第一篇:九年级数学下册 24.7 弧长与扇形面积教案2 沪科版
第24章 圆
24.7弧长与扇形面积(2)
【教学内容】弧长与扇形面积(2)【教学目标】 知识与技能
了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.
通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.
过程与方法
通过观察、分析、推论,发展学生的识图能力及逻辑推理能力。情感、态度与价值观
让学生经历操作、实验、发现、确认等数学活动,体会数学观点,培养学生的数学意识。
【教学重难点】
重点:圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.
难点:圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题. 【导学过程】 【知识回顾】
1、什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点。
2、一种太空囊的示意图如图所示,•太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.
【情景导入】
课件展示 【新知探究】 探究
一、自学教材,思考下列问题:
1、什么是圆锥的母线?
2、圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积? 若圆锥的母线长为l,底面圆的半径为r,则圆锥的侧面积可表示为,圆锥的全面积为。
3、圆柱的侧面展开图是什么图形?若圆柱底面圆的半径为r,圆柱的高为h,则圆柱的侧面积可表示为,全面积可表示为。
探究
二、例题探究 …….【知识梳理】
本节课你还有什么疑惑? 【随堂练习】
1、已知圆锥的底面半径为1cm,母线长为3cm,则其全面积为()。A、π B、3π C、4π D、7π
2、(中考题)用半径为30cm,圆心角为120°的扇形围成一个圆锥的侧面,•则圆锥的底面半径为()
A.10cm B.30cm C.45cm D.300cm
3、如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60
C.120 B.90 D.180
(第3题)
4、矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,•所得圆柱体的表面积是__________(用含的代数式表示)
5、将一个底面半径为3cm,高为4cm圆锥形纸筒沿一条母线剪开,所得的侧面展开图的面积为_______________。
6、一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是______.
7、如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,•求圆锥全面积.
第二篇:3.9 弧长及扇形面积教案(九年级下册)
§3.7 弧长及扇形面积
教学目标:
1.知识与技能:经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题
2.过程与方法:经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力;了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.
3.情感态度与价值观:经历探索弧长及扇形面积计算公式.让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点:经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形面积计算公式;会用公式解决问题.
教学难点:探索弧长及扇形面积计算公式;用公式解决实际问题. 教学设计:
一、创设问题情境,引入新课
在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的—部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.
二、新课讲解 1复习
(1).圆的周长如何计算?(2).圆的面积如何计算?(3).圆的圆心角是多少度?(若圆的半径为r,则周长l2r,面积Sr2,圆的圆心角是360°.)2.探索弧长的计算公式
如右图,某传送带的一个转动轮的半径为lOcm.
(1)转动轮转一周,传送带上的物品A被传送多少厘米?(2)转动轮转1°,传送带上的物品A被传送多少厘米?(3)转动轮转n°,传送带上的物品A被传送多少厘米? 分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360°的圆心角,所以转动轮转l°,传送带上的物品A被传
A-1n
子的另一端拴着一只狗.
(1)这只狗的最大活动区域有多大?(2)如果这只狗只能绕柱子转过n°角,那么它的最大活动区域有多大?(1)如图(1),这只狗的最大活动区域是圆的面积,即9.
(2)如图(2),狗的活动区域是扇形。扇形是圆的一部分,360°的圆心角对应的圆面积,l°的圆心角对应圆面积的11,即×9=,n°36036040的圆心角对应的圆面积为n×
n=. 4040 如果圆的半径为R,则圆的面积为R2,l°的圆心角对应的扇形面积为R22nR,n°的圆心角对应的扇形面积为n. 360360360R2因此扇形面积的计算公式为S扇形nR2 360其中R为扇形的半径,n为圆心角. 2.弧长与扇形面积的关系
我们探讨了弧长和扇形面积的公式。在半径为R的圆中,n°的圆心角所对的弧长的计算公式为lnR,n°的圆心角的扇形面积公式为180S扇形nR2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有360关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流.
2nRnR ∵l,S扇形 180360 ∴n1nR2RR 3602180 ∴S扇形 1lR 2 3.扇形面积的应用
例2:扇形AOB的半径为l2cm,∠AOB=120°,求AB的长(结果精确到O.1cm)和扇形A0B的面积(结果精确到O.1cm2).
分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角本题中这些条件已经告诉了,因此这个问题就解决了
∴S=S扇形CODS扇形AOB11103061896cm2 22 所以阴影部分的面积为96cm2.
