第一篇:初高中数学衔接教案
第一讲
数与式 1.1 数与式的运算 1.1.1.绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即
绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.
两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离.
1.填空:(1)若,则x=_________;若,则
ba
练
习
(2)如果,且,则b=________;若,则c=________..选择题: 下列叙述正确的是
()
(A)若,则(B)若,则 则
(D)若,则
(C)若,-3.化简:|x-5|-|2x13|(x>5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式:
(1)平方差公式 ; 方公式 .乘法公式
:;
(2)完全平
我们还可以通过证明得到下列一些
(1)立方和公式)三数和平方公式(4)两数和立方公式 ;)两数差立方公
(2)立方差公式
;
;(3(式
.
5对上面列出的五个公式,有兴趣的同学可以自己去证明. 22例1 计算:. 例2 已知,求的值.
练
习1.填空: 111122(1);()(2)
;(3).
完全平方式,则等于()
942322)2222
.选择题: 12(1)若是一个
21112222(C)
(D)(A)
(B)mmmm
416322(2)不论,为何实数,的值()ba
(A)总是正数(B)总是负数
(C)可以是零
(D)可以是正数也可以是负数 1.1.3.二次根式
一般地,形如的代数式叫做二次根式.根号下含有字母、且不能够开,等是有理式.
2得尽方的式子称为无理式.例如,等是无理式,而 2 2
21.分母(子)有理化 把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不
含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,a3a22 式. 与,与,与,等等.
一般地,与,与互为有理化因
分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程 在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算
中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.
22.二次根式的意义 a 2
例1 将下列式子化为最简二次根式:
62(1);
(2);
(3). 算:.
-
例2 计例3 试比较下列各组数的大小: 2(1)和;(2)和.例化简:.
2例 5 化简:(1);(2). 求的值 . =__
___;
例 6 已知,(1)
练习1.填空:
2(2)若,则的取值范围是_
_
___;
x
(3)__
___;
(4)若,则______
.选择题: xx等式成立的条件(A)(B)(C)(D).若,求的值.
__.
是()
4.比较大小:2-3
5-4(填“>”,或“<”).
1.1.4.分式 1.分式的意义 AAA形如的式子,若B中含有字母,且,则称为分式.当M≠0时,分式
BBB
具有下列性质: 3 ;
.
上述性质被称为分式
像,这样,分子或分母中又含有
例1 若,求常数的例2(1)试证:的基本性质. 2.繁分式 a 分式的分式叫做繁分式.
值.
解得 .
(其中n是正整数);
11(2)计算:;
1111(3)证明:对任意大于1的正整数
an,有.
2a=0,求e的值.();()
c22例3 设,且e>1,2c-5ac+
练
习1.填空题: 111对任意的正整数n,nn2.选择题: 若,则=
546(A)1(B)(C)(D)
.正数满足,求的值.
455算.
(1)
11114.计
习题1.1 1.解不等式: 4
;
(2);
2.已知,求的值.
(3). .填空:
1819(1)=________; ________; a
22(2)若,则的取值范围是
(3)________.
.2
分解因式 因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法. 1.十字相乘法 例1 分解因式: 22(1)x-3x+2;(2)x+4x-12;(3);(4).
解:(1)如图1.2-1,将二次项x分解成图中的两个x的积,再将常数项2分2解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x-3x+2中的一次项,所以,有 2x-3x+2=(x-1)(x-2). 1 -2 x x 1 -ay -1 -1 x 1 -2 x 1 6 -by -2 图1.2-1 图1.2-3 图1.2-4 图1.2-2 说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x用1来表示(如图1.2-2所示).(2)由图1.2-3,得 2x+4x-12=(x-2)(x+6).(3)由图1.2-4,得
x -1 22
=
y
1(4)=xy+(x-y)-1 图1.2-5 =(x-1)(y+1)(如图1.2-5所示). 5
2.提取公因式法与分组分解法 例2 分解因式:(1);
(2).(2)= ==.
2)(或
=
=
23.关于
=.
x的二次三项式ax+bx+c(a≠0)的因式分解. 若关于x的方程的两个实数根是、,则二次三项式
2就式分
解
因
式
可:
分
解(1为.例3 把下列关于x的二次多项);
(2).
