弧长与扇形面积评课(王圣华)

时间:2019-05-12 18:13:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《弧长与扇形面积评课(王圣华)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《弧长与扇形面积评课(王圣华)》。

第一篇:弧长与扇形面积评课(王圣华)

《弧长和扇形面积》评课材料

主讲人:旦金梅 评课人:王圣华

本学期的同课异构教学结束了,通过这几天的听课,感受到各位老师用心研究教材,改进教法,在教学过程中各显神通,有很多值得我学习的地方。赵秀珍老师讲授的课《弧长和扇形面积(1)》,就是一节非常成功的课。

首先,教学设计合理,教学流程清楚,环节紧凑、流畅,由易到难,层次分明,知识梳理清晰,注重了基本数学方法的培养与基本数学思想的渗透,学生的能力得到了提高。

其次,采用五问式高效课堂教学模式。教学过程中注老师注学法指导,通过学生的预习、讨论及时进行了知识总结和数学思想的积淀。课堂结构合理,预设目标明确,通过对已学知识的巩固练习自然地过渡到了新课,学生在不知不觉中完成的新课的学习,符合了学生的认知规律和心理特点。教学环节紧凑,讲练结合,及时反馈矫正。课堂容量大,效率高。当堂训练题、随堂检测题设计分层次,最大限度地满足了不同层次学生的学习需求。

不足之处:规律性结论的推导可以直接放给学生,让学生思考、讨论后再归纳。

2015-10

第二篇:弧长和扇形面积教案

24.1弧长和扇形面积(第1课时)

教学目标 :

1、知识 与技能:理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算;

2、过程与方法:经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。

3、情感与态度:通过联系和运动发展的观点,渗透辩证唯物主义思想方法。教学重难点:

重点:弧长,扇形面积公式的导出及应用。难点:用公式解决实际问题。教学过程:

一、情境导入

在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?

二、课内探究

(一)弧长公式

1、回顾圆弧的定义,并提问“弧是圆的一部分,你会求弧的长度吗?”

2、自主学习,合作探究(5分钟)

(1)半径为R的圆,圆的周长是多少?半圆呢?四分之一圆呢?(2)圆的周长可以看作是多少 度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?(4)n°圆心角所对的弧长是多少?,(点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的弧长为n°的圆心角所对的弧长是1°的圆心角所对的弧长的n倍,n

3、精讲例题

例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

2πRπR 360180πRnπR即l.180180

4、链接中考

(1)已知圆心角为60°,半径为1,则弧长为 _________.(2)已知圆心角为120°,弧长为10πcm,则半径为__________ cm. 检查学生练习情况并点评

(二)扇形面积公式

1、扇形的定义并学会判断什么图形是扇形?

2、自主学习,合作探究(5分钟)

(1)如果圆的半径为R,则圆的面积是多少?半圆呢?四分之一圆呢?(2)1°的圆心角对应的扇形面积为 多少?

(3)n°的圆心角对应的扇形面积为 多少?

πR2(点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的扇形面积为

360πR2n°的圆心角所对的扇形面积是1°的圆心角所对的扇形面积的n倍,n即

360nπR2S扇形.3603、比较弧长公式和扇形面积公式,你能类比扇形面积和对应弧长的关系.推导并归纳:S扇形4、链接中考

(1)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 _________(结果保留π).(2)已知扇形的面积为2π,半径为3,则该扇形的弧长为_________(结果保留π). 检查学生练习情况并点评

三、练习

P113 练习第1、2、3题

四、小结

通过这节课,你们学习了什么知识?

1、弧长公式

2、扇形面积公式

3、弧长公式与扇形面积公式的关系

4、解决课前问题

在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?

