第一篇:第2周教案——平行线的判定3
平行线的判定3 教学目标
1.会用平行线判定的三种方法解决简单的问题;2.通过运用平行线的判定,进一步获得数学说理的基础训练,从中体会到同位角、内错角、同旁内角的位置关系可以反映直线的位置关系.教学重点及难点
平行线判定的三种方法的运用;
合理运用平行线的判定方法以及平行线判定的说理过程.教学过程
一、复习巩固 1.提问:
如果两条直线被第三条直线所截,那么符合怎样的条件才能得到两条直线平行的结论?
条件 结论 同位角相等 两直线平行 内错角相等 两直线平行 同旁内角互补 两直线平行
2.如图,A、B、C三点在一条直线上.如果 ∠3 = ∠6 那么____∥____.()如果 ∠6 = ∠9 那么____∥____.()如果 ∠1+∠2+∠3=180°那么____∥____.()二.学习新课 例题4 如图,已知
BE
平分∠ABC,∠1=∠3,DE
与
BC
平行吗?为什么? 例题5 如图,已知∠A与∠B互补,可以判断哪两条直线互相平行?∠ B与哪个角互补,可以判断直线AD与BC平行.例题6 如图,已知∠1=∠3,∠2与∠3互补,那么可以判断哪几组直线互相平行? 三.小结
1.通过这节课的学习,你掌握了什么?你还有那些疑问 ? 2.对于几何的说理过程,一定要把握“有什么”,“根据什么”“得出什么”等基本问题.四.练习
课本p58 练习13.4(3)五.作业
练习部分习题13.4(3)
第二篇:3平行线的判定 教学设计
第七章平行线的证明
3.平行线的判定
一、学生知识状况分析
学生技能基础:在学习本课之前,学生对平行线的判定已经比较熟悉,也有了初步的逻辑推理能力,对简单的证明步骤有较清楚的认识,这为今天的学习奠定了一个良好的基础.
活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.
二、教学任务分析
在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,本节课安排《为什么它们平行》旨在让学生从简单的几何证明入手,逐步形成一个初步的、比较清晰的证明思路,为此,本课时的教学目标是:
1.熟练掌握平行线的判定公理及定理;
2.能对平行线的判定进行灵活运用,并把它们应用于几何证明中. 通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.
3.通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.
三、教学过程分析
本节课的设计分为四个环节:情景引入——探索平行线判定方法的证明——反馈练习——反思与小结.
第一环节:情景引入 活动内容:
回顾两直线平行的判定方法
师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?
生1:在同一平面内,不相交的两条直线就叫做平行线. 生2:两条直线都和第三条直线平行,则这两条直线互相平行. 生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.
师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.
上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.
我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨. 活动目的:
回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔. 教学效果:
由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.
第二环节:探索平行线判定方法的证明 活动内容:
① 证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式: 如图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a∥b.
如何证明这个题呢?我们来分析分析.
2ca1b
师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.
因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.
师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)
证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补定义)
∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)
∴a∥b(同位角相等,两直线平行)
这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.
这一定理可简单地写成:同旁内角互补,两直线平行.
注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内. ② 证明:内错角相等,两直线平行.
师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)
生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和 3 为180°,因此可知:CD∥AB.
师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.
师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.
求证:a∥b
证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)
∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).
这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.
③ 借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?
生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.
证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)
∴b∥a(同位角相等,两直线平行)
生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线 4平行”的结论.
师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理. 活动目的:
通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式. 教学效果:
由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.
第三环节:反馈练习活动内容:
课本第231页的随堂练习第一题 活动目的:
巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进. 教学效果:
由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.
第四环节:学生反思与课堂小结 活动内容:
① 这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:
② 由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角. ③ 注意:证明语言的规范化.推理过程要有依据. 活动目的:
通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性. 教学效果:
学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.
