3.4.1弧长和扇形的面积4教案[推荐阅读]

时间:2019-05-12 22:48:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《3.4.1弧长和扇形的面积4教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《3.4.1弧长和扇形的面积4教案》。

第一篇:3.4.1弧长和扇形的面积4教案

12999数学网(www.xiexiebang.com)

3.4.1 弧长和扇形的面积

教学目标:

经历探索弧长计算公式及扇形面积计算公式的过程,了解弧长计算公式及扇形面积的计算公式,并会应用公式解决问题. 教学重点:

nπR弧长计算公式及理解,弧长公式ι=180,其中R为圆的半径,n为圆弧所对的圆心角的度数,不带单位.由于整个圆周可看作360°的弧,而360°的圆心角所对的弧长为圆周长C=2πR,所以1°的圆心角所对的1πRnπR弧长是360×2πR,即180,可得半径为R的圆中,n°的圆心角所对的弧长ι=180.

1n2圆心角是1°的扇形的面积等于圆面积的360,所以圆心角是n°的扇形面积是S扇形=360πR.要注意扇形面积公式与弧长公式的区别与联系(扇形面积公式中半径R带平方,分母为360;而弧长公式中半径R不带平方,分母是180).已知S扇形、ι、n、R四量中任意两个量,都可以求出另外两个量.

1扇形面积公式S扇=2ιR,与三角形的面积公式有些类似.只要把扇形看成一个曲边三角形,把弧长看作底,R看作高就比较容易记了. 学习难点: 利用弧长公式时应注意的问题及扇形面积公式的灵活运用. 学习方法: 学生互相交流探索法.学习过程:

一、例题讲解:

【例1】 一圆弧的圆心角为300°,它所对的弧长等于半径为6cm的圆的周长,求该圆弧所在圆的半径.

【例2】 如图,在半径为3的⊙O和半径为1的⊙O′中,它们外切于B,∠AOB=40°.AO∥CO′,求曲线ABC的长.

【例3】 扇形面积为300π,圆心角为30°,求扇形半径.

12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载

12999数学网(www.xiexiebang.com)

【例4】 如图,正三角形ABC内接于⊙O,边长为4cm,求图中阴影部分的面积.

【例5】 如图,等腰直角三角形ABC的斜边AB=4,O是AB的中点,以O为圆心的半圆分别与两直角边相切于点D、E,求图中阴影部分的面积.

【例6】 半径为3cm,圆心角为120°的扇形的面积为()A.6πcm 2

222B.5πcm C.4πcm D.3πcm

【例7】 如图,在两个同心圆中,两圆半径分别为2,1,∠AOB=120°,则阴影部分面积是()

A.4π 4B.2π C.3π D.π

过B点作BC⊥【例8】 如图,已知⊙O的直径BD=6,AE与⊙O相切于E点,AE,垂足为C,连接BE、DE.(1)求证:∠1=∠2;

(2)若BC=4.5,求图中阴影部分的面积.(结果可保留π与根

号)

【例9】 如图,△ABC是正三角形,曲线CDEF„叫做“正三角形的渐开线”,其中CD、DE、EF的圆心依次按A、B、C循环,它们依次相连接.如果AB=1,求曲线CDEF的长.

⌒⌒⌒

【例10】 如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径连接五个圆心得五边形ABCDE,求图中五个扇形的面积之和(阴影部

12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载

都是1,顺次分).

12999数学网(www.xiexiebang.com)

【例11】 如图是赛跑跑道的一部分,它由两条直线和中间半圆形弯内外两条跑道的终点在一直线上,则外跑道起点往前移,才能使两跑度,如果跑道宽1.22米,则外跑道的起点应前移 米.(π取3.14,0.01米)

二、课后练习

1.在半径为12的⊙O中,150°的圆心角所对的弧长等于()A.24πcm B.12πcm

C.10πcm

D.5πcm

道组成的.若道有相同的长结果精确到2.如果一条弧长等于ι,它的半径等于R,这条弧所对的圆心角增加1°,则它的弧长增加()

1A.n πRB.180

180lC.πR

1D.360

3.已知扇形的圆心角为60°,半径为5,则扇形有周长为()

5A.3π 5B.3π+10 50B.π

5C.6π

25C.π

5D.6π+10 100D.π 4.圆环的外圆周长为250cm,内圆周长为150cm,则圆环的宽度为()

A.100cm

5.弧长等于半径的圆弧所对应的圆心角是()

360A.π 2πA.3 180B.π 4πB.3

90C.π 8πC.3

D.60°

6.正三角形ABC内接于半径为2cm的圆,则AB所对弧的长为()

4π8πD.3或3

7.已知圆的周长是6π,那么60°的圆心角所对的弧长是()

A.3

πB.3

C.

D.π

⌒8.如图1,正方形的边长为1cm,以CD为直径在正方形内画半圆,再以C为圆心,1cm为半径画弧BD,则图中阴影部分的面积为()

π2A.2cm π2B.4cm

π

2C.8cm

π2

D.16cm

12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载

12999数学网(www.xiexiebang.com)

9.如图2,以边长为a的正三角形的三个顶点为圆心,以边长一半为半径画弧,则三弧所围成的阴影部分的面积是()

a223πA.8

A.2倍 a223πB.4

B.3倍

a2π

4C.8C.4倍

32aD.4

D.5倍 10.等边三角形的外接圆面积是内切圆面积的()

11.如图3,一纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长30cm,贴纸部分BD长为20cm,贴纸部分的面积为()

8002A.3πcm

⌒500π2B.3cm

⌒ C.800πcm D.500πcm

212.一条弧所对的圆心角为120°,半径为3,那么这条弧长为 .(结果用π表示)13.已知CD的长为20πcm,CD所对的圆心角为150°,那么CD的半径是 .

⌒πR⌒214.半径为R的圆弧AB的长为,则AB所对的圆心角⌒为,弦AB的长为 .

15.如图,⊙O1的半径O1A是⊙O2的直径,⊙O1的半径O1C交⊙O

2于点B,则AC和

⌒AB的长度的大小关系为 .

16.已知扇形的圆心角是150°,弧长为20πcm,则扇形的面积为 . 17.已知弓形的弦长等于半径R,则此弓形的面积为 .(劣弧为弓形的弧)

18.如图,一块边长为10cm的正方形木板ABCD在水平桌面上绕点D按顺时针方向旋转到A′B′C′D的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20⌒2cm C.10πcm

D.

52πcm 12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载

12999数学网(www.xiexiebang.com)1、19如图,五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从点A到点B,甲虫沿着ADA⌒A1EA2、A2FA3、A3GB路线爬行,乙虫沿着Unit 12 My favorite subject is science曹毅.doc路线爬行,则下列结论正确的是()

A.甲先到B点 B.乙先到B点 C.甲乙同时到达 D.无法确定 ⌒⌒⌒12999数学网(www.xiexiebang.com)----免费课件、教案、试题下载

第二篇:弧长和扇形面积教案

24.1弧长和扇形面积(第1课时)

教学目标 :

1、知识 与技能:理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算;

2、过程与方法:经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。

3、情感与态度:通过联系和运动发展的观点,渗透辩证唯物主义思想方法。教学重难点:

重点:弧长,扇形面积公式的导出及应用。难点:用公式解决实际问题。教学过程:

一、情境导入

在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?

二、课内探究

(一)弧长公式

1、回顾圆弧的定义,并提问“弧是圆的一部分,你会求弧的长度吗?”

2、自主学习,合作探究(5分钟)

(1)半径为R的圆,圆的周长是多少?半圆呢?四分之一圆呢?(2)圆的周长可以看作是多少 度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?(4)n°圆心角所对的弧长是多少?,(点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的弧长为n°的圆心角所对的弧长是1°的圆心角所对的弧长的n倍,n

3、精讲例题

例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

2πRπR 360180πRnπR即l.180180

4、链接中考

(1)已知圆心角为60°,半径为1,则弧长为 _________.(2)已知圆心角为120°,弧长为10πcm,则半径为__________ cm. 检查学生练习情况并点评

(二)扇形面积公式

1、扇形的定义并学会判断什么图形是扇形?

2、自主学习,合作探究(5分钟)

(1)如果圆的半径为R,则圆的面积是多少?半圆呢?四分之一圆呢?(2)1°的圆心角对应的扇形面积为 多少?

(3)n°的圆心角对应的扇形面积为 多少?

πR2(点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的扇形面积为

360πR2n°的圆心角所对的扇形面积是1°的圆心角所对的扇形面积的n倍,n即

360nπR2S扇形.3603、比较弧长公式和扇形面积公式,你能类比扇形面积和对应弧长的关系.推导并归纳:S扇形4、链接中考

(1)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 _________(结果保留π).(2)已知扇形的面积为2π,半径为3,则该扇形的弧长为_________(结果保留π). 检查学生练习情况并点评

三、练习

P113 练习第1、2、3题

四、小结

通过这节课,你们学习了什么知识?

1、弧长公式

2、扇形面积公式

3、弧长公式与扇形面积公式的关系

4、解决课前问题

在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?

五、布置作业

习题24.4 第1、2、3、6、7、8题 nπR21nπR1RlR

36021802

第三篇:弧长及扇形的面积教案

24.4.1弧长和扇形的面积

钦南区丽光学校:吴春明

教学目标(一)知识目标

1.经历探索弧长计算公式及扇形面积计算公式的过程;

2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.(二)能力目标

1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力,能用公式解决问题,训练学生的数学运用能力。

(三)情感与价值观

1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.

教学重点

探索弧长及扇形面积计算公式的过程. 教学难点

用公式解决实际问题. 教学过程

Ⅰ.创设问题情境,引入新课

[师] 老师想将扇子的边缘贴上金纸边,买多长比较合适? 帮老师解决这个问题?哪位同学可以 [生]学生各抒己见,说出解决问题的方法 引入课题:弧长和扇形面积 Ⅱ.新课讲解

一、探索弧长的计算公式

(1)提问:

1.半径为R的圆,周长是多少?

2.圆的周长可以看作是多少度的圆心角所对的弧? 3.1°圆心角所对弧长是多少? 4.2°圆心角所对弧长是多少? 5. 3°圆心角所对弧长是多少?...n°的圆心角所对的弧长是多少?

(2)学生之间相互讨论得出答案,进而推导出⊙O半径为R,n°的圆心角所对的弧长公式为

注意:进行计算时,公式中的数,不带单位。

(3)弧长公式的运用 巩固提升

(一)2、已知90°的圆心角所对的弧长为2πcm,则此弧长所在圆的半径是 cm

(4)例题讲解

PPT展示例题:先让学生自主学习,教师最后适当讲解分析。

1、制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)解:由弧长公式,可得弧AB的长 lnR180n

表示的是1度的圆心角的倍nR l180

因此所要求的展直长度

L27005002970答:管道的展直长度为2970mm

二、探索扇形面积的计算公式

(一)扇形的概念

1、由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。

2、会判断某个图形是否是扇形

(二)面积公式的探索

(1)提问:

1.半径为R的圆,面积是多少?

2.圆的面积可以看作是多少度圆心角所对的扇形? 3.1°圆心角所对对应的扇形面积是多少? 4.n°的圆心角所对的弧长是多少?

(2)学生之间相互讨论得出答案,进而推导出⊙O半径为R,n°的圆心角所对应得扇形面积为 S扇形nR2360注意:公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;(3)扇形面积公式的运用

1、已知⊙O的圆心角和半径如图所示,则S扇形AOB =

2、一个扇形的半径为3cm,扇形的弧长为πcm,则该扇形的圆心角是

3、已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是

提问:扇形的面积可否用弧长的方式来表示?若可以,扇形的面积公式还可以如何表示?

【学生】}互相讨论,师生总结,扇形的面积与弧长的关系。

(4)例题讲解

PPT展示例题:老师做相应的提示,逐步引导学生解题。

2、如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积。(精确到0.01cm)。

S扇形1lR224、已知扇形的半径为24cm,弧长为 20 π cm,那么这个扇形的面积是________cm

三、综合巩固

学生之间互相讨论学习,教师再讲评 1、(2013年.琼州)如图1,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是多少?

BADC图1

图2

2、(2014年山东)如图2,⊙A、⊙B、⊙C、⊙D两两不相交,且半径都是2cm,求图中阴影部分的面积。

3、(2010年玉林)如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,求图中阴影部分的面积。

4、

第四篇:弧长和扇形面积.教学反思

《弧长和扇形面积》教学反思

一、教学构思:

本次授课思路:圆周长公式——弧长公式,由此类比导出扇形面积公式。重点强调培养学生解决实际问题的能力。首先是与学生一起复习圆的周长、面积计算公式,接着用教材中的题目引入新课,与学生一起推导弧长与扇形面积的计算公式。由复习到新授的衔接还算流畅,但对学生的思维启发可能不够到位,所以学生在实际应用中用得不熟练,对公式中的字母还得想一想才能反应过来代表哪个量。

本节课主要内容是弧长及扇形面积的计算。不仅强调学生会运用公式,而且要理解算法的意义。引例的设计主要考虑了学生生活实际,放弃了课本的引例,选择了很多实际问题,特别是自动喷水装置探索其喷灌范围、计算扇子的贴纸部分面积等例子,这样能够激发学生的学习欲望,调动学生积极性,让学生积极动手、动脑,解决实际问题。使学生在经历数学知识发生、发展、形成的“再创造”活动中,获取广泛的数学活动经验,进而促进自身的主动发展。

二、课堂教学反思:

本节课的内容一般来说老师会把重点放在公式的理解和熟练运用上,对于九年级的学生来说这很重要,而且弧长公式和扇形面积公式的推导过程也比较容易理解。但是这样可能导致中等及以下学生因为某些概念、细节的不理解或者不懂,造成学习的障碍。结合学生的实际,认真分析学生可能出现障碍的地方,逐步引导学生观察、比较,从基本的概念入手,处理好各个思维的转折点,在注重基础的同时发展学生的数学能力,关注了全体学生的发展。另外在提问的处理上进行分层,避免死板的教公式、记公式的老套,希望能激发学生思维,体现教师引导者的身份。

针对学生的实际情况,在课堂中关注大多数学生能够参与到教学中来很重要,存在的不足之处是,于九年级的学生来说,成绩较好学生的思维明显受到限制,不能最大限度的培养数学优生的数学思维。如何在关注全体学生的同时让优生最大限度的发展,最终体现课程标准中让不同的人在数学上得到不同的发展的理念,是我们数学课堂教学一直要思考的问题。

本节课的不足还在于时间的分配上不是很合理,由于在学生在探索弧长时我担心引导措施不到位,导致时间过长,后面的教学环节比较吃紧,对学生在新知的应用上没有足够的时间。有待于在今后的教学中注意这方面的问题,以便进一步提高课堂教学效率。

三、教材处理的反思:

《弧长和扇形面积》课后反思: 任何新知识获得,都是要经过“实践——认识——再实践——再认识”的过程,这个过程,本身蕴含着一个再创造的过程。从教学这个意义上来讲,就强调了以学生为中心,引导学生自主学习。同时,培养学生的合作能力。可是上完这节课,我感触颇深,有欣慰的,也有遗憾的。欣慰的是自己对“先学后教”的课堂模式有了进一步的认识;遗憾的是这堂课存在不少问题。在此我对自己发现的问题进行反思。首先,揭示目标时三言两语,没能使学生产生深刻的印象。其次,对学生实际情况的把握不到位,自认为出现了以下两个问题:一是推导公式的用时多了;二是对设计的几个问题中的重点引导不足,使部分学生对公式的探究过程仍存在一定的疑点。再次在例题评析时脱离了学生的理解。应该根据学生的疑难进行引导,但我却从自己的理解出发了。接着因上面环节用时过长明显影响了当堂训练的开展。总之,通过对这堂课的反思,发现了问题,这就是收获。只有这样发现问题,找出问题,才能促使自己去探索,去解决问题,在发现和解决问题中提高自身教育教学的水平,使自己的课堂更好的服务于“人人学有用的数学”。

第五篇:弧长和扇形面积课堂教学设计

弧长和扇形面积课堂教学设计

教学目标

1,知识与技能 掌握弧长与面积的计算公式,并会用公式解决一些实际问题 2.过程与方法:

经历探索弧长计算公式及扇形面积计算公式的过程,提高探索能力; 知道弧长及扇形面积公式后,能用公式解决问题,训练数学运用能力。3,情感态度与价值观

通过用弧长及扇形面积公式解决实际问题,体验数学与人类生活的密切联系,激发学习数学的兴趣,提高学习积极性,同时提高运用能力。

教学重点:

经历探索弧长及扇形面积计算公式的过程;会用公式解决问题; 教学难点:

探索弧长及扇形面积计算公式;用公式解决实际问题; 教学过程:

一、创设问题情境,引入新课

我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的—部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索。

二、探索研究,获取新知 探究一:教师活动:提出问题

制造弯形管道时,经常要先按中心线计算“展直长度”(教材120页图24.4-1中虚线的长度),再下料,这就涉及到计算弧长的问题。

学生活动:自主探究弧长的计算方法。

教师提示:可以把它分为几个部分,AC和BD的长我们知道,只需要求出AB段弧长,就能得出结果。

师:同学们,你们还记得圆周长的计算公式吗? 生:C=2 R 师:那圆的周长可以看作是多少度的圆心角所对的弧长? 生:是360°所对的弧长。

师:那我们再想,1°的圆心角所对的弧长是多少呢?n°的圆心角呢? 生:1°的弧长=教师总结:

在半径是R的圆中,因为360°的圆心角所对的弧长就是圆周长C=2R,所

nR以n°的圆心角所对的弧长为: L=

180[教法]:让学生们理解后识记。

图24.4-1中所给的数据,由上面的弧长公式,可得AB弧 的长为 L=100900 ≈1570(mm)。

1802RnR;n°的弧长=。

180360探究二:扇形的面积

如下图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。

0A B

师:上图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为 n。的扇形面积占圆面积的几分之几?进而求出圆心角的扇形面积。

教师活动:

如果设圆心角是n°的扇形面积为S,圆的半径为R,那么扇形的面积为nR2nRS=,由于这个扇形对应的弧长L=,还可以推出扇形面积的另一个计360180算公式

S=1LR(这个公式最好在教师的引导下由学生推出)2[教法]:类比弧长的公式的探究方法自主探究扇形的面积的计算方法。

三、典型例题

例1:如图24.4-3,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m2)。

OABC

解:如图24.4-3,连接OA、OB,作弦AB的垂直平分线,垂足为D,交 于点C。

∵OC=0.6,DC=0.3, ∴OD=OC-DC=0.3。

在Rt△OAD中,OA=0.6,利用勾股定理可得,AD=0.3。

在Rt△AOD中,OD= OA,∴∠OAD=30°。

∴∠AOD=60°,∠AOB=120°。有水部分的面积 S=S扇形OAB-S

OAB=1201×0.62-AB×OD 236010.63 ×0.3 2=0.12-≈0.22(m)2

四、课堂练习

1.有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81°,求这段圆弧的半径R(精确到0.1m)。

a为半径的圆相2切于点D、E、F,求图中以D、E、F为顶点的封闭图形的面积。2.正三角形ABC的边长为a,分别以A、B、C为圆心,以

A DEB E C

五、小结

本节课我们共同探寻了弧长和扇形面积的计算公式,一方面,要理解公式的由来,另一方面,能够应用它们计算有关。计算时要力求细心准确。

下载3.4.1弧长和扇形的面积4教案[推荐阅读]word格式文档
下载3.4.1弧长和扇形的面积4教案[推荐阅读].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《弧长和扇形面积》教学设计

    24.4 弧长和扇形面积 第二课时 一、教学目标 (一)学习目标 1.了解圆锥母线的概念,探索并理解圆锥侧面和全面积计算公式; 2.会灵活应用圆锥侧面积和全面积计算公式解决问题. (二)学习......

    3.9 弧长及扇形面积教案(九年级下册)

    §3.7 弧长及扇形面积 教学目标: 1.知识与技能:经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题 2.过程与方法:经历探索......

    弧长与扇形面积教学反思

    24.4弧长和扇形面积 ——扇形面积一课的教学反思 柳州市融安县长安镇第一中学 陈灵群 本节课内容是新人教版九年级第24章第四节的第二课时,教学目标:1、经历扇形面积公式的探索......

    弧长和扇形的面积 教学设计

    弧长和扇形的面积 教学设计 姜永娜 教学目标 知识与技能: 1.会计算弧长及扇形的面积。 2.会计算圆锥的侧面积和全面积,并能用这些知识解决相关问题。 过程与方法: 1.通过识图、阅......

    弧长及扇形的面积教学反思

    弧长及扇形的面积教学反思 弧长及扇形的面积教学反思1 前几天,我上了“弧长和扇形的面积”一课在课堂中体现出许多问题,现做一点自我反思。在新课程理念下,强调了几何建摸过程......

    弧长和扇形面积教学反思[五篇范例]

    弧长和扇形面积教学反思身为一名刚到岗的教师,课堂教学是我们的任务之一,借助教学反思可以快速提升我们的教学能力,那么写教学反思需要注意哪些问题呢?以下是小编整理的弧长和扇......

    弧长与扇形面积说课稿(5篇范例)

    24.4.1弧长和扇形面积说课稿 一、教材分析: (一)教材的地位与作用“ 本节课的教学内容是义务教育课程标准实验教科书新人教版九年级上册新课标实验教材《第24章圆》中的 “弧长......

    24.4弧长和扇形面积(第1课时)改教案(最终定稿)

    24.4 弧长和扇形面积 教学目标 了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用. 通过复习圆的周长、圆的面积公式,探索n°的圆心角......