第一篇:二项式定理教学设计
二项式定理
一、教学目标
1.知识目标:掌握二项式定理及其简单应用
2.过程与方法:培养学生观察、归纳、猜想能力,发现问题,探求问题的能力,逻辑推理能力以及科学的思维方式。
3.情感态度和价值观:培养学生勇于探索,勇于创新的个性品质,感受和体验数学的简洁美、和谐美和对称美。
二、教学重点、难点
重点:二项式定理的发现、理解和初步应用及通项公式 难点:展开式中某一项的二项式系数与该项的系数的区别
三、教学过程
创设问题情境:
今天是星期三,15天后星期几,30天后星期几,8100天后星期几呢?
前面几个问题全班所有学生都大声地回答出来了,最后一个问题大家都很迷惑,有些学生试图用计算器算,还是觉得很复杂,学习完这节课我们就知道答案了,并且我们不用查日历就能知道未来任何一天是星期几
新课讲解:
问题
1abdc的展开式有多少项?有无同类项可以合并?
由于这一节是在学生学习了两个计数原理和排列组合知识之后学习的,所以学生能够快速的说出答案。
问题
2abb的ab原始展开式有多少项?有几项是同类项?项是怎样构成a的?有规律吗?
学生根据乘法展开式也很快得出结论 问题
3abbaa2bab的3原始展开式有多少项?经合并后又只能有几项?是哪几项?
学生仍然根据乘法公式算出了答案 问题
4abbaaba的bab的原始展开式有多少项?
44问题
5你能准确快速地写出ab的原始展开式的16项吗?经合并后,又只能有哪几项?
此时,学生能说出其中的一两项,并不能全部回答出来所有的项,思维觉察到麻烦,困难,易出错——借此“愤悱”之境,有效的实现思维的烘热)
启发类比:4个袋中有红球a,白球b各一个,每次从4个袋子中各取一个球,有什么样的取法?各种取法有多少种? 在4个括号(袋子)中 问题6
其个数,为何恰好应为该项的系数?
nrr问题7 ab在合并后的展开式中,ab的系数应该是多少?有理由吗? n问题8
那么,该如何将ab轻松、清晰地展开?请同学们归纳猜想 学生们快速地说出
nabn0n1n1n2n22knkknnCnaCnabCnabCnabCnbnN*
我们数学讲究逻辑地严密性和知识的严谨性,大家猜想地很正确,那么我们怎么来证明呢?
思路:证明中主要运用了计数原理!
① 展开式中为什么会有那几种类型的项?
abn是n个ab相乘,展开式中的每一项都是从这n个ab中各任取一个字母相
nk乘得到的,每一项都是n次的。故每一项都是a② 展开式中各项的系数是怎么来的?
bk的形式,k0,1,2,,n
kankbk是从n个ab中取k个b,和余下nk个a相乘得到的,有Cn种情况可以得到
kankbk,因此,该项的系数为Cn
定义:一般地,对于任意正整数n,上面的关系式也成立,即有
abn0n1n1n2n22knkknnCnaCnabCnabCnabCnbnN*
n注:(1)公式左边叫做二项式,右边叫做ab的二项展开式
(2)定理中的a,b仅仅是一种符号,它可以是任意的数或式子什么的,只要是两项相加的n次幂,就能用二项式定理展开
例:把b换成b,则
abn0n1n1n2n22knkknnCnaCnabCnab1Cnab1CnbnN*
kn练习:令a1,bx,则
1xn01122kknnCnCnxCnxCnxCnxnN*
问题9 二项式定理展开式中项数、指数、系数特点是什么?哪一项最有代表性
公式特征:
(1)项数:共有n1项
(2)指数规律:
① 各项的次数都等于二项式的系数n(关于a与b的齐次多项式)
② 字母a按降幂排列,次数由n递减到0;字母b按升幂排列,次数由0递增到n
knkk(3)二项式展开式的通项:Tk1Cnab,k0,1,2,,n
012knk(4)二项式系数:依次为Cn。这里Cn(k0,1,2,,n)称为二,Cn,Cn,Cn,Cn项式系数
现在同学们能告诉老师8100天后星期几吗?