第三篇:弧长和扇形面积教案
24.1弧长和扇形面积(第1课时)
教学目标 :
1、知识 与技能:理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算;
2、过程与方法:经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。
3、情感与态度:通过联系和运动发展的观点,渗透辩证唯物主义思想方法。教学重难点:
重点:弧长,扇形面积公式的导出及应用。难点:用公式解决实际问题。教学过程:
一、情境导入
在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?
二、课内探究
(一)弧长公式
1、回顾圆弧的定义,并提问“弧是圆的一部分,你会求弧的长度吗?”
2、自主学习,合作探究(5分钟)
(1)半径为R的圆,圆的周长是多少?半圆呢?四分之一圆呢?(2)圆的周长可以看作是多少 度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?(4)n°圆心角所对的弧长是多少?,(点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的弧长为n°的圆心角所对的弧长是1°的圆心角所对的弧长的n倍,n
3、精讲例题
例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)
2πRπR 360180πRnπR即l.180180
4、链接中考
(1)已知圆心角为60°,半径为1,则弧长为 _________.(2)已知圆心角为120°,弧长为10πcm,则半径为__________ cm. 检查学生练习情况并点评
(二)扇形面积公式
1、扇形的定义并学会判断什么图形是扇形?
2、自主学习,合作探究(5分钟)
(1)如果圆的半径为R,则圆的面积是多少?半圆呢?四分之一圆呢?(2)1°的圆心角对应的扇形面积为 多少?
(3)n°的圆心角对应的扇形面积为 多少?
πR2(点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的扇形面积为
360πR2n°的圆心角所对的扇形面积是1°的圆心角所对的扇形面积的n倍,n即
360nπR2S扇形.3603、比较弧长公式和扇形面积公式,你能类比扇形面积和对应弧长的关系.推导并归纳:S扇形4、链接中考
(1)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 _________(结果保留π).(2)已知扇形的面积为2π,半径为3,则该扇形的弧长为_________(结果保留π). 检查学生练习情况并点评
三、练习
P113 练习第1、2、3题
四、小结
通过这节课,你们学习了什么知识?
1、弧长公式
2、扇形面积公式
3、弧长公式与扇形面积公式的关系
4、解决课前问题
在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?
五、布置作业
习题24.4 第1、2、3、6、7、8题 nπR21nπR1RlR
36021802
第四篇:弧长与扇形面积教学反思
24.4弧长和扇形面积 ——扇形面积一课的教学反思
柳州市融安县长安镇第一中学 陈灵群
本节课内容是新人教版九年级第24章第四节的第二课时,教学目标:
1、经历扇形面积公式的探索过程;
2、会利用扇形面积的计算公式进行计算;
3、渗透辩证的观点和转化的思想。教学重点:扇形的面积的计算。教学难点:利用扇形面积公式计算阴影图形的面积。教材是把弧长和扇形面积放在一课时授完,本人考虑到本班学生的基础比较差,一节课讲完弧长和扇形面积公式的探索过程和利用公式进行计算,学生是吃不消的,但实际教学下来,我们总是需要两课时处理,学生才能把两个公式掌握好。因此,还不如一节课就掌握一个公式,这样学生易于接受新知识,也增强对数学学习的兴趣。
通过上这节课,本次我的授课思路是:复习圆周长公式——弧长公式,由此由圆面积公式类比导出扇形面积公式。使学生在经历数学知识发生、发展、形成的“再创造”活动中,获取广泛的数学活动经验,进而促进自身的主动发展。重点强调培养学生解决实际问题的能力。首先是与学生一起复习圆的周长、面积计算公式,接着用以下的题目引入新课,与学生一起探索出扇形面积的计算公式。
一、温故知新:
1.圆的周长公式是。2.圆的面积公式是。3.什么叫弧长?弧长公式是。
4、什么叫扇形?
二、自主学习:圆的面积可以看作 度圆心角所对的扇形的面积;
1、设圆的半径为R,180°的圆心角所对的扇形面积S扇形=_______。
2、设圆的半径为R,90°的圆心角所对的扇形面积S扇形=_______。
3、设圆的半径为R,45°的圆心角所对的扇形面积S扇形=_______。
4、设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______。„„
5、设圆的半径为R,n°的圆心角所对的扇形面积S扇形=_______。
6、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?
