《“杨辉三角”与二项式系数的性质》教学设计说明(本站推荐)

时间:2019-05-12 18:01:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《“杨辉三角”与二项式系数的性质》教学设计说明(本站推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《“杨辉三角”与二项式系数的性质》教学设计说明(本站推荐)》。

第一篇:《“杨辉三角”与二项式系数的性质》教学设计说明(本站推荐)

《“杨辉三角”与二项式系数的性质》教学设计说明

湖北省黄冈市浠水实验高级中学 周少雄

1.内容和内容解析

《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时.教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处.这一过程不仅有利于培养学生的思维能力、理性精神和实践能力;也有利于学生理解数学知识,培养其数学应用意识.研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.根据以上对教材及学情的分析,特制定教学重点如下: 体会用函数知识研究问题的方法,理解二项式系数的性质.2.教学目标分析

“杨辉三角”是我国古代数学重要成就之一,蕴含了丰富的内容,显示了我国古代人民的卓越智慧和才能,了解我国古代数学成就之一的“杨辉三角”包含的规律,结合“杨辉三角”,运用函数的知识深化对二项式系数性质的理解,联系函数图象和性质、赋值法、两个计数原理等知识探究证明二项式系数的性质,体会用函数知识研究问题的方法,体验数形结合、特殊到一般进行归纳等数学思想的渗透和运用,体现教师引导、学生探究的教学方式,培养学生问题意识,提高数学思维能力,培育学生理性精神.根据以上分析特制定教学目标如下:

1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.3.教学问题诊断分析

教科书将二项式系数性质的讨论与“杨辉三角”结合起来,不仅是因为“杨辉三角”是我国古代数学重要成就之一,蕴含了丰富的内容,显示了我国古代人民的卓越智慧和才能,对学生进行爱国主义教育,激励学生的民族自豪感,而且“杨辉三角”与二项式系数的性质紧密相联,由它可以直观的看出二项式系数的性质,同时课程体系在本节课后编排了关于探究与发现“杨辉三角”中的奥妙的阅读材料,为了凸现数学史教学,更好的掌握本节知识,促进学生发展,在高中学生学习的各个领域渗透研究性学习,因此对教材内容进行了精心加工,合理调整,课前开展了探究与发现“杨辉三角”的一些规律的学习活动,课上进行展示.学生不难发现和概括二项式系数的对称性和增减性与最大值,如何证明呢?这就需要适当引导学生联系函数知识,画出

和7的函数图象,讨论函数的性质,让学生经历再发现、再提炼、深入探究的学习过程,培育理性思维.在证明各二项式系数的和的过程中,教材中运用赋值法,求证很简略,但是让学生记住这个结论并不难,难的是在这个学习过程中如何遵循学生的认知规律,提高学生的思维能力?基于此,让学生自己归纳、猜想各二项式系数的和,运用多种方法予以求证,如:

(1)利用赋值法:在中,令

可得;

(2)利用模型化思想:引入元集合子集的个数的问题,利用分类计数原理和分步计数原理进行说明,很好的解决了上面的问题.根据以上分析,制定教学难点如下:

(1)结合函数图象,理解二项式系数的增减性与最大值时,根据n的奇偶性确定相应的分界点;

(2)利用赋值法证明二项式系数的性质.4、教法特点及预期效果分析

数学是思维的科学,数学学习不是简单的“告诉”,而应是学生个性化的“体验”.在本节课的学习中,采用问题引导、合作探究的教学方法,设计六大教学环节:展示成果话杨辉、感知规律悟性质、联系旧知探新知、合作交流议方法、反馈升华拨思路、悬念小结再求索.倡导自主探索、独立思考、动手实践、合作交流,为学生开展数学体验,丰富学习方式,形成积极主动的、多样的学习方式创造了有利的条件和广阔的空间.在探究二项式系数的性质中,设计为探究“三部曲”:

