课时2-22.1_二次函数的图象_教学设计

时间:2019-05-12 18:18:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《课时2-22.1_二次函数的图象_教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《课时2-22.1_二次函数的图象_教学设计》。

第一篇:课时2-22.1_二次函数的图象_教学设计

教学准备

1.教学目标

1.知识与技能

能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质 2.过程与方法

经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观

在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内

2.教学重点/难点

重点:函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质. 难点:用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.

3.教学用具 4.标签

教学过程

一、创设情境

导入新课

1、回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?

2、展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?

3、用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?

二、新知探究

1.函数y=ax2 的图象画法及相关名称 【探究 l】画y=x2的图象 学生动手实践、尝试画y=x2的图象

教师分析,画图像的一般步骤:列表→描点→连线

教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下: ①形状是开口向上的抛物线 ②图象关于y轴对称 ③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.2.函数y=ax2的图象特征及其性质 【探究2】在同一坐标系中,画出y=

x2,y=2x2的图象.学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2 比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y轴

③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-施过程)

比较函数y=-x2,y=-

x2,y=-2x2的图象.(分析:仿照探究1的实

x2,y=-2x2的图象.找出它们的异同点.相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴

④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:

(1)二次函数y=ax2的图象是一条抛物线

(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a<0时,抛物线开口向下,顶点时抛物形的最高点.(3)|a|越大,抛物线y==ax2的开口越小

三、例题分析

例1 例1.已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的函数解析式;

(2)判断点B(-1,-4)是否在此抛物线上;

(3)求出此抛物线上纵坐标为-6的点的坐标.解(1)把(-2,-8)代入y=ax2,得

-8=a(-2)2,解得a=-2,所求函数解析式为y=-2x2.(2)因为 ,所以点B(-1,-4)不在此抛物线上.(3)由-6=-2x2 ,得x2=3,所以纵坐标为-6的点有两个,它们分别是的图象,并根据图象回答下列问题:

(1)说出这两个函数图象的开口方向、对称轴和顶点坐标;

轴上方;当 x>0 时,曲线自左向右逐渐________;它的顶点是图象的最________点;(3)函数 y=-2x2,对于一切 x 的值,总有函数值 y_____0;当 x<0 时,y 随 x 的增大而________;当 x________时,y 有最________值为________. 解:列表:

四、当堂训练:

2、抛物线,其对称轴左侧,y 随 x 的增大而

增大;在对称轴的右侧,y 随 x 的增大而

减小

3.填空:(1)抛物线y=2x2的顶点坐标是(0,0),对称轴是 y轴,在对称轴的右

侧,y随着x的增大而增大;在对称轴的左

侧,y随着x的增大而减小,当x=0

时,函数y的值最小,最小值是

0 ,抛物线y=2x2在x轴的 上

方(除顶点外).(2)抛物线

在x轴的 下 方(除顶点外),在对称轴的左侧,y随着x的增大而增大

;在对称轴的右侧,y随着x的增大而减小

,当x=0时,函数y的值最大,最大值是

0 ,当x0时,y<0.4.在同一坐标系中,图象与y=2x2 的图象关于x 轴对称的函数为().

5.抛物线

共有的性质是(B).

(A)开口向上

(B)对称轴是y轴(C)都有最高点

(D)y随x的增大而增大 6.若点A(2,m)在抛物线y=x2 上,则点A关于y轴对称点的坐标是().

(A)(2,4)

(B)(-2,4)

(C)(2,-4)

(D)(-2,-4)

7、观察函数y=x2的图象,则下列判断中正确的是()

(A)若a,b互为相反数,则x=a与x=b 的函数值相等

(B)对于同一个自变量x,有两个函数值与它对应(C)对任一个实数y,有两个x和它对应.(D)对任意实数x,都有y>0.课堂小结

1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.一般地,抛物线 y = ax 2 的对称轴是 y 轴,顶点是原点.