三、新知掌握。利用扇形面积计算公式完成以下题目.1、若扇形的圆心角n为50°,半径为R=1,则这个扇形的面积,S扇=;
2、若扇形的圆心角n为60°, 面积为2,则这个扇形的半径R=;
3、若扇形的半径R=3, S扇形=3π,则这个扇形的圆心角n的度数为;
4、若扇形的半径R=2㎝,弧长l4㎝,则这个扇形的面积,S扇=;
3四、典型例题:(教科书第111页例1)
如图:水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m.
求截面上有水部分的面积(精确到0.01m2).
五、巩固新知:
1、教材122页练习第1题,2、教材122页练习第2题,3、习题24.4第1题填空。(答案写在教材上)
六、收获和小结:
1、弧长的计算公式
2、扇形面积计算公式
nnrn12rsr2或slr3601803602通过上这节课,我认为自己在以下几方面是值得肯定的: l
1、注重了学生的学情。我们的学生大部分学习比较被动,思维灵活的学生少,学习能力不强,做题速度慢,他们所掌握的知识就局限于老师上课讲的内容,没做过、没讲过的题目基本不会做,一节课所学的内容不能多、不能快,宁可慢点,小步伐,带领学生逐一突破难关。
2、教材的处理比较恰当。尽管教材已尽所能安排好教学内容和课时,但毕竟城乡学生素质有差异,教师要根据学生的具体学情进行恰当处理教材。学生难理解、难掌握的内容,可以通过增加课时,分散难点,强加练习。如“弧长与扇形面积”这节课需要花两课时,第一课时只学一个公式,通过做大量练习巩固公式,提高计算能力,提高了自信心,到了第二课时学扇形面积公式时,利用类比的方法,学生自然就会由圆面积公式探索出扇形面积计算公式了。同时设计一些简单的计算题,已知n、R求扇形面积s,已知 n、扇形面积s求R,已知l、R求扇形面积s等等。
3、突出重点、分散难点、注重数学的严密性。在讲解例题1时,由于例题的解答不是直接套用扇形面积公式,所以需要教师的引导过程,并且这个过程需要逐步引导、逐个突破。在形成一定的解答思路后,师生共同完成解答。引导学生:截面上有水的部分是指哪一部分,弓形的面积如何求?学生自然会想到弓形面积等于扇形面积减去三角开面积,从而就会想到 如何构建数学模型,如何添加辅助线?引导学生“过点O作AB的垂线,交弦AB于点D,交 AB弧于点C,同时让学生明白哪一条线段的长是0.3m,这道题是一道综合性很强的题目,它需要利用到垂径定理、弓形的高、三角形和扇形的面积计算公式、以及求扇形的圆心角时,还要用上在直角三角形中,300所对的直角边等于斜边的一半这个定理的逆定理,但这个定理,新教材没有直接给出,我们只能强加给学生。而且又没有学习三角函数,如果学习了三角函数,那么就可以利用三角函数来求角度。”教材在解答中是直接作弦AB的垂直平分线且默认经过点O,这一处理就不是非常严密和科学。
4、重视教师的教学观。教师是重在培养学生能力,还是重在防止学生犯错?以本节课为例,计算半径、圆心角很麻烦,把有关数值直接代入弧长、扇形面积公式后要约分、变形,转化为解一元一次方程,由于许多学生基本技能不过关,有些老师为防止学生这个犯错那个犯错干脆把公式变形,推出计算半径、圆心角的公式,让学生背公式,这样学生就能直接代入数据得出半径、圆心角。但事实上,我个人觉得这样的做法不好,随着时间的推移,学习的内容越来越多,公式越来越多,让学生背太多公式会增加学生负担,我是这样做的,在一开始学习弧长、扇形面积公式时,就让学生根据其中两个量直接代入公式,通过解方程求第三个量。刚开始时,学生解起来很慢,甚至不会解,但是经过老师耐心训练,学生慢慢熟能生巧,也能很快很准确地解出来,从而提高学生计算能力。
5、在新课程理念下,强调了几何建摸过程和几何推理的要求要发生变化。图形由于自身的特点,较之其他的数学模型更加直观、形象,更易于从现实情景中抽象出数学的概念、理论和方法。在课堂中我改变以往那种教师讲学生听、教师问学生答的传统的教学方法,让学生随时动手,把所有的学生都调动参与到活动中来,充分调动了学生的积极性,让学生通过小组讨论,合作探究、动手操作等方法让学生巩固了公式的形成过程,这完全符合新课程所倡导的“以学生为主体,教师为主导”的教学理念。
尽管我上的这节课有以上值得肯定之处,但仍然存在以下几点不足之处:
1、由复习到新授的衔接还算流畅,但对学生的思维启发可能不够到位,所以学生在实际应用中用得不熟练,对公式中的字母还得想一想才能反应过来代表哪个量。
2、课堂节奏把握得不够准确,讲解例题时所花时间过多,导致最后的练习不够充分。
3、鼓励性语言使用得还不够多。在以后的教学中,不但要利用口头语言,还要利用肢体语言进行对学生的鼓励。
虽然也存在一些不足之处,但我还是认为这节课较好地实现了知识与技能目标,对于过程与方法和情感态度与价值观目标的实现也非常到位,是比较成功的。
在今后的教学中,我将不断追求更高目标,努力使自己的课堂教学更加生动、活跃,使学生真正在快乐中学习,享受学习的快乐。
第五篇:弧长及扇形的面积教案
24.4.1弧长和扇形的面积
钦南区丽光学校:吴春明
教学目标(一)知识目标
1.经历探索弧长计算公式及扇形面积计算公式的过程;
2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.(二)能力目标
1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力,能用公式解决问题,训练学生的数学运用能力。
(三)情感与价值观
1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点
探索弧长及扇形面积计算公式的过程. 教学难点
用公式解决实际问题. 教学过程
Ⅰ.创设问题情境,引入新课
[师] 老师想将扇子的边缘贴上金纸边,买多长比较合适? 帮老师解决这个问题?哪位同学可以 [生]学生各抒己见,说出解决问题的方法 引入课题:弧长和扇形面积 Ⅱ.新课讲解
一、探索弧长的计算公式
(1)提问:
1.半径为R的圆,周长是多少?
2.圆的周长可以看作是多少度的圆心角所对的弧? 3.1°圆心角所对弧长是多少? 4.2°圆心角所对弧长是多少? 5. 3°圆心角所对弧长是多少?...n°的圆心角所对的弧长是多少?
(2)学生之间相互讨论得出答案,进而推导出⊙O半径为R,n°的圆心角所对的弧长公式为
注意:进行计算时,公式中的数,不带单位。
(3)弧长公式的运用 巩固提升
(一)2、已知90°的圆心角所对的弧长为2πcm,则此弧长所在圆的半径是 cm
(4)例题讲解
PPT展示例题:先让学生自主学习,教师最后适当讲解分析。
例
1、制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)解:由弧长公式,可得弧AB的长 lnR180n
表示的是1度的圆心角的倍nR l180
因此所要求的展直长度
L27005002970答:管道的展直长度为2970mm
二、探索扇形面积的计算公式
(一)扇形的概念
1、由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。
2、会判断某个图形是否是扇形
(二)面积公式的探索
(1)提问:
1.半径为R的圆,面积是多少?
2.圆的面积可以看作是多少度圆心角所对的扇形? 3.1°圆心角所对对应的扇形面积是多少? 4.n°的圆心角所对的弧长是多少?
(2)学生之间相互讨论得出答案,进而推导出⊙O半径为R,n°的圆心角所对应得扇形面积为 S扇形nR2360注意:公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;(3)扇形面积公式的运用
1、已知⊙O的圆心角和半径如图所示,则S扇形AOB =
2、一个扇形的半径为3cm,扇形的弧长为πcm,则该扇形的圆心角是
3、已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是
提问:扇形的面积可否用弧长的方式来表示?若可以,扇形的面积公式还可以如何表示?
【学生】}互相讨论,师生总结,扇形的面积与弧长的关系。
(4)例题讲解
PPT展示例题:老师做相应的提示,逐步引导学生解题。
例
2、如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积。(精确到0.01cm)。
S扇形1lR224、已知扇形的半径为24cm,弧长为 20 π cm,那么这个扇形的面积是________cm
三、综合巩固
学生之间互相讨论学习,教师再讲评 1、(2013年.琼州)如图1,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是多少?
BADC图1
图2
2、(2014年山东)如图2,⊙A、⊙B、⊙C、⊙D两两不相交,且半径都是2cm,求图中阴影部分的面积。
3、(2010年玉林)如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,求图中阴影部分的面积。
4、