第一步是数形结合、概括性质.通过学生画出=6和=7时函数图象,并观察分析其对称性和增减性与最大值,引导学生概括性质,学生有目的地动手实践,亲身参与探究活动远比目睹幻灯播放更能体验数学蕴含的规律,使抽象的数学知识直观生成.第二步是分组讨论、证明性质.在学生初步认识“杨辉三角”包含的规律及“杨辉三角”与二项式系数的关系的基础上,在画出=6和=7时函数图象并观察分析其对称性和增减性与最大值的情境下,采取分组讨论、交流展示的学习方式,诱发学生内在的认知冲突,激发学生沉淀的知识,培养学生解决问题的能力,让知识经历一个再发现、再创造的过程,体验到探究过程中涉及的思维策略,促进学生对内容的深刻理解,把课堂教学的“话语权”、“生成权”、“展示权”、“交流权”交给学生,用学生的“亮点”,点亮学生的智慧.第三步是师生合作、再探性质.在探究各二项式系数的和的教学中,设计探究性的问题串,运用特殊到一般的归纳思想,猜想结论,再运用赋值法证明这一性质,培养学生思维的严谨性和深刻性,引导学生挖掘问题的本质特征,同时呈现用分类和分步计数原理说明的展开式的各二项式系数的和,引发学生的认知冲突,培养学生思维的灵活性和独创性,激发学生的探索兴趣.学生经历课前初探、课中深探、变式细探的探究过程,对“杨辉三角”及二项式系数的性质有比较深刻的认识,不断提高学生探究和解决问题的能力,促进学生数学思维发展.5.教后反思

通过本节课的教学实践,认识到多一点精心设计,就能融一份直观生成,体会到什么是由“关注知识”转向“关注学生”.在教学过程中,注意到了由“给出知识”转向“引起活动”,由“完成教学任务”转向“促进学生发展”,学生成为课堂上的真正主人.开展数学体验,丰富学习方式,师生会有共同的、积极的情感体验.成功之处:一是教学设计独到而又新颖,打破常规,不走寻常路,通过三步探究实现本节课的教学目标,突出以学生为主体,教师以引导者的身份参与其中;二是教态自然得体,亲和力强,能很好的驾驭课堂,积极调动学生思考问题,课堂气氛活跃.改进之处:一是可考虑通过网上链接搜集一些杨辉三角包含的规律,比较学生展示的结论,让学生享受成功的喜悦,同时激发学生“再求索”的热情;二是学生展示小组讨论增减性与最大值时出现口误,以及教师板书将“各二项式系数的和”写成“各二项式的系数和”,虽然课后通过师生沟通,学生说不影响掌握本节知识,但是在以后的教学中一定要做得更好.

第二篇:《二项式系数性质》的教学反思

本节课重点讲授了“二项式系数的性质”和“赋值法”。在教学手段上,采用的现代多媒体技术与传统板书相结合的方式,让学生得到听数学的视听享受,同时也让学生学习到实实在在的知识。在课例安排上,采用概念、例题、练习、思考四层教育法,全方位的巩固知识在学生头脑中的印象。一些例题或结论的变形更是开拓了学生的视野,简单的数学史学知识也增强了学生的民族自豪感和学习数学的兴趣。

学生听课情况总体来说也是比较好的,这反映在以下几个方面:

一、回答问题积极。学生积极回答问题并且从回答的情况来看,很显然是经过深思熟虑的。

二、听课注意力集中。学生听课的表情告诉我,他们听课的程度——认真。

另外,28位来自全市个学校的听课教师和市教研室的老师给我的评语也说明了这一节课的成功。

公开课的机会是学校给我们的,它确实让我从中得到了益处——课堂语言的驾御能力;课堂氛围的调节能力;课堂教学的组织能力;组织知识结构的能力等等。

第三篇:2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《“杨辉三角”与二项式系数的性质》

2010年第五届全国高中数学青年教师观摩与评比活动精品教案

“杨辉三角”与二项式系数的性质

教学说明

1.内容和内容解析

《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时.教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处.这一过程不仅有利于培养学生的思维能力、理性精神和实践能力;也有利于学生理解数学知识,培养其数学应用意识.研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.根据以上对教材及学情的分析,特制定教学重点如下: 体会用函数知识研究问题的方法,理解二项式系数的性质.2.教学目标分析