当 a>0 时,抛物线开口向上,顶点是抛物线的最低点;

当 a<0 时,抛物线开口向下,顶点是抛物线的最高点.

对于抛物线 y = ax 2,|a|越大,抛物线的开口越小. 如果 a>0,当 x<0 时,y 随 x 的增大而减小,当 x>0 时,y 随 x 的增大而增大;

如果 a<0,当 x<0 时,y 随 x 的增大而增大,当 x>0 时,y 随 x 的增大而减小.

板书

26.1.2 二次函数y=ax2的图象和性质

一、图象的画法:

1、列表

2、描点

3、连线

二、图象和性质 图象:是一条抛物线

性质:一般地,抛物线 y = ax 2 的对称轴是 y 轴,顶点是原点.

当 a>0 时,抛物线开口向上,顶点是抛物线的最低点;

当 a<0 时,抛物线开口向下,顶点是抛物线的最高点.

对于抛物线 y = ax 2,|a|越大,抛物线的开口越小. 如果 a>0,当 x<0 时,y 随 x 的增大而减小,当 x>0 时,y 随 x 的增大而增大;

如果 a<0,当 x<0 时,y 随 x 的增大而增大,当 x>0 时,y 随 x 的增大而减小.

三、例题分析 例

1、例2

四、小结

第二篇:二次函数图象和性质的教学反思

二次函数图象和性质的教学反思

本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本节课的重、难点是:二次函数图象和性质的综合应用。我立足于学生自主复习,师生合作探究的形式完成本节课的教学任务。

首先我让学生课前完成二次函数图象和性质的基础训练,促使学生对二次函数图象和性质的知识点全面梳理和掌握。课上我用投影仪检查一名学生完成课前复习情况,其他学生交换批改,发现最后一小条有部分学生有问题,我及时评讲分析,帮助学生解决。

接着,师生合作探究本节课的例题。本例是用已知抛物线解决7个问题,这7个问题是我从全国2009年中考试题中整理出来的,它代表了中考的方面。问题1是用顶点式求出抛物线的解析式再通过解析式求与坐标轴的交点,通过观察图象我又提出了x为何值时,y>0,y<0?以及图中△AOC与△DCB有何关系,进一步培养学生发现问题解决问题的能力。问题

2、问题

3、问题4是抛物线的平移、轴对称和旋转的题目。主要是让学生抓住抛物线的顶点和开口方向来完成。这种类型的题目也有少数同学从坐标点的对称角度来解决也是可行的,并且方便记忆,对于这两种方法我让学生作了及时的归纳小结。问题5和问题6是关于抛物线的最值问题。问题5是利用抛物线的对称性解决三角形的周长最小的题目。学生通过作图能独立解决并求出点的坐标。问题6是本节课的重点,它通过建立目标函数解决四边形面积的极值。本题目关键是引导学生如何设点的坐标,将四边形的面积转化成我们熟悉的三角形(或直角梯形)来建立函数关系式。通过这条题进一步培养学生建立函数模型的思想。本题让学生充分合作交流,最后,让学生在自主探索中获取新的知识。通过观察图象求出了四边形的面积后,我又提出如何求△BCF的面积的最大值的问题,让本题得到进一步的升华,培养学生的创新思维。问题7是在抛物线上探求点存在性问题,引导学生先作出符合条件的平行四边形,再判断点是否在抛物线上,本题着重培养了学生数形结合的思想方法。

这7个问题由浅入深,循序渐进推出,符合学生的认知规律,使学生对二次函数图象和性质有了进一步的理解和提高。

本节课完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。通过这堂公开课,我受益匪浅,感受颇多,让我在如何备复习课,准确把握重点,突破难点方面有了很大的提高,同时在驾驭课堂能力方面有了很大的进步。今后我将在如何提高有效课堂效率方面多下功夫,使自己教育教学水平更上一个台阶。

第三篇:二次函数的图象和性质教案

27.2.1 相似三角形的判定

(一)梅

一、教学目标

1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.

2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).

3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.