课后作业:课本第232页习题6.4第1,2,3题
思考题:课本第233页习题6.4第4题(给学有余力的同学做)
四、教学反思
平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。
学生初学证明时,对于证明中的每一步的因果关系很茫然,有的学生尽管头脑中对每一步的前因后果都比较清楚,但写出来的证明过程前后没有因果关系,这需要教师在学生刚接触证明题时,再三强调这一点。对于初学者而言,为了更好地掌握推理方法,要保证推理有根有据,上一步的因与下一步的果的因果关系明确,保证证明过程层次分明、条理清楚。
第三篇:第2周 教案
第二周 教案
第二单元:位置
单元教材分析:“位置”的教学内容具有丰富性、开放性和鲜明的时代特点,它是人们更好地认识和描述生活空间,并进行交流的重要工具。儿童在生活中对上、下、前、后、左、右已有初步认识,在此基础上再学习从两个维度来确定物体的位置,如某个同学在第几组第几个的情况,使学生能采用适当的方式描述物体间的位置关系。本单元的教学内容设计是根据学生的已有的经验和兴趣特点,依照儿童空间方位的认知顺序进行编排。也就是从学生最熟悉的生活场景,如汽车站牌、左右手的作用教室的座位等引入教学,在各种操作、探索的活动中,观察、感知、猜测、感觉“上、下、前、后、左、右”的含义及其相对性。在亲身经历物体的位置关系和变换的过程之后,引导学生把空间方位的知识应用于生活,激发学生探索数学的兴趣,发展学生的创新意识,培养学生初步的空间方位观念。
单元教学要求:
1、通过直观演示和动手操作,使学生认识“上”、“下”、“前”、“后”、“左”、“右”的基本含义,初步感受它们的相对性。
2、使学生会用“上”、“下”、“前”、“后”、“左”、“右”描述物体的相对位置。
3、使学生能够在具体情景中,根据行、列确定物体的位置。单元教学重、难点:初步感受它们的相对性并描述物体的相对位置
单元课时安排: 约3课时
第一课时
上 下
教学内容:上下(位置)教学目标:
1、在具体的活动中,让学生体验上下的位置关系,初步培养学生的空间观念
2、确定物体上下的位置和顺序,并能用自己的语言表达
3、初步培养学生按一定的顺序进行观察的习惯
4、初步培养学生的想象能力和解决问题的策略意识,使学生在活动中获得积极的情感体验。
教学准备:动物分房图若干;四只动物头像若干;课件 教学过程:
一、从生活经验出发,初步体会上下的含义,培养想象能力
1、看看我们的教室,你发现了什么?
2、再看,你的上面有什么?
3、想像:如果再往上看,再往上,穿透屋顶,穿透这栋楼房,你的上面还会有什么?
4、再看,你的下面是什么?继续往下想,你的下面还会有什么呢?
5、揭示课题:今天就让我们来一起感受“上、下“
二、创设情境,理解上下,初步培养空间观念。
1、创设情境(1),初步体会上下位置关系
A:深秋,大地丰收了,小兔子忙着收萝卜,准备回家过冬呢!可爱的小鸟正忙着摘果子呢!
B:看它们的位置,你发现了什么?谁能完整的说一说,谁在谁的上面?谁在谁的下面?
2、创设情境(2),初步体会上下位置关系的相对性
A:大家说得好,小松鼠也想来听一听B:观察:你还能用“上”或者“下”来说说它们现在的位置吗?先跟你的同伴说说看
C:再观察小松鼠的位置:说“小松鼠在上面”对吗? “小松鼠在下面“对吗?,那怎样才能完整地用上和下来说小松鼠的位置呢?
小结:看来,比的参照物不同,小松鼠的上下位置也不同。
3、创设情境(3),进一步体会上下位置关系的相对性。A:大家都说对了,小松鼠和小鸟高兴得在树枝了蹦上蹦下显示,松鼠和小鸟交换了位置
B:现在,你又发现了什么?还想知道什么呢?跟小组的同学说一说,比一比,谁问得好,谁答得好。
小结:看来,位置变,上下关系也会发生一定的变化。
三、创设活动,加深理解,促进情感体验
1、摆一摆。建立初步的空间观念(1)听口令摆一摆
先摆数学书,再把数学本放在数学书的下面,最后把笔盒放的数学书的上面,并说说,谁在最上面?谁在最下面?
(2)同桌合作摆一摆,说一说
2、找一找。在生活中体会上下的位置关系
四、分层活动,巩固理解、增强应用意识 确定位置,培养简单的推理能力 小红住在小英楼上,小英住在小兰的楼上。谁在最上面?谁在最下面?