“杨辉三角”是我国古代数学重要成就之一,蕴含了丰富的内容,显示了我国古代人民的卓越智慧和才能,了解我国古代数学成就之一的“杨辉三角”包含的规律,结合“杨辉三角”,运用函数的知识深化对二项式系数性质的理解,联系函数图象和性质、赋值法、两个计数原理等知识探究证明二项式系数的性质,体会用函数知识研究问题的方法,体验数形结合、特殊到一般进行归纳等数学思想的渗透和运用,体现教师引导、学生探究的教学方式,培养学生问题意识,提高数学思维能力,培育学生理性精神.根据以上分析特制定教学目标如下:

1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.2010年第五届全国高中数学青年教师观摩与评比活动精品教案

2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.3.教学问题诊断分析

教科书将二项式系数性质的讨论与“杨辉三角”结合起来,不仅是因为“杨辉三角”是我国古代数学重要成就之一,蕴含了丰富的内容,显示了我国古代人民的卓越智慧和才能,对学生进行爱国主义教育,激励学生的民族自豪感,而且“杨辉三角”与二项式系数的性质紧密相联,由它可以直观的看出二项式系数的性质,同时课程体系在本节课后编排了关于探究与发现“杨辉三角”中的奥妙的阅读材料,为了凸现数学史教学,更好的掌握本节知识,促进学生发展,在高中学生学习的各个领域渗透研究性学习,因此对教材内容进行了精心加工,合理调整,课前开展了探究与发现“杨辉三角”的一些规律的学习活动,课上进行展示.学生不难发现和概括二项式系数的对称性和增减性与最大值,如何证明呢?这就需要适当引导学生联系函数知识,画出n6和7的函数图象,讨论函数的性质,让学生经历再发现、再提炼、深入探究的学习过程,培育理性思维.在证明各二项式系数的和的过程中,教材中运用赋值法,求证很简略,但是让学生记住这个结论并不难,难的是在这个学习过程中如何遵循学生的认知规律,提高学生的思维能力?基于此,让学生自己归纳、猜想各二项式系数的和,运用多种方法予以求证,如:

122rrnnx1可得;(1)利用赋值法:在(1x)nC.0 nCnxCnxCnxCnx中,令(2)利用模型化思想:引入n元集合子集的个数的问题,利用分类计数原理和分步计数原理进行说明,很好的解决了上面的问题.根据以上分析,制定教学难点如下:

(1)结合函数图象,理解二项式系数的增减性与最大值时,根据n的奇偶性确定相应的分界点;

(2)利用赋值法证明二项式系数的性质.4、教法特点及预期效果分析

2010年第五届全国高中数学青年教师观摩与评比活动精品教案

数学是思维的科学,数学学习不是简单的“告诉”,而应是学生个性化的“体验”.在本节课的学习中,采用问题引导、合作探究的教学方法,设计六大教学环节:展示成果话杨辉、感知规律悟性质、联系旧知探新知、合作交流议方法、反馈升华拨思路、悬念小结再求索.倡导自主探索、独立思考、动手实践、合作交流,为学生开展数学体验,丰富学习方式,形成积极主动的、多样的学习方式创造了有利的条件和广阔的空间.在探究二项式系数的性质中,设计为探究“三部曲”:

第一步是数形结合、概括性质.通过学生画出n=6和n=7时函数图象,并观察分析其对称性和增减性与最大值,引导学生概括性质,学生有目的地动手实践,亲身参与探究活动远比目睹幻灯播放更能体验数学蕴含的规律,使抽象的数学知识直观生成.第二步是分组讨论、证明性质.在学生初步认识“杨辉三角”包含的规律及“杨辉三角”与二项式系数的关系的基础上,在画出n=6和n=7时函数图象并观察分析其对称性和增减性与最大值的情境下,采取分组讨论、交流展示的学习方式,诱发学生内在的认知冲突,激发学生沉淀的知识,培养学生解决问题的能力,让知识经历一个再发现、再创造的过程,体验到探究过程中涉及的思维策略,促进学生对内容的深刻理解,把课堂教学的“话语权”、“生成权”、“展示权”、“交流权”交给学生,用学生的“亮点”,点亮学生的智慧.第三步是师生合作、再探性质.在探究各二项式系数的和的教学中,设计探究性的问题串,运用特殊到一般的归纳思想,猜想结论,再运用赋值法证明这一性质,培养学生思维的严谨性和深刻性,引导学生挖掘问题的本质特征,同时呈现用分类和分步计数原理说明(ab)n的展开式的各二项式系数的和,引发学生的认知冲突,培养学生思维的灵活性和独创性,激发学生的探索兴趣.学生经历课前初探、课中深探、变式细探的探究过程,对“杨辉三角”及二项式系数的性质有比较深刻的认识,不断提高学生探究和解决问题的能力,促进学生数学思维发展.5.教后反思

通过本节课的教学实践,认识到多一点精心设计,就能融一份直观生成,体会到什么是由“关注知识”转向“关注学生”.在教学过程中,注意到了由“给出知识”转向“引起活动”,由“完成教学任务”转向“促进学生发展”,学生成为课堂上的真正主人.开展数学体验,丰富学习方式,师生会有共同的、积极的情感体验.成功之处:一是教学设计独到而又新颖,打破常规,不走寻常路,通过三步探究实现本节课的教学目标,突出以学生为主体,教师以引导者的身份参与其中;二是教态自然得体,2010年第五届全国高中数学青年教师观摩与评比活动精品教案

亲和力强,能很好的驾驭课堂,积极调动学生思考问题,课堂气氛活跃.改进之处:一是可考虑通过网上链接搜集一些杨辉三角包含的规律,比较学生展示的结论,让学生享受成功的喜悦,同时激发学生“再求索”的热情;二是学生展示小组讨论增减性与最大值时出现口误,以及教师板书将“各二项式系数的和”写成“各二项式的系数和”,虽然课后通过师生沟通,学生说不影响掌握本节知识,但是在以后的教学中一定要做得更好.杨辉三角与二项式系数的性质

教学点评

本节课有以下几点值得一提:

一、目标定位准确

本节课,教师在充分挖掘教学内容的内在联系,了解学生已有知识基础,充分分析学情后,确定的教学目标:理解、领悟二项式系数性质;渗透数形结合和分类讨论思想;灵活有效地运用赋值法.应该说具有具体而又准确,科学而有效的特点.随着课堂的实践得到了落实,并且将“知识目标”、“能力目标”、“情感目标”融为一体.教学目标完全符合学生“认识规律”,以递进的形式呈现:观察分析、归纳猜想、抽象概括,提炼上升;特殊——一般——特殊到一般…,课堂实践表明,这些目标,在师生共同努力及合作下是完全可以达到的.二、突出主体地位

1.放手发动学生

把课堂还给学生,一直是课改的大方向,也是新课标的原动力之一.还给学生什么呢?教师作了很好的诠释:

一是给“问题”,当然问题有预设的,也有生成的,符合从学生“思维最近发展区”出发这一根本教学原则.二是给“时间”,这体现了教师的先进教学理念,即便是教学难点“中间项系数最大”这一组合数计算讨论过程仍由学生尝试.当然,n=6,7时,离散型函数的图象起了直观引领,奠基的重要作用.不为完成任务所累,不为主宰课堂所困.三是给“机会”,让学生展示自主探索,合作交流的成果,极大地保护和激发了学生学习的热情和积极性,参与程度和激情得到了空前的提高.2.彰显理性数学

