七年级上册《3.3立方根》教案 浙教版

时间:2019-05-12 18:34:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级上册《3.3立方根》教案 浙教版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级上册《3.3立方根》教案 浙教版》。

第一篇:七年级上册《3.3立方根》教案 浙教版

浙江省温州市平阳县鳌江镇第三中学七年级上册《3.3立方根》教案 浙教版

● 教材与学生的认知起点分析

“立方根”是浙教版七年级上册第三章“实数”中的第三小节,它是在学生知道了无理数、算术平方根、平方根、开平方运算的概念基础上学习的。教材从实际问题引入立方根的概念,说明学习数的立方根的意义。通过具体数的计算,让学生体会,一个数的立方根的唯一性。虽然这一节在实数一节之后,但仍起着加深对实数的认识的作用。在实数范围内进行开立方的运算,无论从认知的角度,还是从表述的角度,都较为方便。● 教学目标

知识与技能:了解立方根的概念,会用根号表示一个数的立方根,并能用立方根运算求某些数的立方根

教学思考:创设问题情境,学生进一步发展对数学知识的抽象概括力。解决问题:通过学生的积极参与培养学生独立思考的能力,提高数学

表达和运算能力。

情感态度与价值观:在参与数学学习活动中,不断培养合作交流的良好习惯。● 教学重点

本节重点是立方根的意义、性质。● 教学难点

本节难点是立方根的求法,立方根与平方根的联系及区别。● 教学过程

一、创设情境

电脑显示一个魔方 师:你们喜欢玩魔方吗?这是由8个同样大小的单位立方体组成的魔方,这8个小立方体可以重新排列,3组成魔方表面的各种不同的美丽图案。现在要做一个体积为8cm的立方体魔方,它的棱要取多少长?你是怎么知道的? 生:思考后回答。

设计意图:从熟悉的事物引入立方根概念,说明学习立方根的意义。

33师:体积为27 cm和体积为1000 cm的立方体的棱又是要取多少长呢? 生:思考、讨论后回答。电脑演示:

38 327 31000

设计意图:为概念引入作准备并渗透从个别到一般的规律。

二、讲授新课

师:让学生在平方根基础上试述立方根概念。

设计意图:渗透学生的类比思想和语言表达能力。

师(总结):一般地,一个数x的立方等于a,即xa,那么这个数x就叫做a的立方根(也叫做a的三次方根),记做3a。如:28,则2叫做8的立方根,即382;28,则2是

3338的立方根,即382。其中a是被开方数,3是根指数,符号3读做“三次根号”。

师:针对前面几个例子,由学生说出27和1000的立方根,并分别指明它们的被开方数和根指数。生:举例再说明。

设计意图:巩固学生对概念的理解,并让学生了解开立方与立方互为逆运算。

三、练一练

求下列各数的立方根:

(1)27;(2)27;(3)31;(4)0.064;(5)0 27解:(1)因为327,所以27的立方根是3,即3273.(2)因为327,所以27的立方根是3,即3273.3111111(3)因为,所以的立方根是,即3.273273273(4)因为0.40.064,所以0.064的立方根是0.4,即30.0640.4.33(5)因为00,所以0的立方根是0,即300.生:总结解题方法和在过程中需要注意的问题。

师:强调(1)求立方根用到立方运算。(2)负数的立方根注意符号。

设计意图:此练习着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟悉以后可以简化写法。

四、议一议

电脑出示:

(1)一个正数有几个立方根?是正是负?为什么?

(2)是否任何负数都有立方根?如有,有几个?是正是负?

(3)0的立方根是什么? 生:小组讨论交流。

师:引导各小组进行举例、猜想。可提示学生联系上面的“练一练”思考这些问题。师:(板书结论)每个数a都只有一个立方根,一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。任意数a的立方根可表示为“3a”,读做“三次根号a” 3设计意图:通过具体的举例计算,让学生感受到一个数的立方根的唯一性,在小组合作交流中发展自主探索知识的能力。

五、做一做

计算:(1)327 ;(2)36416 8273 82解:(1)3(2)36416440

设计意图:为了进一步提高学生的计算能力,此题目相对复杂点,题(2)中同时出现立方根和平方根,突出了立方根和平方根的对比,以利于弄清两者的区别和联系。)

六、挑战自我

问题:3a表示a的立方根,那么

a等于什么?

333a3呢?