思考了一会儿,马上有同学大声喊:把8写成7+1,再进行展开,余数是多少,就是星期几 老师故意问:为什么要写成7+1,这时,所有学生都明白了,因为一个星期7天,所以
n810071展开式中除了最后一项外,其余的项都是7的倍数,因此余数为Cn1,故100应为星期四。
1例
1求2x的展开式
x方法一:直接展开
11技巧:将根式先化成幂的形式,再进行计算,要简单很多。即原式变成2x2x2
66方法二:先合并化简,再展开
建议用第二种方法简单些。
变式一:展开式中的常数项是多少? 变式二:展开式中的第3项是多少?
变式三:展开式中的第3项的系数是多少? 变式四:展开式中的第3项二项式系数是多少?
注意:二项式系数和系数是两个不同的概念,二项式系数就是一个组合数,与a,b无关;系数与a,b有关。
例
2(1)求(12x)7的展开式的第4项的系数和第4项的二项式系数
1
3(2)x的展开式中x的系数和中间项
x例3
求(xa)12的展开式中的倒数第4项 小结:(1)注意二项式定理中二项展开式的特征
(2)区别二项式系数、项的系数
(3)掌握用通项公式求二项式系数、项的系数及项。作业:P37 4,5 教学反思:本节课先用今天星期几的问题创设问题情境,一下子把全班学生的学习积极性都调动起来了,当大家不知道老师葫芦里卖的什么药时,老师由浅入深的提问,最后问到81009天后星期几,从而引出今天的课题:二项式定理。给大家设置这个悬念后,紧接着又进行一系列的问题教学,让学生自己去探究去回答,最后学生之间合作交流归纳猜想出二项式定理的展开式,整个过程顺理成章地完成。
第二篇:二项式定理教学设计
《二项式定理》教学设计
1.教学目标
知识技能:理解二项式定理,记忆二项展开式的有关特征,能对二项式定理进行简单应用.
过程方法:通过从特殊到一般的探究活动,经历“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.
情感、态度和价值观:通过对二项式定理的研究,掌握展开式的结构特点,体验数学公式的对称美、和谐美,了解杨辉、牛顿等数学家做出的巨大贡献.
2.教学过程
探索研究二项式定理的内容
从学生比较熟悉的完全平方公式入手,去观察,猜想
02122(ab)2a22abb2C2aC2abC2b
三次方的让学生按照多项式乘法进行运算在合并,不合并之前是几项,为什么?
(分步乘法计数原理)
0312233(ab)3a33a2b3ab2b3C3aC3abC3ab2C3b
每一项中字母a,b的指数和相同,项的个数有n1项
00每个都不取b的情况有1种,即C4种,所以a4的系数是C4; 11恰有1个取b的情况下有C4种,所以a3b的系数是C4; 22恰有2个取b的情况下有C4种,所以a2b2的系数是C4; 33恰有3个取b的情况下有C4种,所以ab3的系数是C4; 444个都取b的情况下有C4种,所以b4的系数是C4; 0413222344因此(ab)4C4aC4abC4abC4ab3C4b.
归纳、猜想(ab)n
0n1n12n22(ab)nCnaCnabCnabknkkCnabnnCnb(nN)
设问:
(1)将(ab)n展开,有多少项?
(2)每一项中,字母a,b的指数有什么特点?(3)字母a,b指数和始终是多少?(4)如何确定ankbk的系数?
教师引导学生观察二项式定理,从以下几方面强调:(1)项数规律:n1项;
(2)次数规律:字母a,b的指数和为n,字母a的指数由n递减至0,同时,字母b的指数由0递增至n;
(3)二项式系数规律:下标为n,上标由0递增至n;
knkk(4)通项:Tk1Cnab指的是第k1项,不是第k项,该项的二项式系k数是Cn
板书以上几点 3.例题处理
51例1:(1)在2x的展开式中
x(1)请写出展开式的通项。(2)求展开式的第4项。
(3)请指出展开式的第4项的系数,二项式系数。
3(4)求展开式中含 x 的项。
课件展示解题过程
自主探究:在12x的展开式中,求第4项,并指出它的二项式系数和系数
7是什么?