2010年第五届全国高中数学青年教师观摩与评比活动精品教案

本节课,无论是对称性,增减性(最大值),及二项式系数和的逐步生成,学生都能从“特殊到一般”的认识规律,归纳猜想到结论.但数形结合的函数思想,组合数两个性质的运用,两个计数原理的巧妙“会师”,奇数项二项式系数和等于偶数项二项式系数和,反馈升华例示中赋值法再现.这正是“数学演绎”、“理性数学”的精华,让学生找到内化和建构的多种途径.这不仅会自然增强或辐射到学生的解题能力和理性思维,更能影响和渗透到他们的终身学习和今后从事的工作中去.3.呈现合作交流

本节课每个问题的波浪式出现,我们不仅发现每个学生动手做、动眼看、动口说、动笔写、动脑想,全身心投入到学习过程中去,真正地让学生动起来,让课堂活起来,更令人吃惊的是“合作交流”发挥得淋漓尽致.于“师生合作”的源头.教师始终把自己放在和学生平等的位置上,“同欢乐,共困苦”,让学生心情愉悦地、神情自信地回答和展示自己的“成果”,这些话成果、说思路、讲道理、议方法、谈感悟等系列活动,既寄托了老师的殷切希望和拳拳爱生之心,又破除了传统的学生蹑手蹑脚演板,胆怯地来回张望,等待老师去评点乃至训斥的那种尴尬局面,展现了一种兴趣盎然、生动活泼的自主、合作、交流的课堂活动场景.三、主导水到渠成

综观整节课三个性质的呈现(教师板书的主题)毫无生涩造作,支离隔阂的痕迹.却是分块搭建,彼此衔接,宛若于活动中生成,从过程中体验,在操作中建构,水到渠成之感,这得益于教师充分挖掘和把握教材内在联系之功力和涵养,也借助于教师过渡衔接之妙:和蔼微笑的教态,激励动情的语言,豁达激情的风貌,使得课堂情境天人合一.四、增色情感价值

教材的主干内容之一“杨辉三角”就蕴含较丰富的文化价值(包括数字演变),我国古代数学成就和爱国主义情结.教学过程中,由于提及到与“帕斯卡三角”的比照,涉及到与“斐波那契数列”的联系,学生的民族自豪感,爱国主义情操不时会写在那一张张稚嫩、率真的脸上,相信对他们的精神风貌是一种陶冶,思想品质是一种升华.本节课值得改进的地方:

一是可考虑通过网上链接搜集一些“杨辉三角”包含的规律,比较学生展示的结论,让学生享受成功的喜悦,同时激发学生“再求索”的热情;二是学生展示小组讨论增减性与最大值时出现口误,以及教师板书将“各二项式系数的和”写成“各二项式的系数和”,尽管课后通过师生沟通,形成了共识,但值得在以后的教学中更好地把握好教学细节.2010年第五届全国高中数学青年教师观摩与评比活动精品教案

第四篇:2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《“杨辉三角”与二项式系数的性质》点评

2010年第五届全国高中数学青年教师观摩与评比活动精品教案

杨辉三角与二项式系数的性质

教学点评

湖北省黄冈市浠水实验高级中学数学组

魏爱卿

本节课有以下几点值得一提:

一、目标定位准确

本节课,教师在充分挖掘教学内容的内在联系,了解学生已有知识基础,充分分析学情后,确定的教学目标:理解、领悟二项式系数性质;渗透数形结合和分类讨论思想;灵活有效地运用赋值法.应该说具有具体而又准确,科学而有效的特点.随着课堂的实践得到了落实,并且将“知识目标”、“能力目标”、“情感目标”融为一体.教学目标完全符合学生“认识规律”,以递进的形式呈现:观察分析、归纳猜想、抽象概括,提炼上升;特殊——一般——特殊到一般…,课堂实践表明,这些目标,在师生共同努力及合作下是完全可以达到的.二、突出主体地位