分析:应抓住立方根的定义去分析,如果x3a,那么x就是a的立方根,即x3a,所以x3a33a。同样,根据定义,a3是a的三次方,所以a3的立方根就是a,即3a3a。

设计意图:深化所学内容,发展学生抽象思维能力和归纳总结能力。

七、体验一刻

分别求下列各式的值:

(1)3125;(2)30.008;(3)31;(4)649

33评析:鼓励学生利用“想一想”中公式:

a33a,3a3a直接进行计算。

设计意图:通过练习,使学生熟悉并掌握这两条公式,提高解决问题的能力。

八、开心乐园——抢答竞赛

规则:全班分成四大组,每组有个记分人,那组人先举手先发言,并要说明问题的原因,答对加1分,答错减一分,最终获胜一组给予鼓励。

电脑陆续放题: 1.

判断正误:(1)82的立方根是 273(2)负数不能开立方

(3)4的平方根是2(4)8的立方根是

2(5)负数有一个平方根(6)0的立方根是0 2. 口算:(1)1的立方根是___

(2)1的立方根是___

(3)1的立方根是___ 27(4)3125___

(5)364___ 270.216(6)33___

设计意图:培养学生团结协作精神及竞争意识,同时巩固了本节的教学内容。

九、归纳小结

先由学生小结,再有教师归纳: 1.

符号3a中的根指数“3”不能省略。

2. 对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根。3.平方根和立方根的区别:(1)正数有两个平方根,但只有一个立方根;(2)负数没有平方根,但却有一个立方根。4. 灵活运用公式:(1)a33a;(2)3a3a;(3)3a3a 5.

立方与开立方也互为逆运算。我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个

数的立方根。

十、布置作业 A组和B组。

第二篇:3.3立方根教案

[教学设计]

3.3 立方根

● 教材与学生的认知起点分析

“立方根”是浙教版七年级上册第三章“实数”中的第三小节,它是在学生知道了无理数、算术平方根、平方根、开平方运算的概念基础上学习的。教材从实际问题引入立方根的概念,说明学习数的立方根的意义。通过具体数的计算,让学生体会,一个数的立方根的唯一性。虽然这一节在实数一节之后,但仍起着加深对实数的认识的作用。在实数范围内进行开立方的运算,无论从认知的角度,还是从表述的角度,都较为方便。● 教学目标

知识与技能:了解立方根的概念,会用根号表示一个数的立方根,并能用立方根运算求某些数的立方根

教学思考:创设问题情境,学生进一步发展对数学知识的抽象概括力。解决问题:通过学生的积极参与培养学生独立思考的能力,提高数学

表达和运算能力。

情感态度与价值观:在参与数学学习活动中,不断培养合作交流的良好习惯。

● 教学重点

本节重点是立方根的意义、性质。● 教学难点

本节难点是立方根的求法,立方根与平方根的联系及区别。● 教学过程

一、创设情境

电脑显示一个魔方

师:你们喜欢玩魔方吗?这是由8个同样大小的单位立方体组成的魔方,这8个小立方体可以重新排列,组成魔方表面的各种不同的美丽图案。现在要做一个体积为8cm3的立方体魔方,它的棱要取多少长?你是怎么知道的? 生:思考后回答。

设计意图:从熟悉的事物引入立方根概念,说明学习立方根的意义。

师:体积为27 cm3和体积为1000 cm3的立方体的棱又是要取多少长呢? 生:思考、讨论后回答。电脑演示:

38 27 1000 33设计意图:为概念引入作准备并渗透从个别到一般的规律。

二、讲授新课

师:让学生在平方根基础上试述立方根概念。

设计意图:渗透学生的类比思想和语言表达能力。

师(总结):一般地,一个数x的立方等于a,即x3a,那么这个数x就叫做a的立方根(也叫做a的三次方根),记做3a。如:238,则2叫做8的立方根,即382;28,则2是8的立

3方根,即382。其中a是被开方数,3是根指数,符号3读做“三次根号”。

师:针对前面几个例子,由学生说出27和1000的立方根,并分别指明它们的被开方数和根指数。生:举例再说明。

设计意图:巩固学生对概念的理解,并让学生了解开立方与立方互为逆运算。

三、练一练

求下列各数的立方根:

(1)27;(2)27;(3)

127;(4)0.064;(5)0 解:(1)因为3327,所以27的立方根是3,即3273.(2)因为327,所以27的立方根是3,即3273.311(3)因为27333,所以

127的立方根是,即33112713.(4)因为0.40.064,所以0.064的立方根是0.4,即30.0640.4.(5)因为030,所以0的立方根是0,即300.生:总结解题方法和在过程中需要注意的问题。

师:强调(1)求立方根用到立方运算。(2)负数的立方根注意符号。设计意图:此练习着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟悉以后可以简化写法。

四、议一议 电脑出示:

(1)一个正数有几个立方根?是正是负?为什么?