第二课时 前 后 教学内容: 前 后 教学目标:
1、学生能在具体的生活实践或游戏情境中,体验前与后的位置与顺序。
2、能准确地确定物体前后的位置与顺序。
3、培养学生关于前后的空间观念。
4、培养学生的爱国主义精神。教学重点:前与后的位置与顺序 教学难点:学生前后空间观念的培养。教学方法:尝试教学、情境教学、游戏
教学准备:纸制的方向盘4个、车站牌5个、教学过程: 教学过程:
一、创设情境,激发兴趣
1、老师请5名学生上讲台排成队列
2、在老师的口令下,学生按要求调换位置(把原来排在第二位的同学,依次往后进行调换,换三次,最后一次换到了队伍的末尾。使学生初步体验到:前后的位置与顺序,具有一定的相对性。
引导学生“()同学在()同学前面,在()同学后面,”“()在最前面”等较规范的语言来描述。
二、观察讨论、学习新知
1、(有了前面的情境设计做铺垫,学生已初步体验到了前后的位置与顺序,因此新课知识,应由学生自己通过观察、讨论来掌握。)
2、老师出示电脑:小动物赛跑
电脑演示:小鹿、小狐狸、小白兔,小蜗牛参加赛跑,起跑后不久,他们的位置发生了改变。
(学生看电脑观察小动物的位置变化)
(暂停演示)问:你看到了什么?现在跑在最前面,它后面有哪些小动物?谁第二?小白兔跑第几?小蜗牛跑第几?
问:如果比赛继续进行,可能会有什么情况发生?(目的:启发学生的法语异思维,充分发挥学生学习的自主能动性,培养学生的观察和语言表达能力。再次体验到前后顺序具有相对性)
三、练习巩固、启发思维
1、说一说
(1)你的座位前面是谁?后面是谁?
(2)你前面有几个同学?后面有几个同学?你是排在第几位?
2、做一做的第二题,然后全班集体订正。
3、游戏:
第三课时
左
右
教学内容:左 右 教学要求:
1、在生活中看关于“左右”的真实情境激发学生的学习兴趣。
2、能初步运用“左右”的数学知识解决实际问题。
3、认识“左右”的位置关系,体会其相对性。
教学重点:认识“左右”的位置关系,正确确定“左右”。教学难点:“左右”的相对性。
教学准备:计算机课件笔 橡皮尺子 文具盒 小刀 教学过程:
一、通过左手、右手的活动,感知自身的左与右
师:小朋友们,今天谁有信心上好这节课?请举起你的小手。
1、感知左手和右手
2、体验自身的“左与右”
3、小游戏 听口令做动作(由慢到快)
4、揭示课题
师:小朋友们刚才已经熟悉了自己身体的“左”和“右”,其实生活中的“左”和“右”还有许许多多,今天我们就来确定一下“左”和“右”
(板书课题:左 右)
师:请小朋友们记住,“左”字下边是个“工”字,“右” 字下边是个“口”字。
二、玩学具,理解左边和右边
1、摆一摆
师:同桌合作,像电脑上一样的顺序摆放好事先准备好的学习用品。
(计算机演示:按顺序摆好:铅笔橡皮尺子文具盒小刀五样学具)师:大家先来确定一下,摆在最左边的是什么?摆在最右边的是什么?
2、数一数
师:按左右的顺序来数一数。(点着学具来数,数好后请学生回答,从而完成电脑中的填空题)
从右数橡皮是第--------个 从左数橡皮是第--------个
师:同样的东西,按不同的方向去数,顺序也不同。
3、说一说 尺子的左边是什么?右边呢?
(1)启发、引导学生观察图说出左边有什么?右边有什么?(2)说出尺子的左边或右边各有哪二样学具?(计算机演示印证)
5、相怎么摆就怎么摆,然后同桌互说
三、解决问题,增强应用意识
1、说一说:你相邻的同桌都有谁? 问:相邻是什么意思?
面对黑板说说你相邻的同学有谁? 背对黑板说说你相邻的同学有谁? 侧转身再说说你相邻的同学有谁?