独立完成,爬黑板
01合作探究:设n为自然数,化简Cn2nCn2n11Cnk2nk1Cnn
kn
分组讨论,交流想法
4.归纳小结
学生的学习体会与感悟; 教师强调:
(1)主要探究方法:从特殊到一般再回到特殊的思想方法
(2)从特殊情况入手,“观察——归纳——猜想——证明”的思维方法,是人们发现事物规律的重要方法之一,要养成“大胆猜想,严谨论证”的良好习惯.
(3)二项式定理每一项中字母a,b的指数和为n,a的指数从n递减至0同时b的指数由0递增至n,体现数学的对称美、和谐美.二项式系数还有哪些规律呢?希望同学们在课下继续研究、能够有新的发现. 5.作业(1)巩固型作业:
课本36页习题1.3 A组 1、3、4(1)(2)5(2)思维拓展型作业:(查阅相关资料)查阅有关杨辉一生的主要成就。
012探究二项式系数Cn,Cn,Cn,n 有何性质.,Cn3
第三篇:二项式定理教学设计
二项式定理(第一课时)
一、教学目标: 1.知识技能:
(1)理解二项式定理的推导-------分步乘法计数原理的使用(2)掌握二项式定理极其简单应用 2.过程与方法
培养学生观察、分析、归纳猜想的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式
二、教学重点、难点
重点:二项式定理的发现、理解和初步应用及通项公式 难点:展开式中某一项的二项式系数与该项的系数的区别
三、教学方法:师生互动,讲练结合
四、教 具:多媒体、电子白板
五、教学过程
(一)创设问题情境:
今天是星期二,8天后是星期几?82天后是星期几?8100天后是星期几呢? 前面两个问题全班所有学生都能回答出来,最后一个问题大家都很迷惑,觉得很复杂,今天我们学习的这节课就是告诉我们如何快速准确知道答案,并且我们不用查日历就能知道未来任何一天是星期几。解决这一问题我们应用的就是二项式定理。
(二)引出问题:二项式定理研究的是(ab)n的展开式。
我们知道(ab)2a22abb2,那么:(ab)3=?(ab)4=?
(ab)100=?
更进一步:(ab)n=?(1)对(ab)2展开式的分析:(ab)2(ab)(ab)展开后其项的形式为:a2,ab,b2
00考虑b,每个都不取b的情况有1种,即c2 ,则a2前的系数为c2 1恰有1个取b的情况有c12种,则ab前的系数为c2 22恰有2个取b的情况有c2 种,则b2前的系数为c2 0222所以(ab)2a22abb2c2ac12abc2b
(2)探究1:推导(ab)3的展开式
(ab)3(ab)(ab)(ab)① 项:
a3
a2b
ab2
b3
013② 系数:C3
C3
C32
C3 0312233③ 展开式(ab)3c3ac3abc3ab2c3b
(3)探究2:仿照上述过程,推导(ab)4的展开式
0432223344(ab)4c4ac14abc4abc4abc4b 0312233与(ab)3c3ac3abc3ab2c3b
0222和(ab)2c2ac12abc2b
一起比较猜想:
0nn12n22knkknn(ab)ncnac1abcab...cab...cnnnnb(nN)
但这种归纳猜想是不完全归纳。
(4)探究3:请分析(ab)n的展开过程,证明猜想
...ab
...b ②系数:C
C
...C
...C ①项:
an
an1b
0n1nnkknknnn0nn12n22knkknn③展开式:(ab)ncnac1bcnab...cnab...cnb(nN)na(三)二项式定理的分析
0nn12n22knkknn(ab)ncnac1bcnab...cnab...cnb(nN)na①项数:共有n1项;
②次数:各项的次数都是n;
k③二项式系数:Cn(k0,1,2,...n)
knkk④ 二项展开式的通项:Tk1Cnab,(k0,1,2,...n)
(四)课堂练习1.写出(1x)n得展开式.2.写出(ab)n得展开式.(五)例题 例1.求(2x1x)6得展开式.(1)强调:对于形式较复杂的二项式,应先化简再展开.(2)针对(2x1x)6得展开式,提出下列问题
思考1:展开式的第二项的系数是多少?
