第一篇:3.4.1弧长和扇形的面积4教案
12999数学网(www.xiexiebang.com)
3.4.1 弧长和扇形的面积
教学目标:
经历探索弧长计算公式及扇形面积计算公式的过程,了解弧长计算公式及扇形面积的计算公式,并会应用公式解决问题. 教学重点:
nπR弧长计算公式及理解,弧长公式ι=180,其中R为圆的半径,n为圆弧所对的圆心角的度数,不带单位.由于整个圆周可看作360°的弧,而360°的圆心角所对的弧长为圆周长C=2πR,所以1°的圆心角所对的1πRnπR弧长是360×2πR,即180,可得半径为R的圆中,n°的圆心角所对的弧长ι=180.
1n2圆心角是1°的扇形的面积等于圆面积的360,所以圆心角是n°的扇形面积是S扇形=360πR.要注意扇形面积公式与弧长公式的区别与联系(扇形面积公式中半径R带平方,分母为360;而弧长公式中半径R不带平方,分母是180).已知S扇形、ι、n、R四量中任意两个量,都可以求出另外两个量.
1扇形面积公式S扇=2ιR,与三角形的面积公式有些类似.只要把扇形看成一个曲边三角形,把弧长看作底,R看作高就比较容易记了. 学习难点: 利用弧长公式时应注意的问题及扇形面积公式的灵活运用. 学习方法: 学生互相交流探索法.学习过程:
一、例题讲解:
【例1】 一圆弧的圆心角为300°,它所对的弧长等于半径为6cm的圆的周长,求该圆弧所在圆的半径.
【例2】 如图,在半径为3的⊙O和半径为1的⊙O′中,它们外切于B,∠AOB=40°.AO∥CO′,求曲线ABC的长.
【例3】 扇形面积为300π,圆心角为30°,求扇形半径.
12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载
12999数学网(www.xiexiebang.com)
【例4】 如图,正三角形ABC内接于⊙O,边长为4cm,求图中阴影部分的面积.
【例5】 如图,等腰直角三角形ABC的斜边AB=4,O是AB的中点,以O为圆心的半圆分别与两直角边相切于点D、E,求图中阴影部分的面积.
【例6】 半径为3cm,圆心角为120°的扇形的面积为()A.6πcm 2
222B.5πcm C.4πcm D.3πcm
【例7】 如图,在两个同心圆中,两圆半径分别为2,1,∠AOB=120°,则阴影部分面积是()
A.4π 4B.2π C.3π D.π
过B点作BC⊥【例8】 如图,已知⊙O的直径BD=6,AE与⊙O相切于E点,AE,垂足为C,连接BE、DE.(1)求证:∠1=∠2;
(2)若BC=4.5,求图中阴影部分的面积.(结果可保留π与根
号)
【例9】 如图,△ABC是正三角形,曲线CDEF„叫做“正三角形的渐开线”,其中CD、DE、EF的圆心依次按A、B、C循环,它们依次相连接.如果AB=1,求曲线CDEF的长.
⌒⌒⌒
【例10】 如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径连接五个圆心得五边形ABCDE,求图中五个扇形的面积之和(阴影部
12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载
都是1,顺次分).
12999数学网(www.xiexiebang.com)
【例11】 如图是赛跑跑道的一部分,它由两条直线和中间半圆形弯内外两条跑道的终点在一直线上,则外跑道起点往前移,才能使两跑度,如果跑道宽1.22米,则外跑道的起点应前移 米.(π取3.14,0.01米)
二、课后练习
1.在半径为12的⊙O中,150°的圆心角所对的弧长等于()A.24πcm B.12πcm
C.10πcm
D.5πcm
道组成的.若道有相同的长结果精确到2.如果一条弧长等于ι,它的半径等于R,这条弧所对的圆心角增加1°,则它的弧长增加()
1A.n πRB.180
180lC.πR
1D.360
3.已知扇形的圆心角为60°,半径为5,则扇形有周长为()
5A.3π 5B.3π+10 50B.π
5C.6π
25C.π
5D.6π+10 100D.π 4.圆环的外圆周长为250cm,内圆周长为150cm,则圆环的宽度为()
A.100cm
5.弧长等于半径的圆弧所对应的圆心角是()
360A.π 2πA.3 180B.π 4πB.3
90C.π 8πC.3
D.60°
6.正三角形ABC内接于半径为2cm的圆,则AB所对弧的长为()
4π8πD.3或3
7.已知圆的周长是6π,那么60°的圆心角所对的弧长是()
A.3
πB.3
C.
D.π
⌒8.如图1,正方形的边长为1cm,以CD为直径在正方形内画半圆,再以C为圆心,1cm为半径画弧BD,则图中阴影部分的面积为()
π2A.2cm π2B.4cm
π
2C.8cm
π2
D.16cm
12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载
12999数学网(www.xiexiebang.com)
9.如图2,以边长为a的正三角形的三个顶点为圆心,以边长一半为半径画弧,则三弧所围成的阴影部分的面积是()
a223πA.8
A.2倍 a223πB.4
B.3倍
a2π
4C.8C.4倍
32aD.4
D.5倍 10.等边三角形的外接圆面积是内切圆面积的()
11.如图3,一纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长30cm,贴纸部分BD长为20cm,贴纸部分的面积为()
8002A.3πcm
⌒500π2B.3cm
⌒ C.800πcm D.500πcm
212.一条弧所对的圆心角为120°,半径为3,那么这条弧长为 .(结果用π表示)13.已知CD的长为20πcm,CD所对的圆心角为150°,那么CD的半径是 .
⌒πR⌒214.半径为R的圆弧AB的长为,则AB所对的圆心角⌒为,弦AB的长为 .
15.如图,⊙O1的半径O1A是⊙O2的直径,⊙O1的半径O1C交⊙O
2于点B,则AC和
⌒AB的长度的大小关系为 .
16.已知扇形的圆心角是150°,弧长为20πcm,则扇形的面积为 . 17.已知弓形的弦长等于半径R,则此弓形的面积为 .(劣弧为弓形的弧)
18.如图,一块边长为10cm的正方形木板ABCD在水平桌面上绕点D按顺时针方向旋转到A′B′C′D的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20⌒2cm C.10πcm
D.
52πcm 12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载
12999数学网(www.xiexiebang.com)1、19如图,五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从点A到点B,甲虫沿着ADA⌒A1EA2、A2FA3、A3GB路线爬行,乙虫沿着Unit 12 My favorite subject is science曹毅.doc路线爬行,则下列结论正确的是()
A.甲先到B点 B.乙先到B点 C.甲乙同时到达 D.无法确定 ⌒⌒⌒12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载
第二篇:弧长和扇形面积教案
24.1弧长和扇形面积(第1课时)
教学目标 :
1、知识 与技能:理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算;
2、过程与方法:经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。
3、情感与态度:通过联系和运动发展的观点,渗透辩证唯物主义思想方法。教学重难点:
重点:弧长,扇形面积公式的导出及应用。难点:用公式解决实际问题。教学过程:
一、情境导入
在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?
二、课内探究
(一)弧长公式
1、回顾圆弧的定义,并提问“弧是圆的一部分,你会求弧的长度吗?”
2、自主学习,合作探究(5分钟)
(1)半径为R的圆,圆的周长是多少?半圆呢?四分之一圆呢?(2)圆的周长可以看作是多少 度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?(4)n°圆心角所对的弧长是多少?,(点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的弧长为n°的圆心角所对的弧长是1°的圆心角所对的弧长的n倍,n
3、精讲例题
例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)
2πRπR 360180πRnπR即l.180180
4、链接中考
(1)已知圆心角为60°,半径为1,则弧长为 _________.(2)已知圆心角为120°,弧长为10πcm,则半径为__________ cm. 检查学生练习情况并点评
(二)扇形面积公式
1、扇形的定义并学会判断什么图形是扇形?
2、自主学习,合作探究(5分钟)
(1)如果圆的半径为R,则圆的面积是多少?半圆呢?四分之一圆呢?(2)1°的圆心角对应的扇形面积为 多少?
(3)n°的圆心角对应的扇形面积为 多少?
πR2(点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的扇形面积为
360πR2n°的圆心角所对的扇形面积是1°的圆心角所对的扇形面积的n倍,n即
360nπR2S扇形.3603、比较弧长公式和扇形面积公式,你能类比扇形面积和对应弧长的关系.推导并归纳:S扇形4、链接中考
(1)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 _________(结果保留π).(2)已知扇形的面积为2π,半径为3,则该扇形的弧长为_________(结果保留π). 检查学生练习情况并点评
三、练习
P113 练习第1、2、3题
四、小结
通过这节课,你们学习了什么知识?
1、弧长公式
2、扇形面积公式
3、弧长公式与扇形面积公式的关系
4、解决课前问题
在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?
五、布置作业
习题24.4 第1、2、3、6、7、8题 nπR21nπR1RlR
36021802
第三篇:弧长及扇形的面积教案
24.4.1弧长和扇形的面积
钦南区丽光学校:吴春明
教学目标(一)知识目标
1.经历探索弧长计算公式及扇形面积计算公式的过程;
2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.(二)能力目标
1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力,能用公式解决问题,训练学生的数学运用能力。
(三)情感与价值观
1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点
探索弧长及扇形面积计算公式的过程. 教学难点
用公式解决实际问题. 教学过程
Ⅰ.创设问题情境,引入新课
[师] 老师想将扇子的边缘贴上金纸边,买多长比较合适? 帮老师解决这个问题?哪位同学可以 [生]学生各抒己见,说出解决问题的方法 引入课题:弧长和扇形面积 Ⅱ.新课讲解
一、探索弧长的计算公式
(1)提问:
1.半径为R的圆,周长是多少?
2.圆的周长可以看作是多少度的圆心角所对的弧? 3.1°圆心角所对弧长是多少? 4.2°圆心角所对弧长是多少? 5. 3°圆心角所对弧长是多少?...n°的圆心角所对的弧长是多少?
(2)学生之间相互讨论得出答案,进而推导出⊙O半径为R,n°的圆心角所对的弧长公式为
注意:进行计算时,公式中的数,不带单位。
(3)弧长公式的运用 巩固提升
(一)2、已知90°的圆心角所对的弧长为2πcm,则此弧长所在圆的半径是 cm
(4)例题讲解
PPT展示例题:先让学生自主学习,教师最后适当讲解分析。
例
1、制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)解:由弧长公式,可得弧AB的长 lnR180n
表示的是1度的圆心角的倍nR l180
因此所要求的展直长度
L27005002970答:管道的展直长度为2970mm
二、探索扇形面积的计算公式
(一)扇形的概念
1、由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。
2、会判断某个图形是否是扇形
(二)面积公式的探索
(1)提问:
1.半径为R的圆,面积是多少?
2.圆的面积可以看作是多少度圆心角所对的扇形? 3.1°圆心角所对对应的扇形面积是多少? 4.n°的圆心角所对的弧长是多少?
(2)学生之间相互讨论得出答案,进而推导出⊙O半径为R,n°的圆心角所对应得扇形面积为 S扇形nR2360注意:公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;(3)扇形面积公式的运用
1、已知⊙O的圆心角和半径如图所示,则S扇形AOB =
2、一个扇形的半径为3cm,扇形的弧长为πcm,则该扇形的圆心角是
3、已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是
提问:扇形的面积可否用弧长的方式来表示?若可以,扇形的面积公式还可以如何表示?
【学生】}互相讨论,师生总结,扇形的面积与弧长的关系。
(4)例题讲解
PPT展示例题:老师做相应的提示,逐步引导学生解题。
例
2、如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积。(精确到0.01cm)。
S扇形1lR224、已知扇形的半径为24cm,弧长为 20 π cm,那么这个扇形的面积是________cm
三、综合巩固
学生之间互相讨论学习,教师再讲评 1、(2013年.琼州)如图1,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是多少?
BADC图1
图2
2、(2014年山东)如图2,⊙A、⊙B、⊙C、⊙D两两不相交,且半径都是2cm,求图中阴影部分的面积。
3、(2010年玉林)如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,求图中阴影部分的面积。
4、
第四篇:弧长和扇形面积.教学反思
《弧长和扇形面积》教学反思
一、教学构思:
本次授课思路:圆周长公式——弧长公式,由此类比导出扇形面积公式。重点强调培养学生解决实际问题的能力。首先是与学生一起复习圆的周长、面积计算公式,接着用教材中的题目引入新课,与学生一起推导弧长与扇形面积的计算公式。由复习到新授的衔接还算流畅,但对学生的思维启发可能不够到位,所以学生在实际应用中用得不熟练,对公式中的字母还得想一想才能反应过来代表哪个量。
本节课主要内容是弧长及扇形面积的计算。不仅强调学生会运用公式,而且要理解算法的意义。引例的设计主要考虑了学生生活实际,放弃了课本的引例,选择了很多实际问题,特别是自动喷水装置探索其喷灌范围、计算扇子的贴纸部分面积等例子,这样能够激发学生的学习欲望,调动学生积极性,让学生积极动手、动脑,解决实际问题。使学生在经历数学知识发生、发展、形成的“再创造”活动中,获取广泛的数学活动经验,进而促进自身的主动发展。
二、课堂教学反思:
本节课的内容一般来说老师会把重点放在公式的理解和熟练运用上,对于九年级的学生来说这很重要,而且弧长公式和扇形面积公式的推导过程也比较容易理解。但是这样可能导致中等及以下学生因为某些概念、细节的不理解或者不懂,造成学习的障碍。结合学生的实际,认真分析学生可能出现障碍的地方,逐步引导学生观察、比较,从基本的概念入手,处理好各个思维的转折点,在注重基础的同时发展学生的数学能力,关注了全体学生的发展。另外在提问的处理上进行分层,避免死板的教公式、记公式的老套,希望能激发学生思维,体现教师引导者的身份。
针对学生的实际情况,在课堂中关注大多数学生能够参与到教学中来很重要,存在的不足之处是,于九年级的学生来说,成绩较好学生的思维明显受到限制,不能最大限度的培养数学优生的数学思维。如何在关注全体学生的同时让优生最大限度的发展,最终体现课程标准中让不同的人在数学上得到不同的发展的理念,是我们数学课堂教学一直要思考的问题。
本节课的不足还在于时间的分配上不是很合理,由于在学生在探索弧长时我担心引导措施不到位,导致时间过长,后面的教学环节比较吃紧,对学生在新知的应用上没有足够的时间。有待于在今后的教学中注意这方面的问题,以便进一步提高课堂教学效率。
三、教材处理的反思:
《弧长和扇形面积》课后反思: 任何新知识获得,都是要经过“实践——认识——再实践——再认识”的过程,这个过程,本身蕴含着一个再创造的过程。从教学这个意义上来讲,就强调了以学生为中心,引导学生自主学习。同时,培养学生的合作能力。可是上完这节课,我感触颇深,有欣慰的,也有遗憾的。欣慰的是自己对“先学后教”的课堂模式有了进一步的认识;遗憾的是这堂课存在不少问题。在此我对自己发现的问题进行反思。首先,揭示目标时三言两语,没能使学生产生深刻的印象。其次,对学生实际情况的把握不到位,自认为出现了以下两个问题:一是推导公式的用时多了;二是对设计的几个问题中的重点引导不足,使部分学生对公式的探究过程仍存在一定的疑点。再次在例题评析时脱离了学生的理解。应该根据学生的疑难进行引导,但我却从自己的理解出发了。接着因上面环节用时过长明显影响了当堂训练的开展。总之,通过对这堂课的反思,发现了问题,这就是收获。只有这样发现问题,找出问题,才能促使自己去探索,去解决问题,在发现和解决问题中提高自身教育教学的水平,使自己的课堂更好的服务于“人人学有用的数学”。
第五篇:弧长和扇形面积课堂教学设计
弧长和扇形面积课堂教学设计
教学目标
1,知识与技能 掌握弧长与面积的计算公式,并会用公式解决一些实际问题 2.过程与方法:
经历探索弧长计算公式及扇形面积计算公式的过程,提高探索能力; 知道弧长及扇形面积公式后,能用公式解决问题,训练数学运用能力。3,情感态度与价值观
通过用弧长及扇形面积公式解决实际问题,体验数学与人类生活的密切联系,激发学习数学的兴趣,提高学习积极性,同时提高运用能力。
教学重点:
经历探索弧长及扇形面积计算公式的过程;会用公式解决问题; 教学难点:
探索弧长及扇形面积计算公式;用公式解决实际问题; 教学过程:
一、创设问题情境,引入新课
我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的—部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索。
二、探索研究,获取新知 探究一:教师活动:提出问题
制造弯形管道时,经常要先按中心线计算“展直长度”(教材120页图24.4-1中虚线的长度),再下料,这就涉及到计算弧长的问题。
学生活动:自主探究弧长的计算方法。
教师提示:可以把它分为几个部分,AC和BD的长我们知道,只需要求出AB段弧长,就能得出结果。
师:同学们,你们还记得圆周长的计算公式吗? 生:C=2 R 师:那圆的周长可以看作是多少度的圆心角所对的弧长? 生:是360°所对的弧长。
师:那我们再想,1°的圆心角所对的弧长是多少呢?n°的圆心角呢? 生:1°的弧长=教师总结:
在半径是R的圆中,因为360°的圆心角所对的弧长就是圆周长C=2R,所
nR以n°的圆心角所对的弧长为: L=
180[教法]:让学生们理解后识记。
图24.4-1中所给的数据,由上面的弧长公式,可得AB弧 的长为 L=100900 ≈1570(mm)。
1802RnR;n°的弧长=。
180360探究二:扇形的面积
如下图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
0A B
师:上图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为 n。的扇形面积占圆面积的几分之几?进而求出圆心角的扇形面积。
教师活动:
如果设圆心角是n°的扇形面积为S,圆的半径为R,那么扇形的面积为nR2nRS=,由于这个扇形对应的弧长L=,还可以推出扇形面积的另一个计360180算公式
S=1LR(这个公式最好在教师的引导下由学生推出)2[教法]:类比弧长的公式的探究方法自主探究扇形的面积的计算方法。
三、典型例题
例1:如图24.4-3,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m2)。
OABC
解:如图24.4-3,连接OA、OB,作弦AB的垂直平分线,垂足为D,交 于点C。
∵OC=0.6,DC=0.3, ∴OD=OC-DC=0.3。
在Rt△OAD中,OA=0.6,利用勾股定理可得,AD=0.3。
在Rt△AOD中,OD= OA,∴∠OAD=30°。
∴∠AOD=60°,∠AOB=120°。有水部分的面积 S=S扇形OAB-S
OAB=1201×0.62-AB×OD 236010.63 ×0.3 2=0.12-≈0.22(m)2
四、课堂练习
1.有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81°,求这段圆弧的半径R(精确到0.1m)。
a为半径的圆相2切于点D、E、F,求图中以D、E、F为顶点的封闭图形的面积。2.正三角形ABC的边长为a,分别以A、B、C为圆心,以
A DEB E C
五、小结
本节课我们共同探寻了弧长和扇形面积的计算公式,一方面,要理解公式的由来,另一方面,能够应用它们计算有关。计算时要力求细心准确。