二、重点、难点

1.重点:相似三角形的定义与三角形相似的预备定理. 2.难点:三角形相似的预备定理的应用. 3.难点的突破方法

(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,ABBCCA每个比的前

ABBCCA项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;

(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;

(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;

(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):

如△ABC∽△A′B′C′的相似比ABBCCAk,那么△A′B′C′∽△ABC

ABBCCA的相似比就是ABBCCA1,它们的关系是互为倒数.这

ABBCCAk一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.

三、例题的意图

本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.

例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.

四、课堂引入

1.复习引入

(1)相似多边形的主要特征是什么?

(2)在相似多边形中,最简单的就是相似三角形.

在△ABC与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCAk.

ABBCCA我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.

反之如果△ABC∽△A′B′C′,则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCA.

ABBCCA(3)问题:如果k=1,这两个三角形有怎样的关系? 2.教材P42的思考,并引导学生探索与证明. 3.【归纳】

三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.

五、例题讲解

例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.

(1)写出对应边的比例式;(2)写出所有相等的角;

(3)若AB=10,BC=12,CA=6.求AD、DC的长.

分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.

解:略(AD=3,DC=5)

例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.

分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有ADAE,又由AD=EC可求出AD的长,再根据DEAD求出DE的长.

ABACBCAB解:略(DE103).

六、课堂练习

1.(选择)下列各组三角形一定相似的是()

A.两个直角三角形 B.两个钝角三角形

C.两个等腰三角形 D.两个等边三角形

2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有(A.1对 B.2对 C.3对 D.4对 3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD= 10)

七、课后练习

1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式. 2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.

3.如图,DE∥BC,)

(1)如果AD=2,DB=3,求DE:BC的值;

(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长. 教学反思

第四篇:函数的图象教学设计

函数的图象--------教学设计

呼兰区第二中学 11继任 王丽艳

教学目标:

1、知识与技能:使学生了解函数图象的意义,掌握画函数图象的方法,会函数图象的简单应用。

2.过程与方法:经过探索函数图象的过程,会应用数形结合的思想分析问题.

3.情感、态度与价值观:培养变化与对应的思想方法,体会函数模型的建构在实际生活中的应用价值.

重、难点与关键

1.重点:画函数图象及解读函数图象信息 2.难点:函数图象的认识.

3.关键:从情境中抽象出函数的概念,认清自变量与函数的关系,通过画函 数图象直观地认识函数的内涵. 教学方法

采用“操作──感悟”的教学法,让学生在画图中认识函数,从而提高识图能力. 教具:多媒体课件 教学过程

一、回顾交流,情境导入

Ⅰ.提出问题,创设情境

我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用心电图表示心脏生物电流与时间的关系.即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰. 我们这节课就来解决如何画函数图象的问题及解读函数图象信息

Ⅱ.导入新课、问题探究 问题1 在前面,我们曾经从如图所示的气温曲线上获得许多信息,回答了一些问题.现在让我们来回顾一下.

先考虑一个简单的问题:你是如何从图上找到各个时刻的气温的? 上面心电图和气温曲线是用图象表示函数的两个实际例子.

一般来说,函数的图象是由直角坐标系中的一系列点组成的图形.图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.

2、问题探究:如图,正方形边长为x,面积为S,探究下列问题:

(1)写出S关于x的函数关系式,并求出x的取值范围.

(2)计算并填写下表:

(3)在直角坐标系中,将上面表格中各对数值所对应的点描出来,然后用光滑的曲线连接这些点.

【形成概念】一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些组成的图形,就是这个函数的图象.

二、观察思考,实际应用

情境思索:课本图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t的变化而变化,你从图象中得到了哪些信息?

三、范例点击,提高认识

【例2】下面的图象(课本图)反映的过程是:小明从家去菜地浇水,又去玉米地锄草,然后回家,其中x表示时间,y表示小明离他家的距离.

根据图象回答下列问题:

(1)菜地离小明家多远?小明走到菜地用了多少时间?