1.放手发动学生

把课堂还给学生,一直是课改的大方向,也是新课标的原动力之一.还给学生什么呢?教师作了很好的诠释:

一是给“问题”,当然问题有预设的,也有生成的,符合从学生“思维最近发展区”出发这一根本教学原则.二是给“时间”,这体现了教师的先进教学理念,即便是教学难点“中间项系数最大”这一组合数计算讨论过程仍由学生尝试.当然,n=6,7时,离散型函数的图象起了直观引领,奠基的重要作用.不为完成任务所累,不为主宰课堂所困.三是给“机会”,让学生展示自主探索,合作交流的成果,极大地保护和激发了学生学习的热情和积极性,参与程度和激情得到了空前的提高.2.彰显理性数学

本节课,无论是对称性,增减性(最大值),及二项式系数和的逐步生成,学生都能从“特殊到一般”的认识规律,归纳猜想到结论.但数形结合的函数思想,组合数两个性质的运用,两个计数原理的巧妙“会师”,奇数项二项式系数和等于偶数项二项式系数和,反馈升华例示 2010年第五届全国高中数学青年教师观摩与评比活动精品教案

中赋值法再现.这正是“数学演绎”、“理性数学”的精华,让学生找到内化和建构的多种途径.这不仅会自然增强或辐射到学生的解题能力和理性思维,更能影响和渗透到他们的终身学习和今后从事的工作中去.3.呈现合作交流

本节课每个问题的波浪式出现,我们不仅发现每个学生动手做、动眼看、动口说、动笔写、动脑想,全身心投入到学习过程中去,真正地让学生动起来,让课堂活起来,更令人吃惊的是“合作交流”发挥得淋漓尽致.这不仅反映在四人小组毫无掩饰、捏造的交流过程,更有把自己的不同想法敢于同学面前展示和袒露的真实场景.这种“生生合作”的经典,更来自于“师生合作”的源头.教师始终把自己放在和学生平等的位置上,“同欢乐,共困苦”,让学生心情愉悦地、神情自信地回答和展示自己的“成果”,这些话成果、说思路、讲道理、议方法、谈感悟等系列活动,既寄托了老师的殷切希望和拳拳爱生之心,又破除了传统的学生蹑手蹑脚演板,胆怯地来回张望,等待老师去评点乃至训斥的那种尴尬局面,展现了一种兴趣盎然、生动活泼的自主、合作、交流的课堂活动场景.三、主导水到渠成

综观整节课三个性质的呈现(教师板书的主题)毫无生涩造作,支离隔阂的痕迹.却是分块搭建,彼此衔接,宛若于活动中生成,从过程中体验,在操作中建构,水到渠成之感,这得益于教师充分挖掘和把握教材内在联系之功力和涵养,也借助于教师过渡衔接之妙:和蔼微笑的教态,激励动情的语言,豁达激情的风貌,使得课堂情境天人合一.四、增色情感价值

教材的主干内容之一“杨辉三角”就蕴含较丰富的文化价值(包括数字演变),我国古代数学成就和爱国主义情结.教学过程中,由于提及到与“帕斯卡三角”的比照,涉及到与“斐波那契数列”的联系,学生的民族自豪感,爱国主义情操不时会写在那一张张稚嫩、率真的脸上,相信对他们的精神风貌是一种陶冶,思想品质是一种升华.本节课值得改进的地方:

一是可考虑通过网上链接搜集一些“杨辉三角”包含的规律,比较学生展示的结论,让学生享受成功的喜悦,同时激发学生“再求索”的热情;二是学生展示小组讨论增减性与最大值时出现口误,以及教师板书将“各二项式系数的和”写成“各二项式的系数和”,尽管课后通过师生沟通,形成了共识,但值得在以后的教学中更好地把握好教学细节.

第五篇:一次函数图像和性质教学设计说明

教学设计说明

本节内容是人教版《义务教育课程标准实验教科书·数学》八年级上册“14.2.2一次函数”(第二课时)

一、本课数学内容的本质、地位和作用分析

本课数学内容的本质是通过研究具体一次函数的图象特征和函数性质,抽象得到一般的一次函数的图象特征和函数性质,在这个过程中使学生认识到由具体到一般的研究问题的方法.同时在学生了解了正比例函数ykx的图象和性质的基础上,通过比较一次函数ykxb与正比例函数ykx解析式上的区别,得到一次函数图象与正比例函数图象之间的关系,进而得到一次函数的图象和性质,也使学生体会到当两个函数有密切联系时,可以通过类比以前研究函数的方法来研究新的函数.在“观察图象——分析解析式——归纳结论”的过程中,培养学生的数形结合的能力.

一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用.一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数及其图象与性质的基础上的.一次函数的第一课时主要内容是一次函数的有关概念,本节课是一次函数的第二课时,主要研究一次函数图象的形状、画法,并结合图象分析一次函数的性质.它既是正比例函数的图象和性质的拓展,又是继续学习“用函数观点看方程(组)与不等式”的基础.

从数学自身发展过程来看,正是由于变量与函数概念的引入,标志着初等数学向高等数学的迈进,是一种数学思想与观念的融入.无论从一次函数到反比例函数,再到以后的二次函数,甚至高中的其他各类函数,都是函数的某种具体形式,都为进一步深刻领会函数提供了一个平台.因此,后续学习中对反比例函数、二次函数的研究方法与一次函数的研究方法类似.也就是说,一次函数的学习为今后其他函数的学习提供了一种研究的模式.

二、教学目标分析

(一)教学目标))1.使学生理解函数ykxb(k0与函数ykx(k0图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握k的正负对图象变化趋势和函数性质的影响.

2.通过描点法来研究一次函数图象,在动手绘制一次函数的图象的过程中,让学生经历“动手----比较----讨论---归纳”的数学活动,通过对一次函数图象的分析,归纳k的正负对函数图象变化趋势和函数性质的影响,让学生经历知识的探究、归纳的过程,体会数形结合思想方法和分类讨论思想方法的应用,同时培养学生的观察能力和抽象概括能力.

3.通过从具体一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.

4.在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神.

三、教学问题诊断分析

本节课主要是研究一次函数的图象和性质,在此之前学习者已经学习了正比例函数的图象和性质,一次函数的定义.由于授课班级为我校普通班级,学生虽然已经经历了研究正比例函数的图象和性质的过程,但是对于函数的理解还是比较浅显,将函数解析式与函数图象结合起来解决问题的能力较弱,故本节课的教学难点为通过对解析式的比较分析理解一次函数的图象和性质,并能灵活应用.

在本节课的学习中,学生对于通过具体函数图象猜想一次函数图象的形状和k的正负对于函数图象的变化趋势和函数性质的影响并不困难,但是学生容易停留在只从“形”的角度认识一次函数的图象和性质,不会用函数和变量去思考问题,即从“数”——解析式的角度加深理解.所以,我们在进行教学时,有意识地加强对一次函数ykxb与正比例函数ykx解析式的分析与比较,突出数学知识所蕴涵的数学思想和数学方法,以此加深学生对数形结合思想的体会,使学生逐步地增强应用数形结合思想解决问题的意识和能力.

四、本节课的教法特点及预期效果分析

1.由于本课的教学内容是在学生以往学习了正比例函数的图象和性质以及一次函数的定义的基础上进行的,学生在学习一次函数定义时对于课后的一个实际问题的练习掌握情况不好,因此这节课从这个问题复习开始,起到承接以前学习过内容的目的,同时对这个问题稍作改动,吸引学生的注意力,再引出本课的内容,让学生在复习的过程中感受用函数模型描述实际问题的作用.

2.根据本节课的教材内容特点,为了更直观、形象地突出重点、突破难点,提高课堂效率,采用以实践探索为主、多媒体演示为辅的教学组织形式.在教学过程中,通过设置带有探究性的问题,创设问题情境,引导学生动手实践探索,发现归纳结论.利用计算机的《几何画板》软件增强数与形结合的直观性,并通过学生亲自动手绘制函数图象,让学生亲身体验知识的产生、发展和形成的过程.

3.八年级的学生好奇、好学、好动,所以在教学过程中通过让学生自己动手画图,同学之间交流画法,谈谈想法等活动,充分发挥学生的主体性,进一步激发学生的求知欲,课件中的动画过程使数与形的关系可视化,有利于学生对问题的感知。

4.在由具体函数y2x1与函数y2x的图象关系抽象得到一般一次函数ykxb与直线ykx之间的关系的过程中,我们将抽象的过程分成两步完成,第一步先由函数y2x抽象到正比例函数ykx,函数y2x1抽象到一次函数ykx1,第二步由一次函数ykx1抽象到函数ykxb,同时利用《几何画板》直观演示,有利于学生从具体向一般过渡.

5.在小结的设计上给学生一个充分从事数学活动的机会,也体现了学生是数学学习的主人的理念.学生所发表的见解不一定全都是本节课的重点,只要是学生的观点正确又的确是他的知识收获则教师就给与认可和鼓励.

6.在作业的布置上,通过阅读作业培养学生的数学阅读能力,同时养成学生及时复习、梳理知识的良好学习习惯,通过巩固性作业使学生巩固落实课堂所学的知识,通过探究作业为下节课学习利用待定系数法求一次函数解析式作铺垫,起到与下节课衔接的作用.

以上是我对这节课的教学设计的说明,不妥之处恳请各位专家批评指正。

下载《“杨辉三角”与二项式系数的性质》教学设计说明(本站推荐)word格式文档
下载《“杨辉三角”与二项式系数的性质》教学设计说明(本站推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    不等式的性质教学设计说明5篇

    教材分析与目标设计 章节学情 1、 知识储备:比较有理数的大小、有理数的加减法、等式的性质、不等式的概念和从实际问题抽象建模提取不等式; 2、 学习经验:利用天平比较物体的......

    平行四边形的性质教学设计说明(精选多篇)

    《18.1.1平行四边形的性质》 教学设计说明 《18.1.1平行四边形的性质》教学设计说明 一、前置作业的设计说明 生本理念下前置性作业的基本原则:1.低入性原则2.指导性原则3......

    反比例函数的图像和性质教学设计说明[最终定稿]

    教学设计说明 一、本课数学内容的本质、地位、作用分析 本节课内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,反比例函数的核心内容是反比例函数的概念......

    《平行四边形的性质》第一课时教学设计说明)

    《平行四边形的性质》第一课时教学设计说明 田家炳实验中学王春侠 下面,我从教材分析、教学目标分析、学法指导、教材和教学方法、教学程序、教案说明等对本节课的设计进行说......

    教学设计说明与反思

    试卷讲评课之浅见 作为学生,在其求学生涯中都会经历大大小小无数的考试,从最基本的单词默写到惊心动魄的高考,测试,作为教师检查教学质量,学生自查知识漏洞的重要方法之一,的确能......

    《几个与第几个》教学设计说明

    《几个与第几个》教学设计说明 庆华小学 金晓艳 “几个与第几个”是九年制义务教育课本小学数学教材第一册第15页的内容。本课教学是在学生在日常学习和生活中已经对“几个......

    教学设计说明与教学反思

    一年级下册《怎么都快乐》 设计说明与教学反思 设计说明 本课语言生动有趣,结构简单,重复句式较多,语言浅显易懂,内容贴近儿童生活,充满童真童趣,情感乐观积极。这首儿童诗十分易......

    杨辉与杨辉三角5篇范文

    数学家杨辉 杨辉,中国南宋末年杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《......