思考2:展开式的第二项的二项式系数是多少? 思考3:你能否直接求出展开式的第二项? 思考4:你能否直接求出展开式的常数项? 引出例2 例2(1)求(12x)7的展开式的第4项的系数和第4项的二项式系数
1
(2)x的展开式中x3的系数
x
(六)小结
(七)作业(提前板书)1.P374,5题
2.思考:8100天后星期几?
第四篇:二项式定理教学设计
1.3.1二项式定理
一、教学目标
1.知识目标:掌握二项式定理及其简单应用
2.过程与方法:培养学生观察、归纳、猜想能力,发现问题,探求问题的能力,逻辑推理能力以及科学的思维方式。
3.情感态度和价值观:培养学生勇于探索,勇于创新的个性品质,感受和体验数学的简洁美、和谐美和对称美。
二、教学重点、难点
重点:二项式定理的发现、理解和初步应用及通项公式 难点:展开式中某一项的二项式系数与该项的系数的区别
三、教学过程
创设问题情境:
今天是星期三,15天后星期几,30天后星期几,8100天后星期几呢?
前面几个问题全班所有学生都大声地回答出来了,最后一个问题大家都很迷惑,有些学生试图用计算器算,还是觉得很复杂,学习完这节课我们就知道答案了,并且我们不用查日历就能知道未来任何一天是星期几
新课讲解:
问题
1abdc的展开式有多少项?有无同类项可以合并?
由于这一节是在学生学习了两个计数原理和排列组合知识之后学习的,所以学生能够快速的说出答案。
问题
2abb的ab原始展开式有多少项?有几项是同类项?项是怎样构成a的?有规律吗?
学生根据乘法展开式也很快得出结论 问题
3abbaa2bab的3原始展开式有多少项?经合并后又只能有几项?是哪几项?
学生仍然根据乘法公式算出了答案 问题
4abbaaba的bab的原始展开式有多少项?
44问题
5你能准确快速地写出ab的原始展开式的16项吗?经合并后,又只能有哪几项?
此时,学生能说出其中的一两项,并不能全部回答出来所有的项,思维觉察到麻烦,困难,易出错——借此“愤悱”之境,有效的实现思维的烘热)
启发类比:4个袋中有红球a,白球b各一个,每次从4个袋子中各取一个球,有什么样的取法?各种取法有多少种? 在4个括号(袋子)中
0(1)若每个括号都不取b,只有一种取法得到a,即C4种 1(2)若只有一个括号取b,共有C4种取法得到ab 2(3)若只有两个括号取b,共有C4种取法得到ab 3(4)若只有三个括号取b,共有C4种取法得到ab 4(5)若每个括号都取b,共有C4种取法得到b
4134322引导学生发现:原始展开式中确有同类项存在,且确实可省去“合并”
04132223344因此ab3C4aC4abC4abC4abC4b 4问题6
其个数,为何恰好应为该项的系数?
nrr问题7 ab在合并后的展开式中,ab的系数应该是多少?有理由吗? n问题8
那么,该如何将ab轻松、清晰地展开?请同学们归纳猜想 学生们快速地说出
nabn0n1n1n2n22knkknnCnaCnabCnabCnabCnbnN*
我们数学讲究逻辑地严密性和知识的严谨性,大家猜想地很正确,那么我们怎么来证明呢?
思路:证明中主要运用了计数原理!