五、布置作业

习题24.4 第1、2、3、6、7、8题 nπR21nπR1RlR

36021802

第三篇:弧长与扇形面积教学反思

24.4弧长和扇形面积 ——扇形面积一课的教学反思

柳州市融安县长安镇第一中学 陈灵群

本节课内容是新人教版九年级第24章第四节的第二课时,教学目标:

1、经历扇形面积公式的探索过程;

2、会利用扇形面积的计算公式进行计算;

3、渗透辩证的观点和转化的思想。教学重点:扇形的面积的计算。教学难点:利用扇形面积公式计算阴影图形的面积。教材是把弧长和扇形面积放在一课时授完,本人考虑到本班学生的基础比较差,一节课讲完弧长和扇形面积公式的探索过程和利用公式进行计算,学生是吃不消的,但实际教学下来,我们总是需要两课时处理,学生才能把两个公式掌握好。因此,还不如一节课就掌握一个公式,这样学生易于接受新知识,也增强对数学学习的兴趣。

通过上这节课,本次我的授课思路是:复习圆周长公式——弧长公式,由此由圆面积公式类比导出扇形面积公式。使学生在经历数学知识发生、发展、形成的“再创造”活动中,获取广泛的数学活动经验,进而促进自身的主动发展。重点强调培养学生解决实际问题的能力。首先是与学生一起复习圆的周长、面积计算公式,接着用以下的题目引入新课,与学生一起探索出扇形面积的计算公式。

一、温故知新:

1.圆的周长公式是。2.圆的面积公式是。3.什么叫弧长?弧长公式是。

4、什么叫扇形?

二、自主学习:圆的面积可以看作 度圆心角所对的扇形的面积;

1、设圆的半径为R,180°的圆心角所对的扇形面积S扇形=_______。

2、设圆的半径为R,90°的圆心角所对的扇形面积S扇形=_______。

3、设圆的半径为R,45°的圆心角所对的扇形面积S扇形=_______。

4、设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______。„„

5、设圆的半径为R,n°的圆心角所对的扇形面积S扇形=_______。

6、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?

三、新知掌握。利用扇形面积计算公式完成以下题目.1、若扇形的圆心角n为50°,半径为R=1,则这个扇形的面积,S扇=;

2、若扇形的圆心角n为60°, 面积为2,则这个扇形的半径R=;

3、若扇形的半径R=3, S扇形=3π,则这个扇形的圆心角n的度数为;

4、若扇形的半径R=2㎝,弧长l4㎝,则这个扇形的面积,S扇=;

3四、典型例题:(教科书第111页例1)

如图:水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m.

求截面上有水部分的面积(精确到0.01m2).

五、巩固新知:

1、教材122页练习第1题,2、教材122页练习第2题,3、习题24.4第1题填空。(答案写在教材上)

六、收获和小结:

1、弧长的计算公式

2、扇形面积计算公式

nnrn12rsr2或slr3601803602通过上这节课,我认为自己在以下几方面是值得肯定的: l

1、注重了学生的学情。我们的学生大部分学习比较被动,思维灵活的学生少,学习能力不强,做题速度慢,他们所掌握的知识就局限于老师上课讲的内容,没做过、没讲过的题目基本不会做,一节课所学的内容不能多、不能快,宁可慢点,小步伐,带领学生逐一突破难关。

2、教材的处理比较恰当。尽管教材已尽所能安排好教学内容和课时,但毕竟城乡学生素质有差异,教师要根据学生的具体学情进行恰当处理教材。学生难理解、难掌握的内容,可以通过增加课时,分散难点,强加练习。如“弧长与扇形面积”这节课需要花两课时,第一课时只学一个公式,通过做大量练习巩固公式,提高计算能力,提高了自信心,到了第二课时学扇形面积公式时,利用类比的方法,学生自然就会由圆面积公式探索出扇形面积计算公式了。同时设计一些简单的计算题,已知n、R求扇形面积s,已知 n、扇形面积s求R,已知l、R求扇形面积s等等。

3、突出重点、分散难点、注重数学的严密性。在讲解例题1时,由于例题的解答不是直接套用扇形面积公式,所以需要教师的引导过程,并且这个过程需要逐步引导、逐个突破。在形成一定的解答思路后,师生共同完成解答。引导学生:截面上有水的部分是指哪一部分,弓形的面积如何求?学生自然会想到弓形面积等于扇形面积减去三角开面积,从而就会想到 如何构建数学模型,如何添加辅助线?引导学生“过点O作AB的垂线,交弦AB于点D,交 AB弧于点C,同时让学生明白哪一条线段的长是0.3m,这道题是一道综合性很强的题目,它需要利用到垂径定理、弓形的高、三角形和扇形的面积计算公式、以及求扇形的圆心角时,还要用上在直角三角形中,300所对的直角边等于斜边的一半这个定理的逆定理,但这个定理,新教材没有直接给出,我们只能强加给学生。而且又没有学习三角函数,如果学习了三角函数,那么就可以利用三角函数来求角度。”教材在解答中是直接作弦AB的垂直平分线且默认经过点O,这一处理就不是非常严密和科学。

4、重视教师的教学观。教师是重在培养学生能力,还是重在防止学生犯错?以本节课为例,计算半径、圆心角很麻烦,把有关数值直接代入弧长、扇形面积公式后要约分、变形,转化为解一元一次方程,由于许多学生基本技能不过关,有些老师为防止学生这个犯错那个犯错干脆把公式变形,推出计算半径、圆心角的公式,让学生背公式,这样学生就能直接代入数据得出半径、圆心角。但事实上,我个人觉得这样的做法不好,随着时间的推移,学习的内容越来越多,公式越来越多,让学生背太多公式会增加学生负担,我是这样做的,在一开始学习弧长、扇形面积公式时,就让学生根据其中两个量直接代入公式,通过解方程求第三个量。刚开始时,学生解起来很慢,甚至不会解,但是经过老师耐心训练,学生慢慢熟能生巧,也能很快很准确地解出来,从而提高学生计算能力。

5、在新课程理念下,强调了几何建摸过程和几何推理的要求要发生变化。图形由于自身的特点,较之其他的数学模型更加直观、形象,更易于从现实情景中抽象出数学的概念、理论和方法。在课堂中我改变以往那种教师讲学生听、教师问学生答的传统的教学方法,让学生随时动手,把所有的学生都调动参与到活动中来,充分调动了学生的积极性,让学生通过小组讨论,合作探究、动手操作等方法让学生巩固了公式的形成过程,这完全符合新课程所倡导的“以学生为主体,教师为主导”的教学理念。

尽管我上的这节课有以上值得肯定之处,但仍然存在以下几点不足之处:

1、由复习到新授的衔接还算流畅,但对学生的思维启发可能不够到位,所以学生在实际应用中用得不熟练,对公式中的字母还得想一想才能反应过来代表哪个量。

2、课堂节奏把握得不够准确,讲解例题时所花时间过多,导致最后的练习不够充分。

3、鼓励性语言使用得还不够多。在以后的教学中,不但要利用口头语言,还要利用肢体语言进行对学生的鼓励。

虽然也存在一些不足之处,但我还是认为这节课较好地实现了知识与技能目标,对于过程与方法和情感态度与价值观目标的实现也非常到位,是比较成功的。

在今后的教学中,我将不断追求更高目标,努力使自己的课堂教学更加生动、活跃,使学生真正在快乐中学习,享受学习的快乐。

第四篇:弧长和扇形面积.教学反思

《弧长和扇形面积》教学反思

一、教学构思:

本次授课思路:圆周长公式——弧长公式,由此类比导出扇形面积公式。重点强调培养学生解决实际问题的能力。首先是与学生一起复习圆的周长、面积计算公式,接着用教材中的题目引入新课,与学生一起推导弧长与扇形面积的计算公式。由复习到新授的衔接还算流畅,但对学生的思维启发可能不够到位,所以学生在实际应用中用得不熟练,对公式中的字母还得想一想才能反应过来代表哪个量。

本节课主要内容是弧长及扇形面积的计算。不仅强调学生会运用公式,而且要理解算法的意义。引例的设计主要考虑了学生生活实际,放弃了课本的引例,选择了很多实际问题,特别是自动喷水装置探索其喷灌范围、计算扇子的贴纸部分面积等例子,这样能够激发学生的学习欲望,调动学生积极性,让学生积极动手、动脑,解决实际问题。使学生在经历数学知识发生、发展、形成的“再创造”活动中,获取广泛的数学活动经验,进而促进自身的主动发展。

二、课堂教学反思:

本节课的内容一般来说老师会把重点放在公式的理解和熟练运用上,对于九年级的学生来说这很重要,而且弧长公式和扇形面积公式的推导过程也比较容易理解。但是这样可能导致中等及以下学生因为某些概念、细节的不理解或者不懂,造成学习的障碍。结合学生的实际,认真分析学生可能出现障碍的地方,逐步引导学生观察、比较,从基本的概念入手,处理好各个思维的转折点,在注重基础的同时发展学生的数学能力,关注了全体学生的发展。另外在提问的处理上进行分层,避免死板的教公式、记公式的老套,希望能激发学生思维,体现教师引导者的身份。

针对学生的实际情况,在课堂中关注大多数学生能够参与到教学中来很重要,存在的不足之处是,于九年级的学生来说,成绩较好学生的思维明显受到限制,不能最大限度的培养数学优生的数学思维。如何在关注全体学生的同时让优生最大限度的发展,最终体现课程标准中让不同的人在数学上得到不同的发展的理念,是我们数学课堂教学一直要思考的问题。

本节课的不足还在于时间的分配上不是很合理,由于在学生在探索弧长时我担心引导措施不到位,导致时间过长,后面的教学环节比较吃紧,对学生在新知的应用上没有足够的时间。有待于在今后的教学中注意这方面的问题,以便进一步提高课堂教学效率。

三、教材处理的反思:

《弧长和扇形面积》课后反思: 任何新知识获得,都是要经过“实践——认识——再实践——再认识”的过程,这个过程,本身蕴含着一个再创造的过程。从教学这个意义上来讲,就强调了以学生为中心,引导学生自主学习。同时,培养学生的合作能力。可是上完这节课,我感触颇深,有欣慰的,也有遗憾的。欣慰的是自己对“先学后教”的课堂模式有了进一步的认识;遗憾的是这堂课存在不少问题。在此我对自己发现的问题进行反思。首先,揭示目标时三言两语,没能使学生产生深刻的印象。其次,对学生实际情况的把握不到位,自认为出现了以下两个问题:一是推导公式的用时多了;二是对设计的几个问题中的重点引导不足,使部分学生对公式的探究过程仍存在一定的疑点。再次在例题评析时脱离了学生的理解。应该根据学生的疑难进行引导,但我却从自己的理解出发了。接着因上面环节用时过长明显影响了当堂训练的开展。总之,通过对这堂课的反思,发现了问题,这就是收获。只有这样发现问题,找出问题,才能促使自己去探索,去解决问题,在发现和解决问题中提高自身教育教学的水平,使自己的课堂更好的服务于“人人学有用的数学”。

第五篇:弧长和扇形面积课堂教学设计

弧长和扇形面积课堂教学设计

教学目标

1,知识与技能 掌握弧长与面积的计算公式,并会用公式解决一些实际问题 2.过程与方法:

经历探索弧长计算公式及扇形面积计算公式的过程,提高探索能力; 知道弧长及扇形面积公式后,能用公式解决问题,训练数学运用能力。3,情感态度与价值观

通过用弧长及扇形面积公式解决实际问题,体验数学与人类生活的密切联系,激发学习数学的兴趣,提高学习积极性,同时提高运用能力。

教学重点:

经历探索弧长及扇形面积计算公式的过程;会用公式解决问题; 教学难点:

探索弧长及扇形面积计算公式;用公式解决实际问题; 教学过程:

一、创设问题情境,引入新课

我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的—部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索。

二、探索研究,获取新知 探究一:教师活动:提出问题

制造弯形管道时,经常要先按中心线计算“展直长度”(教材120页图24.4-1中虚线的长度),再下料,这就涉及到计算弧长的问题。

学生活动:自主探究弧长的计算方法。

教师提示:可以把它分为几个部分,AC和BD的长我们知道,只需要求出AB段弧长,就能得出结果。

师:同学们,你们还记得圆周长的计算公式吗? 生:C=2 R 师:那圆的周长可以看作是多少度的圆心角所对的弧长? 生:是360°所对的弧长。

师:那我们再想,1°的圆心角所对的弧长是多少呢?n°的圆心角呢? 生:1°的弧长=教师总结:

在半径是R的圆中,因为360°的圆心角所对的弧长就是圆周长C=2R,所

nR以n°的圆心角所对的弧长为: L=

180[教法]:让学生们理解后识记。

图24.4-1中所给的数据,由上面的弧长公式,可得AB弧 的长为 L=100900 ≈1570(mm)。

1802RnR;n°的弧长=。

180360探究二:扇形的面积

如下图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。

0A B

师:上图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为 n。的扇形面积占圆面积的几分之几?进而求出圆心角的扇形面积。

教师活动:

如果设圆心角是n°的扇形面积为S,圆的半径为R,那么扇形的面积为nR2nRS=,由于这个扇形对应的弧长L=,还可以推出扇形面积的另一个计360180算公式

S=1LR(这个公式最好在教师的引导下由学生推出)2[教法]:类比弧长的公式的探究方法自主探究扇形的面积的计算方法。

三、典型例题

例1:如图24.4-3,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m2)。

OABC

解:如图24.4-3,连接OA、OB,作弦AB的垂直平分线,垂足为D,交 于点C。

∵OC=0.6,DC=0.3, ∴OD=OC-DC=0.3。

在Rt△OAD中,OA=0.6,利用勾股定理可得,AD=0.3。

在Rt△AOD中,OD= OA,∴∠OAD=30°。

∴∠AOD=60°,∠AOB=120°。有水部分的面积 S=S扇形OAB-S

OAB=1201×0.62-AB×OD 236010.63 ×0.3 2=0.12-≈0.22(m)2

四、课堂练习

1.有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81°,求这段圆弧的半径R(精确到0.1m)。

a为半径的圆相2切于点D、E、F,求图中以D、E、F为顶点的封闭图形的面积。2.正三角形ABC的边长为a,分别以A、B、C为圆心,以

A DEB E C

五、小结

本节课我们共同探寻了弧长和扇形面积的计算公式,一方面,要理解公式的由来,另一方面,能够应用它们计算有关。计算时要力求细心准确。

下载弧长与扇形面积评课(王圣华)word格式文档
下载弧长与扇形面积评课(王圣华).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《弧长和扇形面积》教学设计

    24.4 弧长和扇形面积 第二课时 一、教学目标 (一)学习目标 1.了解圆锥母线的概念,探索并理解圆锥侧面和全面积计算公式; 2.会灵活应用圆锥侧面积和全面积计算公式解决问题. (二)学习......

    弧长及扇形的面积教案(★)

    24.4.1弧长和扇形的面积 钦南区丽光学校:吴春明 教学目标 (一)知识目标 1.经历探索弧长计算公式及扇形面积计算公式的过程; 2.了解弧长计算公式及扇形面积计算公式,并会应用公式......

    弧长与扇形面积说课稿(5篇范例)

    24.4.1弧长和扇形面积说课稿 一、教材分析: (一)教材的地位与作用“ 本节课的教学内容是义务教育课程标准实验教科书新人教版九年级上册新课标实验教材《第24章圆》中的 “弧长......

    弧长和扇形的面积 教学设计

    弧长和扇形的面积 教学设计 姜永娜 教学目标 知识与技能: 1.会计算弧长及扇形的面积。 2.会计算圆锥的侧面积和全面积,并能用这些知识解决相关问题。 过程与方法: 1.通过识图、阅......

    弧长及扇形的面积教学反思

    弧长及扇形的面积教学反思 弧长及扇形的面积教学反思1 前几天,我上了“弧长和扇形的面积”一课在课堂中体现出许多问题,现做一点自我反思。在新课程理念下,强调了几何建摸过程......

    《弧长与扇形的面积》集体备课发言稿[★]

    弧长和扇形的面积集体备课想法 主备人吴邦杰一、教材分析: 1、教材的地位与作用 本节课的教学内容是义务教育课程标准实验教科书,新人教版九年级上册新课标实验教材《第24章圆......

    弧长和扇形面积教学反思[五篇范例]

    弧长和扇形面积教学反思身为一名刚到岗的教师,课堂教学是我们的任务之一,借助教学反思可以快速提升我们的教学能力,那么写教学反思需要注意哪些问题呢?以下是小编整理的弧长和扇......

    3.9 弧长及扇形面积教案(九年级下册)

    §3.7 弧长及扇形面积 教学目标: 1.知识与技能:经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题 2.过程与方法:经历探索......