(2)小明给菜地浇水用了多少时间?

(3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?

(4)小明给玉米地锄草用了多少时间?

(5)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?

【例3】在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即y是x的函数,画出这些函数的图象:

(1)y=x+0.5;(2)y=6/x(x>0).

【探索方法】描点法画函数图象的一般步骤如下:

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来).

四、随堂练习,巩固深化 多媒体演示习题

五、课堂总结,发展潜能

1.我们可以由一个函数的表达式,列出这个函数的函数对应值表,并把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象.

2.如果已知一个变量与另一个变量之间存在函数关系,根据这两个变量的对应值,可以列表或画图表示这个函数.

六、布置作业,专题突破

1、课本P104页 第2题

2、课本P107页

第7题

板书设计

14.1.3 函数的图象

1、函数的图象的定义

3、例题

2、画函数图象的一般步骤

第五篇:正弦函数余弦函数图象教学设计

正弦函数、余弦函数的图象的教学设计

一、教学内容与任务分析

本节课的内容选自《普通高中课程标准实验教科书》人教A版必修四第一章第四节1.4.1正弦函数、余弦函数的图象。本节课的教学是以之前的任意角的三角函数,三角函数的诱导公式的相关知识为基础,为之后学习正弦型函数 y=Asin(ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。

二、学习者分析

学生已经学习了任意三角函数的定义,三角函数的诱导公式,并且刚学习三角函数线,这为用几何法作图提供了基础,但能不能正确应用来画图,这还需要老师做进一步的指导。

三、教学重难点

教学重点:正弦余弦函数图象的做法及其特征

教学难点:正弦余弦函数图象的做法,及其相互间的关系

四、教学目标

1.知识与技能目标

(1)了解用正弦线画正弦函数的图象,理解用平移法作余弦函数的图象

(2)掌握正弦函数、余弦函数的图象及特征

(3)掌握利用图象变换作图的方法,体会图象间的联系(4)掌握“五点法”画正弦函数、余弦函数的简图 2.过程与方法目标

(1)通过动手作图,合作探究,体会数学知识间的内在联系(2)体会数形结合的思想

(3)培养分析问题、解决问题的能力 3.情感态度价值观目标

(1)养成寻找、观察数学知识之间的内在联系的意识(2)激发数学的学习兴趣(3)体会数学的应用价值

五、教学过程

一、复习引入

师:实数集与角的集合之间可以建立一一对应关系,而确定的角又有着唯一确定的正弦(或余弦)值。

这样任意给定一个实数x有唯一确定的值sinx(cosx)与之对应,有这个对应法则所确定的函数y=sinx(或y=cosx)叫做正弦函数(或余弦函数),其定义域是R。

遇到一个新的函数,我们很容易想到的就是画函数图象,那怎么画正弦函数、余弦函数的图象呢?

我们先来做一个简弦运动的实验,这就是某个简弦函数的图象,通过实验是不是对正弦函数余弦函数的图象有了直观印象呢

【设计意图】通过动手实验,体会数学与其他的联系,激发学习兴趣。

二、讲授新课

(1)正弦函数y=sinx的图象

下面我们就来一起画这个正弦函数的图象

第一步:在直角坐标系的x轴上任取一点O1,以O1为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角0,,,„,2π的正弦线正弦线632(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.

【设计意图】通过按步骤自己画图,体会如何画正弦函数的图象。根据终边相同的同名三角函数值相等,所以函数y=sinx,x∈[2k∏,2(k+1)∏,k∈Z且k≠0的图象,与函数y=sinx,x∈[0,2∏)的图象的形状完全一致。于是我们只要将y=sinx,x∈[0,2∏)的图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.【设计意图】由三角函数值的关系,得出正弦函数的整体图象。

把角x(xR)的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.(2)余弦函数y=cosx的图象

探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变得到余弦函数的图象?

根据诱导公式cosxsin(x),可以把正弦函数y=sinx的图象向左平移

单位即得余弦函数y=cosx的图象.y1-6-5-4-3-2-o-1y1-6-5-4-3-2--123456xy=sinxy=cosx23456x 正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.

【设计意图】通过正弦函数与余弦函数的相互关系,在类比的过程中画出余弦函数的图象,体会数学知识间的联系,以及类比的数学思想。思考:在作正弦函数的图象时,应抓住哪些关键点? 【设计意图】通过问题,为下面五点法绘图方法介绍做铺垫 2.用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0)((3,-1)(2,0)2,1)(,0)2余弦函数y=cosx x[0,2]的五个点关键是哪几个?(0,1)((3,0)(2,1)2,0)(,-1)2只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图.

3、讲解范例

例1 作下列函数的简图

(1)y=1+sinx,x∈[0,2π],(2)y=-COSx 【设计意图】通过两道例题检验学生对五点画图法的掌握情况,巩固画法步骤。

探究1. 如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到

(1)y=1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x-π/3)的图象?

小结:函数值加减,图像上下移动;自变量加减,图像左右移动。探究2.

如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx,x∈〔0,2π〕的图象? 小结:这两个图像关于X轴对称。探究3. 如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx,x∈〔0,2π〕的图象?

小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象,再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。探究4.

不用作图,你能判断函数y=sin(x3π/2)= sin[(x-3π/2)+2 π] =sin(x+π/2)=cosx 这两个函数相等,图象重合。

【设计意图】通过四个探究问题,对画图法以及正弦余弦函数及其图象的性质有更深刻的认识。

4、小结作业

对本节课所学内容进行小结

【设计意图】在梳理本节课所学的知识点归纳的过程中进一步加深对正弦函数、余弦函数图象认知。培养学生归纳总结的能力,自主构建知识体系。布置分层作业

基础题A题,提高题B题

【设计意图】将课堂延伸,使学生将所学知识与方法再认识和升华,进一步促进学生认知结构内化。注重学生的个体发展,是每个层次的学生都有所进步。

下载课时2-22.1_二次函数的图象_教学设计word格式文档
下载课时2-22.1_二次函数的图象_教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次函数图象之教学反思(五篇范例)

    二次函数图象之教学反思 这堂课最大 的却失是教学手段单一,浪费了时间,降低了课堂效率,这一点在探讨a的取值决定抛物线的开口方向和大小时我深有感触,为了让学生自己去体会,画图......

    二次函数的图象与性质教学反思

    2yaxc的图象与性质的教学反思 二次函数 增城二中赖灶兰这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手......

    二次函数的图象与性质教学反思

    2yaxc的图象与性质的教学反思 二次函数这节课是青岛版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出......

    二次函数y=ax^2+bx+c的图象教学设计[五篇模版]

    二次函数y=ax^2+bx+c的图象和性质教学设计 一、教学目标(一)知识目标 2 1.使学生会用描点法画出二次函数yaxbxc的图象; 2.使学生会用配方法确定抛物线的顶点和对称轴(对于不升......

    [初中数学]二次函数的图象和性质教学设计 人教版

    《二次函数的图象和性质》教学设计 四、教学目标 根据任教班级学生的实际情况,本节课我确定的教学目标是: 1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应......

    二次函数第一课时教学设计

    《二次函数》教学设计一、教材分析 《二次函数》选自义务教育课程标准试验教科书人教版九年 级上册第二十一章这章是在学生学习了一次函数与反比例函数对于函数已经......

    二次函数的图象和性质(小编整理)

    二次函数的图象和性质(第一课时)教学案例 函数是中学数学学习的重要内容,函数概念通过坐标系中的曲线上点的坐标反映变量之间的对应关系。这种变化与对应的思想对于中学生来讲,......

    函数图象的教学反思

    《函数图象》的教学反思 广厚中心学校 石立军 本节内容的知识目标是探索具体问题中的数量关系和变化规律,运用函数的图象的知识进行描述和解决;能力目标是能选择、处理数学......