① 展开式中为什么会有那几种类型的项?
abn是n个ab相乘,展开式中的每一项都是从这n个ab中各任取一个字母相
nk乘得到的,每一项都是n次的。故每一项都是a② 展开式中各项的系数是怎么来的?
bk的形式,k0,1,2,,n
kankbk是从n个ab中取k个b,和余下nk个a相乘得到的,有Cn种情况可以得到
kankbk,因此,该项的系数为Cn
定义:一般地,对于任意正整数n,上面的关系式也成立,即有
abn0n1n1n2n22knkknnCnaCnabCnabCnabCnbnN*
n注:(1)公式左边叫做二项式,右边叫做ab的二项展开式
(2)定理中的a,b仅仅是一种符号,它可以是任意的数或式子什么的,只要是两项相加的n次幂,就能用二项式定理展开
例:把b换成b,则
abn0n1n1n2n22knkknnCnaCnabCnab1Cnab1CnbnN*
kn练习:令a1,bx,则
1xn01122kknnCnCnxCnxCnxCnxnN*
问题9 二项式定理展开式中项数、指数、系数特点是什么?哪一项最有代表性
公式特征:
(1)项数:共有n1项
(2)指数规律:
① 各项的次数都等于二项式的系数n(关于a与b的齐次多项式)
② 字母a按降幂排列,次数由n递减到0;字母b按升幂排列,次数由0递增到n
knkk(3)二项式展开式的通项:Tk1Cnab,k0,1,2,,n
012knk(4)二项式系数:依次为Cn。这里Cn(k0,1,2,,n)称为二,Cn,Cn,Cn,Cn项式系数
现在同学们能告诉老师8100天后星期几吗?
思考了一会儿,马上有同学大声喊:把8写成7+1,再进行展开,余数是多少,就是星期几 老师故意问:为什么要写成7+1,这时,所有学生都明白了,因为一个星期7天,所以
n810071展开式中除了最后一项外,其余的项都是7的倍数,因此余数为Cn1,故100应为星期四。
1例
1求2x的展开式
x方法一:直接展开
112技巧:将根式先化成幂的形式,再进行计算,要简单很多。即原式变成2xx2
66方法二:先合并化简,再展开
建议用第二种方法简单些。
变式一:展开式中的常数项是多少? 变式二:展开式中的第3项是多少?
变式三:展开式中的第3项的系数是多少? 变式四:展开式中的第3项二项式系数是多少?
注意:二项式系数和系数是两个不同的概念,二项式系数就是一个组合数,与a,b无关;系数与a,b有关。
例
2(1)求(12x)7的展开式的第4项的系数和第4项的二项式系数
1
3(2)x的展开式中x的系数和中间项
x例3
求(xa)12的展开式中的倒数第4项 9小结:(1)注意二项式定理中二项展开式的特征
(2)区别二项式系数、项的系数
(3)掌握用通项公式求二项式系数、项的系数及项。作业:P37 4,5 教学反思:本节课先用今天星期几的问题创设问题情境,一下子把全班学生的学习积极性都调动起来了,当大家不知道老师葫芦里卖的什么药时,老师由浅入深的提问,最后问到8100天后星期几,从而引出今天的课题:二项式定理。给大家设置这个悬念后,紧接着又进行一系列的问题教学,让学生自己去探究去回答,最后学生之间合作交流归纳猜想出二项式定理的展开式,整个过程顺理成章地完成。
第五篇:二项式定理教学反思
二项式定理教学反思
黄慧莹
二项式定理是初中学过的多项式乘法的继续,是排列组合知识的具体运用,定理的证明是计数原理的应用.
本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.
本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫.再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依.
教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体.教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现解决一般问题的方法.教学中我特别注重运用通项意识凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解.
本节课的亮点:引入作了项数问题,明确每一项的很好的铺垫,数学思想、方法和数学文化得到了较好的体现.引导学生运用计数原理来解决特征,为后续学习作准备.二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,都带给学生积极的情感体验和无尽的思考.
不足之处:学生在数学课堂中的参与度不够.我认为,像这样面对新学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了.即使可以操作, 自主、合作、探究也是走走过场, 没有实际效果.语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究.
总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯.