继续通过变频器调节水压。此时,如用水量又增大,2#泵转速达到额定转速也无法满足工艺要求时,系统自动将2#泵切换到工频电网上,同时启动、调节1#泵,直到采集到的水压稳定在水压设定值。如此循环,实现自动恒压供水。系统软件
系统的软件包括变频器参数设定和PLC程序设计。
3.1 变频器参数设定
变频器变频运行,当水泵电机转速过低时,容易形成“空转”现象,所以将其变频下限设为20Hz;水泵电机可高速运行至额定功率(50Hz),所以将其变频上限设定为50Hz。除此之外,变频器还自带欠压保护、过压保护、过载保护等功能,当电网电压异常或水泵出现异常时可及时发出警报。
3.2 PLC程序设计
PLC的程序设计包括手动控制和自动控制的程序设计,手动部分是通过按钮控制水泵电机在工频下的运行与停止,供调试、维修用;自动控制程序采用PID调节指令,在此不作详细论述。系统优点
(1)冷却水压力可根据产品工艺要求在可设范围内任意设定,并将当前实际压力与设定压力显示在触摸屏上。(2)水泵电机启动由变频器控制,避免了直接启动的大电流给供电电网的冲击,既避免了对周边设备的影响,也能延长水泵电机的有效使用寿命。(3)工作泵与备用泵轮换运行,保证各泵有基本相同的运行时间,避免了因备用泵长期不用而发生的锈蚀现象。(4)有效降低水泵电机的运行能耗,节电率至少可达30%。结语
该控制系统具有功能强大、性能稳定、运行可靠等优点,硬件品牌可根据个人实际情况合理选用,稍作改进,可广泛用于生活供水、消防供水、中央空调系统、集中供热等供水系统。
参考文献
[1]王红梅,方贵盛.基于PLC与变频器的恒压供水节能技术研究[J].浙江水利水电专科学校学报,2009,(12).[2]韩卫杰.PLC和变频器在城市小区恒压供水中的应用[J].科学之友,2008,(10).[3]杜韦辰,张世俊.基于PLC与触摸屏的恒压供水系统的设计[J].兰州石化职业技术学院学报,2010,(6).
第四篇:PLC与变频器控制恒压供水系统设计方案
PLC与变频器控制恒压供水系统设计方案
随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。本文介绍的变频控制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。
1、系统介绍
变频恒压供水系统原理,它主要是由PLC、变频器、PID调节器、TC时间控制器、压力传感器、液位传感器、动力控制线路以及3台水泵等组成。用户通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。
通过安装在出水管网上的压力传感器,把出口压力信号送入PID调节器,经运算与给定压力参数进行比较,得出一调节参数,送给变频器,由变频器控制水泵的转速,调节系统供水量,使供水系统管网中的压力保持在给定压力上;当用水量超过一台泵的供水量时,通过PLC控制器加泵。根据用水量的大小由PLC控制工作泵数量的增减及变频器对水泵的调速,实现恒压供水。当供水负载变化时,输入电
机的电压和频率也随之变化,这样就构成了以设定压力为基准的闭环控制系统。
同时系统配备的时间控制器和PID控制器,使其具有定时换泵运行功能(即钟控功能,由时间控制器实现)和双工作压力设定功能(PID控制器和时间控制器实现)。此外,系统还设有多种保护功能,尤其是硬件/软件备用水泵功能,充分保证了水泵的及时维修和系统的正常供水。、工作原理
2.1 运行方式该系统有手动和自动两种运行方式: ⑴.手动运行
按下按钮启动或停止水泵,可根据需要分别控制1#-3#泵的启停。该方式主要供检修及变频器故障时用。⑵.自动运行
合上自动开关后,1#泵电机通电,变频器输出频率从0Hz上升,同时PID调节器接收到自压力传感器的标准信号,经运算与给定压力参数进行比较,将调节参数送给变频器,如压力不够,则频率上升到50Hz,1#泵由变频切换为工频,启2#变频,变频器逐渐上升频率至给定值,加泵依次类推;如用水量减小,从先启的泵开始减,同时根据PID调节器给的调节参数使系统平稳运行。
若有电源瞬时停电的情况,则系统停机;待电源恢复正常后,系统自动恢复运行,然后按自动运行方式启动1#泵变频,直至在给定水压值上稳定运行。
变频自动功能是该系统最基本的功能,系统自动完成对多台泵软起动、停止、循环变频的全部操作过程。
3、电路图
NL1L2L3QSFU1FU2FU3U1V1W1U2V2W2U3V3W3QSKM0U1V1W19变5频器34U2V2W2KM2KM1KM3KM5PLC传感器KM4KM6FR1FR2FR3M13~M23~M33~
4、制电路图
5、原理图
6、控制流程图
7、结语
在供水系统中采用变频调速运行方式,系统可根据实际设定水压自动调节水泵电机的转速或加减泵,使供水系统管网中的压力保持在给定值,以求最大限度的节能、节水、节地、节资,并使系统处于可靠运行的状态,实现恒压供水;减泵时采用“先启先停”的切换方式,相对于“先启后停”方式,更能确保各泵使用平均以延长设备的使用寿命;同时针对所用3台电泵使用多年、需要定期进行检修的实际情况,增加了硬件/软件备用功能,有效延长了设备的使用寿命;压力闭环控制,系统用水量任何变化均能使供水管网的服务压力保持给定,大大提高了供水品质;变频器故障后仍能保障不间断供水,同时实现故障消除后自启动,具有一定的先进性。目前该系统已投入使用,效果明显。
第五篇:关于PLC与变频器恒压供水控制系统的论文
基于PLC控制的变频器恒压供水系统
论 文
目 录
一、绪论............................................2
二、变频器应用于恒压供水控制的目的..................2
三、供水系统组成....................................3 3.1、系统原理图..................................3 3.2、系统原理描述................................4
四、变频恒压供水电气原理............................4 4.1、主电路电气原理图............................5 4.2、控制电路电气原理图..........................6 4.3、手动工频控制方式............................6 4.4、自动变频控制方式............................7
五、总结............................................7
六、参考文献书目....................................9
一、绪论
基于PLC控制的变频调速恒压控制是一项综合现代电气技术和计算机控制的先进技术,广泛应用于水泵节能和恒压供水领域。利用PLC控制的变频调速技术用于水泵控制系统,它利用PLC、传感器、电气控制设备、变频器以及水泵组成闭环控制系统。使供水管网压力保持恒定。具有自动化程度高、调速性能好、节能效果显著、运行工艺安全可靠等优点。在大力提倡节约能源的今天,推广使用这种集现代先进电力电子技术和计算机技术于一体的高科技节能装置,对于提高劳动生产率、降低能耗具有重大的现实意义。可以说变频调速技术是一项利国利民、有广泛应用前景的高新技术。它取代了传统的水塔或水泵直接加压供水方式,提高了供水质量。节能效果明显。依靠现代化技术手段对生产过程进行控制和管理,提高设备运行效率和可靠性,节省宝贵的水、电资源,是技术发展的必然趋势。交流电机变频调速技术是一项业已广泛应用的节能技术。由于电子技术的飞速发展,PLC、变频器的性能有了极大提高,它可以实现控制设备软启软停以及内置的的PID优化算法。不仅可以降低设备故障率,还可以大幅减少电耗,省去了对可编程控制器存储容量的要求和对PID算法的编程。降低了设备成本,提高了生产效率,可节省安装调试时间确保系统安全、稳定、长周期运行。
二、变频器应用于恒压供水控制的目的
为了提高大范围变负荷恒压供水的控制精度和可靠性。基于PLC控制的变频器恒压供水系统:通过供水管道上的远传压力表,输出0-10V模拟量信号送入变频器,来自动调节变频器的输出频率,从而改变水泵的转速,采用多台水泵分级控制,轮流变频启动的策略,保持供水管网的压力恒定。代替传统供水方式,达到供水稳定,节能降 耗的目的。
三、供水系统组成 3.1系统原理图
3.2系统原理描述
该系统由三台水泵、一台变频器、一台小型PLC、一块远传压力 表(压力传感器)一块浮球液位检测器组成。压力传感器把用户管网压力转换为0-10V标准信号送进变频器模拟量输入端,变频器通过内部自带的采样程序及PID闭环程序与用户设定压力构成闭环,对水泵电机进行变频调速,当变频器上升至工频运转时,变频器运算后转换 为数字量输出信号送给PLC,由PLC进行协调控制调节各台水泵电 机之间的切换运转,达到恒压供水的目的。
该系统有各个泵的运行时间循环功能,通过PLC的数据区保 持可以断电记忆。在单个泵长时间运行时依次对各个泵进行定时变频运转调换,保证各个泵之间的磨损平衡。每次起动时先起动1#泵,变频器根据压力的升高逐渐抬高频率输出。当用水量超过一台泵的供 水能力时,PLC通过程序实现泵的延时上行切换,切换至2#泵进行变频输出,1#泵进行工频输出。随着压力的提高依次切换至3#泵变频输出,2#和1#泵工频输出,依次循环。当压力降低时时,PLC通过程序实现泵的延时下行切换,原则为当前正在运行的泵运行时间最多的先撤出。直到满足设定压力为止。追求的最终目标为压力恒定。当供水负载变化时,变频器的输出电压与频率变化自动调节泵的 电机转速,实现恒压供水。在运行过程中,始终有液位检测传感器进行液位检测,若检测到液位不足,立即停止系统运转,防止水泵空转。
系统还可通过PLC的内部定时器进行自动定时供水,用户在PLC程序中提前设定每天最多段(段数也可设定)定时供水,比如早上6 :00到9:00,中午11:00到2:00等。系统也可外加显示设备,动态显示各种参数,如设定压力,运行压力,水位高度,运行方式,各个泵的运行时间累计,运行状态,故障信息等等。
四、变频恒压供水电气原理
4.1、主电路电气原理图
4.2、控制电路电气原理图
4.3、手动工频控制方式
当转换开关打到手动位置时,此时为工频运行,按下1#水泵手动启动按钮,控制器通过编写的PLC程序让接触器1KM1闭合,其余的接触器断开,1#水泵电机将工频运行,按下停止按钮,水泵电机将停止运行。需要2#、3#水泵运行,依次按下2#、3#时,相对应的 6 水泵电机将工频运行。该控制方式一般用于当变频器出现问题时使用。
4.4、自动变频控制方式
当转换开关打到自动位置时,此时将投入自动变频控制方式,控制器通过编写的PLC程序使接触器KM和1KM闭合,其余的接触器断开。变频器根据远传压力表的反馈信号,自动调节输出频率,从而改变水泵的转速,达到恒压供水的目的,当压力增大时,将减小输出频率,使电机转速降低,减小供水量,当压力减小时,将增大输出频率,使电机转速增高,增大供水量。当远传压力表传来的模拟压力信号持续增高时,随着变频器输出频率的不断提高,当增加到工频状态下时,变频器多功能输出端子MO1将输出一个到达设定频率信号给中间继电器KA2的线圈,使接着PLC输入端子的KA2的常开触点闭合。PLC接收信号后,根据编好的程序,使变频器脱开第一个泵,对下一个泵进行变频控制。若压力持续增大则依次循环。反之则亦是由变频器测定频率降至0时,通过多功能输出端MO1将输出一个到达设定频率信号给中间继电器KA3的线圈,使接着PLC输入端子的KA3的常开触点闭合。PLC接收信号后,根据编好的程序,控制依次减少泵的工频使用数量,以满足系统压力需求。
注:水泵不论是手动控制还是自动控制,当水池无水时,液位下限开关将动作,PLC接收动作信号后,按程序执行将使电机停止运行,不至于空转。
五、总结
随着科学的发展,当今的变频器多是采用全新的空间矢量技术和 7 特有的软件死区补偿技术,结合诸多先进的生产制造工艺推出的高性能通用变频器。它具有优良的速度控制和转矩控制特性,完整的保护功能以及灵活的编程能力和较高的可靠性
一般都内置PID调节器,PID调节控制对象的传感器等检测控制量(反馈量)由模拟输入通道给定,目标值(温度、压力、流量等)由数字量设定最大值(0—9999)给定。由于变频器内部自带的PID调节器采用了优化算法,所以使目标量的调节十分平滑、稳定。同时,为了保证反馈信号值的准确、不失真,可对该信号设置滤波系数,使系统的调试非常简单、方便。由于PID运算在变频器内部,这就省去了对可编程控制器存储容量的要求和对PID算法的编程,PLC仅采用一个开关量输入/输出的即可,而且PID参数的在线调试非常容易,这不仅降低了生产成本,而且大大提高了生产效率。所以采用带有内置PID功能的变频器应用于恒压供水,降低了设备成本,提高了生产效率,可节省安装调试时间。
随着我国供水行业的发展,生产规模的不断扩大,人们生活水平的日益提高,高层楼宇的兴建越来越多,楼宇恒压供水工程具有很大的发展空间。在设计过程中,我通过查阅大量有关资料,与同行交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个论文写作过程中也提高了我的专业工作能力,树立了对自己工作能力的信心,使我充分体会到了在创造过程中的探索的艰难和成功的喜悦。相信会对今后的学习工作生活有非常重要的影响。
六、参考文献书目
《SA系列变频器操作手册》
上海复旦国家大学科技园 《MASTER-K120S系列PLC使用手册》 赵明 许缪 主编 《电气控制与PLC》 李振安 主编 《实用电气工程师手册》
许立莘
主编