(2)是否任何负数都有立方根?如有,有几个?是正是负?

(3)0的立方根是什么? 生:小组讨论交流。

师:引导各小组进行举例、猜想。可提示学生联系上面的“练一练”思考这些问题。师:(板书结论)每个数a都只有一个立方根,一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。任意数a的立方根可表示为“3a”,读做“三次根号a”

设计意图:通过具体的举例计算,让学生感受到一个数的立方根的唯一性,在小组合作交流中发展自主探索知识的能力。

五、做一做

计算:(1)3278278 ;(2)36416

32解:(1)3

(2)36416440

设计意图:为了进一步提高学生的计算能力,此题目相对复杂点,题(2)中同时出现立方根和平方根,突出了立方根和平方根的对比,以利于弄清两者的区别和联系。)

六、挑战自我

问题:3a表示a的立方根,那么3a等于什么?3a3呢?

3分析:应抓住立方根的定义去分析,如果x3方根,即x3a,那么x就是a的立a,所以x3a33a。同样,根据定义,a3是a的三次方,所以a3的立方根就是a,即3a3a。

设计意图:深化所学内容,发展学生抽象思维能力和归纳总结能力。

七、体验一刻 分别求下列各式的值:

(1)3125;(2)30.008;(3)3164;(4)39

33评析:鼓励学生利用“想一想”中公式:3aa,3a3a直接进行计算。

设计意图:通过练习,使学生熟悉并掌握这两条公式,提高解决问题的能力。

八、开心乐园——抢答竞赛

规则:全班分成四大组,每组有个记分人,那组人先举手先发言,并要说明问题的原因,答对加1分,答错减一分,最终获胜一组给予鼓励。

电脑陆续放题: 1. 判断正误:(1)827的立方根是23

(2)负数不能开立方

(3)4的平方根是2(4)8的立方根是

2(5)负数有一个平方根

(6)0的立方根是0 2. 口算:(1)1的立方根是___

(2)1的立方根是___

(3)127的立方根是___

(4)3125___

(5)36427___

(6)30.2163___

设计意图:培养学生团结协作精神及竞争意识,同时巩固了本节的教学内容。

九、归纳小结

先由学生小结,再有教师归纳: 1. 符号3a中的根指数“3”不能省略。2.对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根。

3.平方根和立方根的区别:(1)正数有两个平方根,但只有一个立方根;

(2)负数没有平方根,但却有一个立方根。4.灵活运用公式:(1)3aa;(2)3a3a;(3)3a3a

35. 立方与开立方也互为逆运算。我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根。

十、布置作业

教材78页A组和B组。

第三篇:2014年《3.3立方根》教案_浙教版

七年级上册《3.3立方根》

● 教材与学生的认知起点分析

“立方根”是浙教版七年级上册第三章“实数”中的第三小节,它是在学生知道了无理数、算术平方根、平方根、开平方运算的概念基础上学习的。教材从实际问题引入立方根的概念,说明学习数的立方根的意义。通过具体数的计算,让学生体会,一个数的立方根的唯一性。虽然这一节在实数一节之后,但仍起着加深对实数的认识的作用。在实数范围内进行开立方的运算,无论从认知的角度,还是从表述的角度,都较为方便。● 教学目标

知识与技能:了解立方根的概念,会用根号表示一个数的立方根,并能用立方根运算求某些数的立方根

教学思考:创设问题情境,学生进一步发展对数学知识的抽象概括力。

解决问题:通过学生的积极参与培养学生独立思考的能力,提高数学表达和运算能力。情感态度与价值观:在参与数学学习活动中,不断培养合作交流的良好习惯。● 教学重点

本节重点是立方根的概念和开立方运算。● 教学难点

本节难点是涉及平方和立方的混合运算。● 教学过程

一、创设情境

传说很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,于是大家一起到神庙里去向神祈求.神说“我之所以不给你们降水,是因为你们给我做的这个正方体的祭坛太小,如果你们做一个容积为8立方米的祭坛,我就会给你们降下雨水.”

同学们,你知道容积为8立方米的祭坛,它的棱长应该是多少吗?如何解答这一问题呢?今天,我们就一起来学习——立方根。生:思考后回答。

设计意图:从熟悉的事物引入立方根概念,说明学习立方根的意义。

33师:体积为27 cm和体积为1000 cm的立方体的棱又是要取多少长呢? 生:思考、讨论后回答。电脑演示:

38 327 31000

设计意图:为概念引入作准备并渗透从个别到一般的规律。

二、讲授新课

师:让学生在平方根基础上试述立方根概念。

设计意图:渗透学生的类比思想和语言表达能力。

师(总结):一般地,一个数x的立方等于a,即xa,那么这个数x就叫做a的立方根(也叫做a的三次方根),记做3a。如:28,则2叫做8的立方根,即382;28,则2是

3338的立方根,即382。其中a是被开方数,3是根指数,符号3

读做“三次根号”。

师:针对前面几个例子,由学生说出27和1000的立方根,并分别指明它们的被开方数和根指数。生:举例再说明。

设计意图:巩固学生对概念的理解,并让学生了解开立方与立方互为逆运算。

三、练一练

求下列各数的立方根:

(1)27;(2)27;(3)31;(4)0.064;(5)0 27解:(1)因为327,所以27的立方根是3,即3273.(2)因为327,所以27的立方根是3,即3273.3111111(3)因为,所以的立方根是,即3.273273327(4)因为0.40.064,所以0.064的立方根是0.4,即30.0640.4.33(5)因为00,所以0的立方根是0,即300.生:总结解题方法和在过程中需要注意的问题。

师:强调(1)求立方根用到立方运算。(2)负数的立方根注意符号。

设计意图:此练习着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟悉以后可以简化写法。

四、议一议

电脑出示:

(1)一个正数有几个立方根?是正是负?为什么?

(2)是否任何负数都有立方根?如有,有几个?是正是负?

(3)0的立方根是什么? 生:小组讨论交流。

师:引导各小组进行举例、猜想。可提示学生联系上面的“练一练”思考这些问题。师:(板书结论)每个数a都只有一个立方根,一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。任意数a的立方根可表示为“3a”,读做“三次根号a” 3设计意图:通过具体的举例计算,让学生感受到一个数的立方根的唯一性,在小组合作交流中发展自主探索知识的能力。

五、做一做

计算:(1)327 ;(2)36416 8273 82解:(1)3(2)36416440

设计意图:为了进一步提高学生的计算能力,此题目相对复杂点,题(2)中同时出现立方根和平方根,突出了立方根和平方根的对比,以利于弄清两者的区别和联系。)

六、挑战自我

问题:3a表示a的立方根,那么

a等于什么?

333a3呢?

分析:应抓住立方根的定义去分析,如果x3a,那么x就是a的立方根,即x3a,所以x3a33a。同样,根据定义,a3是a的三次方,所以a3的立方根就是a,即3a3a。

设计意图:深化所学内容,发展学生抽象思维能力和归纳总结能力。

七、体验一刻

分别求下列各式的值:

(1)3125;(2)30.008;(3)31;(4)649

33评析:鼓励学生利用“想一想”中公式:

a33a,3a3a直接进行计算。

设计意图:通过练习,使学生熟悉并掌握这两条公式,提高解决问题的能力。

八、开心乐园——抢答竞赛

规则:全班分成四大组,每组有个记分人,那组人先举手先发言,并要说明问题的原因,答对加1分,答错减一分,最终获胜一组给予鼓励。

电脑陆续放题: 1.

判断正误:(1)82的立方根是 273(2)负数不能开立方

(3)4的平方根是2(4)8的立方根是

2(5)负数有一个平方根

(6)0的立方根是0 2. 口算:(1)1的立方根是___

(2)1的立方根是___

(3)1的立方根是___ 27(4)3125___

(5)364___ 270.216(6)33___

设计意图:培养学生团结协作精神及竞争意识,同时巩固了本节的教学内容。

九、归纳小结

先由学生小结,再有教师归纳: 1.

符号3a中的根指数“3”不能省略。

2. 对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根。3.平方根和立方根的区别:(1)正数有两个平方根,但只有一个立方根;(2)负数没有平方根,但却有一个立方根。

4. 灵活运用公式:(1)a33a;(2)3a3a;(3)3a3a

5.立方与开立方也互为逆运算。我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根。

十、布置作业 A组和B组。

第四篇:浙江省慈溪市横河初级中学七年级数学上册 3.3立方根教案 浙教版

第二章 实数3.3立方根

一、学情分析

在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及个数的唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.

二、目标分析 教学目标  知识与技能目标

1.了解立方根的概念,会用根号表示一个数的立方根.

2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算. 3.了解立方根的性质.

4.区分立方根与平方根的不同. 过程与方法目标

1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略. 2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.  3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识. 情感与态度目标: 

1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.

2. 学生通过对实际问题的解决,体会数学的实用价值.  教学重点

立方根的概念及计算.  教学难点

立方根的求法,立方根与平方根的联系及区别.

三、教法学法

1.教学方法:类比法.

2.课前准备:

教具:教材,软件Microsoft PowerPoint 2002,电脑.

学具:教材,练习本.

四、教学过程

本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.

第一环节:创设问题情境:

内容:

某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为v=43R,R为球的半径)提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .

意图:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望. 效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,有很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课. 第二环节:复习引入、类比学习

内容:

提问:(1)什么叫一个数a的平方根?如何用符号表示数a(a≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根 是什么?

(3)平方和开平方运算有何关系?

(4)算术平方根和平方根有何区别和联系?

强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了前面场景的问题中,需要引出一个新的运算,你将如何定义这个新运算?

1.一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次 方根).2.一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root, 也 叫做三次方根).如:2是8的立方根,-3是-27的立方根,0是0的立方根.

意图:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时 突出平方根与立方根的对比,以利于弄清两者的区别和联系.

效果:复习引入既复习了平方根的知识,又利于学生类比学习法学习立方根知识.第三环节:初步探究

内容:

1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?

()=-(1)()=0.001 ;(2)332764 ;(3)()=0.意图:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a的取值分别选为正数、负数、0,这样设计,在此过程中渗透分类讨论的思想方法. 2议一议:

(1)正数有几个立方根?(2)0有几个立方根

(3)负数呢?

意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.

3在上面的基础上明晰下列内容,对知识进行梳理

3(1)每个数a都只有一个立方根,记为“a”,读作“三次根号a”.例如x3=7时,x3是7的立方根,即7=x;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.

(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.

(3)求一个数a的立方根的运算叫做开立方(extrction of cubic root), 其中a叫做被开方数.开立方与立方互为逆运算.

效果:通过亲自运算、探究学习立方运算的逆运算,培养了学生的探究能力,初步掌握立方根的概念.

第四环节:尝试反馈,巩固练习

内容:

例1求下列各数的立方根:(1)-27;(2)

812538 ;(3)3 ;(4)0.216 ;(5)-5.33解:(1)因为(-3)=-27,所以-27的立方根是-3,即-27=-3;

828282=;

(2)因为,所以的立方根是,即31255125512553233()=(3)因为

278=338,所以338的立方根是

33,即33=;

8223

33(4)因为(0.6)=0.216,所以0.216的立方根是0.6,即0.216=0.6;

(5)-5的立方根是3-5.例2 求下列各式的值:

(1)38;(2)30.064;(3)338125;(4)

9.

333解:(1)38=322;(2)30.064=30.40.4;

8125253(3)3=325;(4)

9=9.

随堂练习

1.求下列各数的立方根: 30.125;364; -364;5; 33316.32.通过上面的计算结果,你发现了什么规律?

意图:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.

效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:38=-2=-2; 3=327=3; 38=(2)=8.引导学生观察被开方数、根指数及333333

运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论. 第五环节:深入探究

想一想:

(1)3a表示a的立方根,那么

a等于什么?

333a3呢?

(2)3-a与-3a有何关系?

意图:明晰a =a,333a3=a。说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果x3=a,那么x就是a的立方根,即x=3a,所以x=33a=a, 同样,根据定义,a333是的a三次方,所以a3的立方根就是a, 即aa,33-a=-3a.

第六环节 课时小结:

内容1:提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容:

1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.

2.在学习中应注意以下5点:

(1)符号3a中根指数“3”不能省略;

(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;

(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;

负数没有平方根,但却有一个立方根;

33(4)灵活运用公式:(3a)3=a, aa,3-a=-3a;

(5)立方与开立方也互为逆运算.我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.

意图:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.