师:每转一次前、后、左、右的人都发生了变化,但相邻的同学总是这几个。
2、用电脑演示同学们上下楼梯的情景
问:他们都是靠右边走的吗?(学生讨论,也可以让学生试着走一走,体会一下)
小结:方向不同,左右不同,判断时以走路的人为标准。平时我们上下楼梯时,都要像这些小朋友一样靠右行,有秩序地走,不会相撞,保证安全。
3、摆一摆 老师说,学生摆 把本子放在书的下面 把尺子放在书的左面 把铅笔放在书的右面
第四课时
练习课
教学内容:课本
教学内容:配套练习11—13页练习二的题。
第五课时 巩固练习6—7页
第四篇:《5.2.2平行线的判定》教案
课题《5.2.2平行线的判定》教案
类别:初中
学科:七年级数学(下册)
姓名:刘勇
学校:开原市靠山中学
【教案背景】
1、教学对象:七年级学生
2、学科:七年级数学下册(新人教版)
3、课时:第1课时
4、学生情况:目前,虽然我校学生的数学水平参差不齐,数学抽象思维能力较差,在学习本节课时可能会有一定的困难,但是学生的个性活泼,学习积极性高,而且在此之前学生已经学完“三线八角”,初步了解了平行线的概念、平行线的性质及用三角板和直尺画平行线的方法,是具备学好这节课的基础的。本学期学生初步接触推理证明,逐步养成言之有据的习惯。
【教学课题】
数学七年级下册(新人教版)5.2.2平行线的判定,课型:新授课,课时第一节
【教学内容分析】
“平行线的判定”是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关判定方法。本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关知识,增强学生数学实践体验。
一、教学目标
1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。
2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。
二、教学重难点
教学重点:探索并掌握直线平行的判定方法。
教学难点:直线平行的判定方法的应用。
三、教学方法
利用问题情境,让学生在解决问题的过程中复习已有知识,同时这学习新的知识做好准备,在教学中引导学生通过自主探索、合作交流等方式获得新知识、新方法。在解决问题的过程中多方面尝试,丰富学生的解题策略,教师的适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。
四、教学过程
(一)复习旧知,引入新课
1.如图,已知四条直线AB、AC、DE、FG,_A
_D_
1_ 8_ 3_
4_ 7
_ 2_ 6_E_G
_ F_
5(1)∠1与∠2是直线_____和直线_____被直线_____所截而成的____角。
(2)∠3与∠2是直线_____和直线_____被直线_____所截而成的____角。
(3)∠5与∠6是直线_____和直线_____被直线_____所截而成的____角。
(4)∠4与∠7是直线_____和直线_____被直线_____所截而成的_____角。
(5)∠8与∠2是直线_____和直线_____被直线_____所截而成的_____角。
2.a∥b,b∥c,那么_________,理由是________________________________.通过上节课的学习,我们知道根据平行公理的推论可以判定两直线平行,除此之外,还有哪些方法可以判定两直线平行呢?这是我们这节课要研究的问题.(二)探索新知
1.平行线的判定方法1
问题1:如右图,在用直尺和三角板画平行线的过程中,三角板起着什么样的作用?
E_B_C
CD
AB
F
结论结果:三角板的作用是使∠PHF和∠BGF相等。
问题2:这两个角具有什么样的关系?我们是否得到一个判定两直线平行的方法?
讨论结果:平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单记为:同位角相等,两条直线平行。
用符号语言表达两直线平行的判定方法1:
如果∠1=∠2,那么AB∥CD.问题3:木工用角尺画平行线的过程中,试说出用角尺画平行线的道理(课本14页图5.2—7)
2.平行线的判定方法
2问题4.在判定方法1的图中,如果∠PHF=∠HGA,那么AB∥CD,为什么?
分析:目前我们掌握了两种判定两直线平行的方法,但问题的条件都不符合,而根据问题情境,可以利用判定方法1同位角相等,两直线平行来解决问题,这就需要将问题中的内错角相等转化为同位角相等。
可以先放手让学生尝试独立解决,后小组交流
活动:因为∠PHF=∠HGA,而∠BGF=∠HGA(对顶角相等)
所以∠1=∠2,即同位角相等.因此AB∥CD
讨论结果:归纳判定两条直线平行的判定方法2:
两条直线被第三条直线所截,如果内错角等,那么这两条直线平行。
简单记为:内错角相等,两条直线平行.用符号语言表达两直线平行的判定方法1:
如果∠PHF=∠HGA, 那么AB∥CD.3.平行线的判定方法
3问题5.同旁内角在数量上满足什么关系时,两直线平行?
活动:如图(1)学生根据图象先排除相等当∠4是钝角时,∠2是锐角才有可能使a∥b,进一步观察、猜想:如果同旁内角互补,两条直线平行,即如果∠2+∠4=180°,那么a∥b.c
24ab
(2)学生利用平行线的判定方法1或方法2来说明猜想的正确性.教师根据学生说理,再准确板书:
因为∠2+∠4=180°,而∠4+∠1=180°,根据同角的补角相等,所以∠2=∠1,即同位角相等,从而a∥b.讨论结果: 两条线的判定方法
3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单记为:同旁内角互补,两条直线平行.用符号语言表达:如果∠2+∠4=180°,那么a∥b.(三)即时小结
我们在遇到一个新问题时,常常将未学的知识转化为已知的(或已解决的)问题,在这节课中,平行线的判定方法2、3就是借助于对顶角相等或邻补角互补,将内错角相等转化为同位角相等,或将同旁内角互补转化为同位角相等而得出的,这种将未知转化为已知的方法是数学中的一种重要方法,也是我们今后推理常用的方法.(四)应用举例
例题在同一平面内.如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
bc
a
分析:垂直与直角总联系在一起,至于要判定两条直线是否平行,先考虑学过哪些判定平行线的方法.题中的条件与哪种判定方法的条件相同.学生先口述判断与理由,教师纠正并规范板书两步推理过程.解:这两条直线平行.理由如下:如图
因为b⊥a,c⊥a,所以∠1=∠2=90°
从而b∥c(同位角相等,两直线平行)
点评:这个道理过程有两个因为„„所以„„,第一个“因为”“所以”是根据垂直定义,第二个只写出“所以”的内容b∥c,中间省略一个“因为”的内容就是第一个“所以”中的∠1=∠2。这样处理是使说理表达更简练,第二个“因为”“所以”是根据同位角相等,两直线平行。
例题讲解后,提出问题:你还能利用其他方法说明b∥c吗?
教师鼓励学生模仿课本的方法用判定2和判定3写出理由。
如果∠
1、∠2不是同位角,也不是内错角、同旁内角,如图:
bc
12a
教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由。
(五)巩固训练,熟练技能
1、判断题
(1)两条直线被第三条直线所截,如果同位角相等,那么内错角出相等。
(2)两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等。
2、课本P15—17练习.(六)课堂小结
1.本节主要学习了平行线的三种判定方法.2.用到的主要思想方法是转化思想.3.注意的问题是平行线的判定方法的灵活应用.五、布置作业
课本习题5.2第2、4、5 题
六、板书设计
同位角相等,两条直线平行例题讲解 D内错角相等,两条直线平行
同旁内角互补,两条直线平行 ABF
如果∠1=∠2,那么AB∥CD.七、教学反思
第五篇:5.2.2平行线的判定(教案)
平庄中学电子教案
数学学科
七年级下册
科任教师:黄忠明
5.2.2平行线的判定
【知识与技能】
1.平行线的三个判定定理的理解.2.平行线的三个判定定理的简单运用.【过程与方法】经历实验过程得到判定方法1,再结合前面已学的知识推导出判定方法2和判定方法3.【情感态度】经历推导过程,初步形成严密的逻辑思维习惯.【教学重点】平行线的三个判定定理的理解与简单运用.【教学难点】推理的基本格式及方法.一、情境导入,初步认识
问题1 用实际操作或多媒体课件演示画平行线的过程,想一想,在这个过程中,∠1与∠2的大小关系怎样,∠1与∠2是什么关系的角?
问题1
问题2
问题2如图,如果,∠2=∠3,能否得到a∥b;如果∠2+∠4=180°,能否得到a∥b? 【教学说明】对问题1,可由教师亲自操作,也可事先制好课件进行放映,不难得到判定方法1.对问题2,可由已知条件,结合前面学过的知识,利用“同位角相等,两条直线平行”得到a∥b,从而得到判定方法2和判定方法3.二、思考探究,获取新知
思考 遇到一个新的问题时,常常怎样去解决呢?
【归纳结论】1.平行线的判定:
判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单的说,就是同位角相等,两直线平行.平庄中学电子教案
数学学科
七年级下册
科任教师:黄忠明
判定方法2:两条直线被第三条直线所截,如果内错角相等.那么这两条直线平行,简单地说,就是内错角相等,两直线平行.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简单地说,就是同旁内角互补,两直线平行.2.遇到一个新问题时,常常把它转化为已知的(或已解决的)问题去解决.三、运用新知,深化理解
1.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
2.如图,根据下列条件,可推得哪两条直线平行,并说明根据.(1)∠ABD=∠CDB;(2)∠CBA+∠BAD=180°;(3)∠CAD=ACB.3.如图,写出所有能推得直线AB∥CD的条件.【教学说明】问题1、2可以让同学们抢答来完成.问题3可让学生充分讨论,一般来说,要找到几个条件不难,但要找出所有的条件却并非易事,本题旨在考查学生的逆向思维能力.【答案】略.四、师生互动,课堂小结
平行线的判定方法:
1.平行于同一条直线的两条直线互相平行.2.同位角相等,两直线平行.3.内错角相等,两直线平行.4.同旁内角互补,两直线平行.5.同一平面内,垂直于同一条直线的两条直线互相平行.1.布置作业:从教材“习题5.2”中选取.2.完成练习册中本课时的练习.平庄中学电子教案
数学学科
七年级下册
科任教师:黄忠明
本节课通过“问题情境—合作探究—建立模型—求解—应用”的基本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;发展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学应用数学的自信心.