效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性.

内容2:回顾引例

某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?

如有时间,学生学力许可,还可以安排学生探究下列问题:

1.回顾上节课的内容:已知2x18=0,求x的值.

2.求下列各式中的x.

(1)8x3+27=0;(2)(x-1)3-0.343=0;(3)81(x+1)4=16;(4)32x5-1=0.

意图:回顾引例,使得教学环节更完整,同时体现了数学的实用价值.安排有层次的探究问题,可更好地调动不同学生的学习热情,让学生通过练习解决有关问题,培养学生综合解决问题的能力.

第七环节 教学反思

主要注意学生的计算,以及对立方根的理解

第五篇:3.3立方根教学设计

[教学设计]

3.3 立方根

乐清市白象镇中 屠勤秧

● 教材与学生的认知起点分析

“立方根”是浙教版七年级上册第三章“实数”中的第三小节,它是在学生知道了无理数、算术平方根、平方根、开平方运算的概念基础上学习的。教材从实际问题引入立方根的概念,说明学习数的立方根的意义。通过具体数的计算,让学生体会,一个数的立方根的唯一性。虽然这一节在实数一节之后,但仍起着加深对实数的认识的作用。在实数范围内进行开立方的运算,无论从认知的角度,还是从表述的角度,都较为方便。● 教学目标

知识与技能:了解立方根的概念,会用根号表示一个数的立方根,并能用立方根运算求某些数的立方根

教学思考:创设问题情境,学生进一步发展对数学知识的抽象概括力。解决问题:通过学生的积极参与培养学生独立思考的能力,提高数学

表达和运算能力。

情感态度与价值观:在参与数学学习活动中,不断培养合作交流的良好习惯。

● 教学重点

本节重点是立方根的意义、性质。● 教学难点

本节难点是立方根的求法,立方根与平方根的联系及区别。● 教学过程

一、创设情境

电脑显示一个魔方

师:你们喜欢玩魔方吗?这是由8个同样大小的单位立方体组成的魔方,这8个小立方体可以重新排列,组成魔方表面的各种不同的美丽图案。现在要做一个体积为8cm3的立方体魔方,它的棱要取多少长?你是怎么知道的? 生:思考后回答。

设计意图:从熟悉的事物引入立方根概念,说明学习立方根的意义。

师:体积为27 cm3和体积为1000 cm3的立方体的棱又是要取多少长呢? 生:思考、讨论后回答。电脑演示:

38 327 31000 设计意图:为概念引入作准备并渗透从个别到一般的规律。

二、讲授新课

师:让学生在平方根基础上试述立方根概念。

设计意图:渗透学生的类比思想和语言表达能力。

师(总结):一般地,一个数x的立方等于a,即x3a,那么这个数x就叫做a的立方根(也叫做a的三次方根),记做3a。如:238,则2叫做8的立方根,即382;28,则2是8的立

3方根,即382。其中a是被开方数,3是根指数,符号3读做“三次根号”。

师:针对前面几个例子,由学生说出27和1000的立方根,并分别指明它们的被开方数和根指数。生:举例再说明。

设计意图:巩固学生对概念的理解,并让学生了解开立方与立方互为逆运算。

三、练一练

求下列各数的立方根:

1(1)27;(2)27;(3);(4)0.064;(5)0

27解:(1)因为3327,所以27的立方根是3,即3273.(2)因为327,所以27的立方根是3,即3273.3111111(3)因为,所以的立方根是,即3.2732732733(4)因为0.40.064,所以0.064的立方根是0.4,即330.0640.4.(5)因为030,所以0的立方根是0,即300.生:总结解题方法和在过程中需要注意的问题。

师:强调(1)求立方根用到立方运算。(2)负数的立方根注意符号。设计意图:此练习着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟悉以后可以简化写法。

四、议一议 电脑出示:

(1)一个正数有几个立方根?是正是负?为什么?

(2)是否任何负数都有立方根?如有,有几个?是正是负?

(3)0的立方根是什么? 生:小组讨论交流。

师:引导各小组进行举例、猜想。可提示学生联系上面的“练一练”思考这些问题。师:(板书结论)每个数a都只有一个立方根,一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。任意数a的立方根可表示为“3a”,读做“三次根号a”

设计意图:通过具体的举例计算,让学生感受到一个数的立方根的唯一性,在小组合作交流中发展自主探索知识的能力。

五、做一做

计算:(1)327 ;(2)36416 8273 82解:(1)3(2)36416440

设计意图:为了进一步提高学生的计算能力,此题目相对复杂点,题(2)中同时出现立方根和平方根,突出了立方根和平方根的对比,以利于弄清两者的区别和联系。)

六、挑战自我

问题:3a表示a的立方根,那么

a等于什么?

333a3呢?

分析:应抓住立方根的定义去分析,如果x3a,那么x就是a的立方根,即xa,所以x33a33a。同样,根据定义,a3是a的三次方,所以a3的立方根就是a,即3a3a。

设计意图:深化所学内容,发展学生抽象思维能力和归纳总结能力。

七、体验一刻

分别求下列各式的值:

1(1)125;(2)0.008;(3);(4)

643339

33评析:鼓励学生利用“想一想”中公式:

a33a,3a3a直接进行计算。

设计意图:通过练习,使学生熟悉并掌握这两条公式,提高解决问题的能力。

八、开心乐园——抢答竞赛

规则:全班分成四大组,每组有个记分人,那组人先举手先发言,并要说明问题的原因,答对加1分,答错减一分,最终获胜一组给予鼓励。

电脑陆续放题:

821. 判断正误:(1)的立方根是

273(2)负数不能开立方

(3)4的平方根是2(4)8的立方根是

2(5)负数有一个平方根

(6)0的立方根是0 2. 口算:(1)1的立方根是___

(2)1的立方根是___(3)的立方根是___(4)3125___

(5)3(6)64___ 270.21633___

设计意图:培养学生团结协作精神及竞争意识,同时巩固了本节的教学内容。

九、归纳小结

先由学生小结,再有教师归纳: 1. 符号3a中的根指数“3”不能省略。

2.对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根。

3.平方根和立方根的区别:(1)正数有两个平方根,但只有一个立方根;

(2)负数没有平方根,但却有一个立方根。4.灵活运用公式:(1)a33a;(2)3a3a;(3)3a3a

5. 立方与开立方也互为逆运算。我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根。

十、布置作业

教材78页A组和B组。

下载七年级上册《3.3立方根》教案 浙教版word格式文档
下载七年级上册《3.3立方根》教案 浙教版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学上:3.3立方根教案1浙教版

    亿库教育网http://www.xiexiebang.com [教学设计] 3.3 立方根 ● 教材与学生的认知起点分析 “立方根”是浙教版七年级上册第三章“实数”中的第三小节,它是在学生知道了无......

    立方根教案

    立方根教案 一、教学目标 知识技能:了解立方根的概念,会用根号表示一个数的立方根; 数学思考:通过运用数学符号描述开方运算的过程,建立开立方的概念,发展抽象思维; 问题解决:会用根......

    浙美版七年级美术上册全册教案

    找教案www.xiexiebang.com 【教材分析】 1.编写思路。 教学中美术作品的选择是以国内优秀艺术家作品为主,同时结合其他国家艺术家的优秀作品,促进学生对人类优秀美术文化传......

    2012年浙教版初中数学七年级上3.3立方根练习卷(带解析)

    2012年浙教版初中数学七年级上3.3立方根练习卷(带解析) 一、填空题 1.的平方根是______. 【答案】±2 【解析】本题考查的是立方根、平方根的定义 根据立方根、平方根的定义即......

    浙教数学新版小学三年级上册《简便计算》教案

    浙教数学新版小学三年级上册 《简便计算》教案 教学目标 一、知识与技能 1.结合学生已有的知识经验和具体情境,理解加法交换律和结合律、乘法交换律和结合律的意义。 2.能运用......

    九年级化学上册3.3元素教案

    课题3 元素第1课时 物质是由元素组成的学习目标1、准确理解元素的概念。2、掌握各种元素在地壳和生物体中的含量排布。3、能运用元素、分子和原子来解释与物质之间的关系......

    浙美版七年级美术下册教案

    七年级美术下册教案 第一课 红色记忆 (一课时) 目标: 1、了解美术与情感、美术与时代、美术与历史等方面的关系,从而更深刻的理解美术的社会功能。 2、用美术语言描述美术作品......

    浙美版七年级《走进美术》教案

    浙美版七年级《走进美术》教学设计 一、教材分析 教材中美术作品的选择是以国内优秀艺术家作品为主,同时结合其他国家艺术家的优秀作品,促进学生对人类优秀美术文化传统的美......