个因式为()
练习1.选择题: 22多项式的一
(A)(B)(C)(D)
.分解因式: 233(1)x+6x+8;(2)8a-b; 2(3)x-2x-1;(4).
习题1.2 1.分解因式: 342(1);
(2);
13(4). 式分解:
2(4). 222
3(1);(2);
(3);
.在实数范围内因
(3);
.三边b,满足,试判定的形状. 4.分解因式:x+x-(a-a). 第二讲 函数与方程 2.1 一元二次方程 2.1.1根的判别式
2我们知道,对于一元二次方程ax+bx+c=0(a≠0),用配方法可以将其变形为
.
22a4a2
因为a≠0,所以,4a>0.于是 2(1)当b-4ac>0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根
=; 12,2a2(2)当b-4ac=0时,方程①的右端为零,因此,原方程有两个等的实数根 b x=x=-; 12 2ab22(3)当b-4ac<0时,方程①的右端是一个负数,而方程①的左边一
2a
定大于或等于零,因此,原方程没有实数根. 22由此可知,一元二次方程ax+bx+c=0(a≠0)的根的情况可以由b-4ac来判22定,我们把b-4ac叫做一元二次方程ax+bx+c=0(a≠0)的根的判别式,通常用符号“Δ”来表示. 2综上所述,对于一元二次方程ax+bx+c=0(a≠0),有(1)当Δ>0时,方程有两个不相等的实数根
ac x=; 12,2a(2)当Δ=0时,方程有两个相等的实数根 b x=x=-; 12 2a(3)当Δ<0时,方程没有实数根. 例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程的实数根. 7
22(1)x-3x+3=0;(2)x-ax-1=0; 22(3)x-ax+(a-1)=0;(4)x-2x+a=0. 说明:在第3,4小题中,方程的根的判别式的符号随着a的取值的变化而变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题. 2.1.2 根与系数的关系(韦达定理)2 若一元二次方程ax+bx+c=0(a≠0)有两个实数根 则有
122a2a2aa 212222a2a4a4aa,;
.
122a2a
所以,一元二次方程的根与系数之间存
一在下列关系: bc2 如果ax+bx+c=0(a≠0)的两根分别是x,x,那么x+x=,xx=.这
aa关系也被称为韦达定理. 2
特别地,对于二次项系数为1的一元二次方程x+px+q=0,若x,x是其两根,12由韦达定理可知
x+x=-p,xx=q,·1212 即 p=-(x+x),q=xx,·121222 所以,方程x+px+q=0可化为 x-(x+x)x+xx=0,由于x,x是一元二·12121222次方程x+px+q=0的两根,所以,x,x也是一元二次方程x-(x+x)x+xx=0.因·121212此有
以两个数x,x为根的一元二次方程(二次项系数为1)是 根及k的值.
122x-(x+x)x+xx=0. ·12122例2 已知方程的一个根是2,求它的另一个
-例3 已知关于x的方程x+2(m2)x+m=0有两个实数根,并且这两个+4实数根的平方和比两个根的积大21,求m的值. 例4 已知两个数的和为4,积为-12,求这两个数. 2 例5 若x和x分别是一元二次方程2x+5x-3=0的两根. 12(1)求| x-x|的值; 12 8
11(2)求的值;
22xx1233
(3)x+x. 12 2例6 若关于x的一元二次方程x-x+a-4=0的一根大于零、另一根小于零,求实数a的取值范围. 练习1.选择题: 22(1)方程的根的情况是()
(A)有一个实数根(B)有两个不相等的实数根(C)有两个相等的实数根(D)没有实数根 2(2)若关于x的方程mx+(2m+1)x+m=0有两个不相等的实数根,则实数m的取值范围是()11(A)m<(B)m>- 4411(C)m<,且m≠0(D)m>-,且m≠0 442.填空: 112(1)若方程x-3x-1=0的两根分别是x和x,则= .
xx 122(2)方程
mx+x-2m=0(m≠0)的根的情况是
.
(3)以-3和1为根的一元二次方程是 .
223.已知,当k取何值时,方程kx+ax+b=0有两个不相等的实数根?
.已知方程x-3x-1=0的两根为x和x,求(x-3)(x-3)的值. 1212 习题2.1 1.选择题: 2(1)已知关于x的方程x+kx-2=0的一个根是1,则它的另一个根是()(A)-3(B)3(C)-2(D)2(2)下列四个说法: 2 ①方程x+2x-7=0的两根之和为-2,两根之积为-7; 2②方程x-2x+7=0的两根之和为-2,两根之积为7; 72③方程3 x-7=0的两根之和为0,两根之积为;
32④方程x+2x=0的两根之和为-2,两根之积为0. 其中正确说法的个数是()(A)1个(B)2个(C)3个(D)4个 9
22(3)关于x的一元二次方程ax-5x+a+a=0的一个根是0,则a的值是()(A)0(B)1(C)-1(D)0,或-1 2.填空: 2(1)方程kx+4x-1=0的两根之和为-2,则k= .
222(2)方程2x-x-4=0的两根为α,β,则α+β= .
2(3)已知关于x的方程x-ax-3a=0的一个根是-2,则它的另一个根是 .
2(4)方程2x+2x-1=0的两根为x和x,则| x-x|= . 1212 223.试判定当m取何值时,关于x的一元二次方程mx-(2m+1)x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?
24.求一个一元二次方程,使它的两根分别是方程x-7x-1=0各根的相反数. 2.2 二次函数 2 2.2.1 二次函数y=ax+bx+c的图像和性质 22二次函数y=ax(a≠0)的图象可以由y=x的图象各点的纵坐标变为原来的a倍得2到.在二次函数y=ax(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小. 2二次函数y=a(x+h)+k(a≠0)中,a决定了二次函数图象的开口大小及方向;h决定了二次函数图象的左右平移,而且“h正左移,h负右移”;k决定了二次函数图象的上下平移,而且“k正上移,k负下移”. 2由上面的结论,我们可以得到研究二次函数y=ax+bx+c(a≠0)的图象的方法: 22bbbb222由于y=ax+bx+c=a(x+)+c=a(x++)+c- xx
2a4a2
2,所以,y=ax+bx+c(a≠0)的图象可以看作是将函数y=ax的图象作左右平移、2上下平移得到的,于是,二次函数y=ax+bx+c(a≠0)具有下列性质:
(1)当a>0时,函数y=ax+
2a4abbbbx+c图象开口向上;顶点坐标为,对称轴为直线x=-;当x<时,y随着x的增大而减小;当x>时,y随着x的增大=.
而增大;当x=时,函数取最小值y
(2)当a<0时,函数y=ax+bx+c
2a4abbb图象开口向下;顶点坐标为,对称轴为直线x=-;
当x<时,y随着x的增大而增大;当x>时,y随着x的2a2a2a 10
2增大而减小;当x=时,函数取最大值y=. 2a4a 2-例1 求二次函数y=3x-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象. 2例2 把二次函数y=x+bx+c的图像向上平移2个单位,再向左平移4个单位,得到函数2y=x的图像,求b,c的值. 2例3 已知函数y=x,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值. 练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()22(A)y=2x(B)y=2x-4x+2 22(C)y=2x-1(D)y=2x-4x 22(2)函数y=2(x-1)+2是将函数y=2x()(A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的 2.填空题 2(1)二次函数y=2x-mx+n图象的顶点坐标为(1,-2),则m=,n= .
2(2)已知二次函数y=x+(m-2)x-2m,当m= 时,函数图象的顶点在y轴上;当m= 时,函数图象的顶点在x轴上;当m= 时,函数图象经过原点.
2(3)函数y=-3(x+2)+5的图象的开口向,对称轴为,顶点坐标 为 ;当x= 时,函数取最 值y= ;当x 时,y随着x的增大而减小. 3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象. 22(1)y=x-2x-3;(2)y=1+6 x-x. 24.已知函数y=-x-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最 11
小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3. 2.2.2 二次函数的三种表示方式 通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式: 21.一般式:y=ax+bx+c(a≠0); 22.顶点式:y=a(x+h)+k(a≠0),其中顶点坐标是(-h,k). 3.交点式:y=a(x-x)(x-x)(a≠0),其中x,x是二次函数图象与x轴交点的1212横坐标. 例 已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式. 例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式. 例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 练习1.选择题: 2(1)函数y=-x+x-1图象与x轴的交点个数是()(A)0个(B)1个(C)2个(D)无法确定 1(2)函数y=-(x+1)+2的顶点坐标是()(A)(1,2)(B)(1,-2)(C)(-1,2)(D)(-1,-2)2.填空:(1)已知二次函数的图象经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y=a(a≠0).
2(2)二次函数y=-x+23x+1的函数图象与x轴两交点之间的距离为 .
3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6);(2)当x=3时,函数有最小值5,且经过点(1,11);
(3)函数图象与x轴交于两点(1-2,0)和(1+2,0),并与y轴交于(0,-2). 习题2.2 1.选择题: 2-(1)把函数y=-(x1)+4的图象的顶点坐标是()(A)(-1,4)(B)(-1,-4)(C)(1,-4)(D)(1,4)12
2-(2)函数y=x+4x+6的最值情况是()
(A)有最大值6(B)有最小值6(C)有最大值10(D)有最大值2 2(3)函数y=2x+4x-5中,当-3≤x<2时,则y值的取值范围是
()
(A)-3≤y≤1
(B)-7≤y≤1
(C)-7≤y≤11(D)-7≤y<11
2.填空:(1)已知某二次函数的图象与x轴交于A(-2,0),B(1,0),且过点C(2,4),则该二次函数的表达式为 .(2)已知某二次函数的图象过点(-1,0),(0,3),(1,4),则该函数的表达式为 . 23.把已知二次函数y=2x+4x+7的图象向下平移3个单位,在向右平移4个单位,求所得图象对应的函数表达式. 4.已知某二次函数图象的顶点为A(2,-18),它与x轴两个交点之间的距离为6,求该二次函数的解析式. 2.3 方程与不等式
2.3.1 二元二次方程组解法
方程
是一个含有两个未知数,并且含有未知数的项的最高次数是做一次项,6叫做常方程
组
2的整式方程,这样的方程叫做二元二次方程.其中,叫做这个方程的二次项,叫
22xyx2xyy
数项. 我们看下面的两个
:
第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组
① ② 例2 解方程组 的解?
(3)(4)列方程组:(4)
练习
2.解下(1)
(2)1.下列各组中的值是不是方程组
(1)
(2)
(3)
2.3.2 一元二次不等式解法 2(1)当Δ>0时,抛物线y=ax+bx+c(a>0)与x轴有两个公共点(x,0)和(x,0),方程122ax+bx+c=0有两个不相等的实数根x和x(x<x),由图2.3-2①可知 12122不等式ax+bx+c>0的解为
x<x,或x>x; 122 不等式ax+bx+c<0的解为 x<x<x. 1222(2)当Δ=0时,抛物线y=ax+bx+c(a>0)与x轴有且仅有一个公共点,方程ax+bxb+c=0有两个相等的实数根x=x=-,由图2.3-2②可知
122a2不等式ax+bx+c>0的解为
b x≠- ; 2a2 不等式ax+bx+c<0无解. 22(3)如果△<0,抛物线y=ax+bx+c(a>0)与x轴没有公共点,方程ax+,bx+c=0没有实数根由图2.3-2③可知
2不等式ax+bx+c>0的解为一切实数; 2不等式ax+bx+c<0无解. 例3 解不等式: 22-(1)x+2x-3≤0;(2)xx+6<0; 14(3)4x+4x+1≥0;(4)x-6x+9≤0; 2(5)-4+x-x<0. 2 例4已知函数y=x-2ax+1(a为常数)在-2≤x≤1上的最小值为n,试将n用a表示出来.
练
习1.解下列不等式: 22(1)3x-x-4>0;(2)x-x-12≤0; 22≤0.(3)x+3x-4>0;(4)16-8x+x
22≤0(a为常数). 2.解关于x的不等式x+2x+1-a
习题2.3 1.解下列方程组: 2(2)
222.42
0;
222(2
3)0;
9,22
1,4,(1)
(3)
2.解下列不等式: 22
(1)3x-2x+1<0;
(2)3x-4<0; 22≥-1;(4)4-x≤0.(3)2x-x 第三讲 三角形与圆 3.1 相似形 3.1.1.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例.ABDEABDE如图3.1-2,有.当然,也可以得出.在运用该定理l//l//123BCEFACDF解决问题的过程中,我们一定要注意线段之间的对应
关系,是“对应”线段成比例.例如图3.1-2,l//l//l123且求.AB=2,BC=3,DF=4,DE,EF 15
例2 在中,为边上的点,求证:.ABACBC
平行于三角形的一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.ABBDACDC例3
在中,为的平分线,求证:.VABCÐBAC=AD
例3的结论也称为角平分线性质定理,可叙述为角平分线分对边成比例(等于该
角的两边之比).练习1 1.如图3.1-6,下列比例式正确的l//l//l123是()ADCEADBCA. B. == DFBCBEAFCEADAFBEC. D.==
DFBCDFCE
图3.1-6
2.如图3.1-7,求的平分线,DE//BC,EF//AB,AD=5cm,DB=3cm,FC=2cm,.BF 图3.1-7 3.如图,在中,AD是角BACAB=5cm,AC=4cm,BC=7cm,求BD的VABC长.图3.1-8
3.1.2.相似形 我们学过三角形相似的判定方法,想一想,有哪些方法可以判定两个三角形相似?有哪些方法可以判定两个直角三角形相似? 例6 如图3.1-12,在直角三角形ABC中,为直角,.ÐBACAD^BC于D
求证:(1),;
22AB=BD BCAC=CD CB(2)2AD=BD CD练习1.如图3.1-15,D是
VABCDE//BC的边AB上的一点,过D点作已知AD:DB=2:3,则等于
交AC于E.()
S:SVEDA四边形EDCBA. B. C. D. 2:34:94:54:21图3.1-15 2.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是,则梯形的上、下底长分别是__________.3:23.已知:的三边长分别是
3,4,5,与其相似的的最大边长是15,VABCVA'B'C'求的面积.'B'C'SVA'B'C'
4.已知:如图
3.1-16,在四边形ABCD 中,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH是什么四边形,试说明理由;(2)若四边形ABCD是平行四边形,对角线AC、BD满足什么条件时,EFGH是菱形?是正方形?
图3.1-16 习题3.1 17
中,1.如图3.1-18,AD=DF=FB,AE=EG=GC,VABCFG=4,则()
A.DE=1,BC=7 B.DE=2,BC=6 C.DE=3,BC=5 D.DE=2,BC=8 图3.1-18 2.如图3.1-19,BD、CE是的中线,P、Q分别是VABC BD、CE的中点,则等于()PQ:BCA.1:3 B.1:4 C.1:5 D.1:6 图3.1-19 3.如图3.1-20,中,E是AB延长线上一点,DE交BC于点F,已知BE:YABCD
AB=2:3,求.SS=4VCDFVBEF
图3.1-20 4.如图3.1-21,在矩形ABCD中,E是CD的中点,交AC于F,过F作FG//AB交AE于G,BE^AC求证:.2AG=AF FC 图3.1-21 3.2
三角形 3.2.1 三角形的“四心” 三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三 18
角形的内部,恰好是每条中线的三等分点.例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.已知 D、E、F分别为三边BC、CA、AB的中点,VABC图3.2-3 求证
AD、BE、CF交于一点,且都被该点分成2:1.三角形的三条角平分线相交于一点,是三角形的内心.三角形的内心在三角形的内部,它到三角形的三边的距离相等.(如图3.2-5)
图3.2-5 例2 已知的三边长分别为,I为的内心,且IVABCVABCBC=a,AC=b,AB=cb+c-a在的边上的射影分别为,求证:.VABCBC、AC、ABD、E、FAE=AF=
2三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.(如图3.2-8)图3.2-8 例4 求证:三角形的三条高交于一点.已知 中,AD与BE交于H点.VABCAD^BC于D,BE^AC于E,求证.CH^AB 过不共线的三点
A、B、C有且只有一个圆,该圆是三角形ABC的外接圆,圆心O为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.19
练习1 1.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.2.(1)若三角形ABC的面积为S,且三边长分别为,则三角形的内切圆分别为(其中为斜边长),则三角形的内
a、b、c的半径是___________;(2)若直角三角形的三边长
a、b、cc
切圆的半径是___________.并请说明理由.练习2 1.直角三角形的三边长为3,4,,则________.xx= 2.等腰三角形有两个内角的和是100°,则它的顶角的大小是_________.3.已知直角三角形的周长为,斜边上的中线的长为1,求这个三角形的面积.3列结论中,132A.
3习题3.2 A组 1.已知:在中,AB=AC,为BC边上的高,则下
o
正确的是()
B.
C.
D. 6、8、10,那么它最短边2222.三角形三边长分别是上的高为()A.6 B.4.5 C.2.4 D.8 3.如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于
_________.4.已知:是的三条边,那么的取值范围是_________。,且是整数,则的值是_________。
5.若三角形的三边长分别为aa81、a、3.3圆 3.3.1 直线与圆,圆与圆的位置关系
设有直线和圆心为且半径为的圆,怎样判断直线和圆的位置关系?OOll r 20
图3.3-1 观察图3.3-1,不难发现直线与圆的位置关系为:当圆心到直线的距离时,d>r直线和圆相离,如圆与直线;当圆心到直线的距离时,直线和圆相切,如Od=rl1圆与直线;当圆心到直线的距离时,直线和圆相交,如圆与直线.Od AB222.r-d=()2 当直线与圆相切时,如图3.3-3,为圆的切PA.Rt线,可 OPA,PB 得,且 在中,.222OA PB图3.3-3 如图3.3-4,为圆的切OOPTPAB 以证得,因而.线,为圆的割线,我们可 2图3.3-4 例1 如图3.3-5,已知⊙O的半径OB=5cm,弦 21 AB=6cm,D是的中点,求弦BD的长度。AB 例2 已知圆的两条平行弦的长度分别为6和,且这两条线的距离为3.求这个圆26的半径.设圆与圆半径分别为,它们可能有哪几种位置关系? OOR,r(R两圆相内切,r)2图3.3-7 观察图3.3-7,两圆的圆心距为,不难发现:当时,如图(1);当时,两圆相外切,如图(2);当时,两圆相内含,如图(3);当时,两圆相交,如图(4);当时,两圆相外切,如图(5).例3 设圆与圆的半径分别为3和2,为两圆的交点,试求两圆OOOO4A,B2112 的公共弦的长度.AB练习1 1.如图3.3-9,⊙O的半径为17cm,弦AB=30cm,AB所对的劣弧和优弧的中点分别为D、C,求弦AC和BD的长。22 图3.3-9 2.已知四边形ABCD是⊙O的内接梯形,AB//CD,AB=8cm,CD=6cm, ⊙O的半径等于5cm,求梯形ABCD的面积。 3.如图3.3-10,⊙Oo的直径AB和弦CD相交于点E,求CD的长。 图3.3-10 4.若两圆的半径分别为3和8,圆心距为13,试求两圆的公切线的长度.3.3.2 点的轨迹 在几何中,点的轨迹就是点按照某个条件运动形成的图形,它是符合某个条件的所有点组成的.例如,把长度为的线段的一个端点固定,另一个端点绕这个定点旋转r一周就得到一个圆,这个圆上的每一个点到定点的距离都等于;同时,到定点的距r离等于的所有点都在这个圆上.这个圆就叫做到定点的距离等于定长的点的轨迹.rr我们把符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都满足条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.下面,我们讨论一些常见的平面内的点的轨迹.从上面对圆的讨论,可以得出:(1)到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆.我们学过,线段垂直平分线上的每一点,和线段两个端点的距离相等;反过来,和线段两个端点的距离相等的点,都在这条线段的垂直平分线上.所以有下面的轨迹:(2)和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线.由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹:(3)到已知角的两边距离相等的点的轨迹,是这个角的平分线.练习下列条件的点的轨迹: 23 1.画图说明满足(1)到定点的距离等于的点的轨迹; 3cmA(2)到直线的距离等于的点的轨迹; 2cml(3) 已知直线,到、的距离相等的点的轨迹.AB//CDCDAB 2.画图说明,到直线的距离等于定长的点的轨迹.dl习题3.3 1. 已知弓形弦长为4,弓形高为1,则弓形所在圆的半径为()5 A. B. C.3 D.4 3 2 2. 在半径等于4的圆中,垂直平分半径的弦长为() A. B. C. D. 3433323 3. AB为⊙O的直径,弦,E为垂足,若BE=6,AE=4,则CD等于()CA. B. C. D. 462622182 4. 如图3.3-12,在⊙O中,E是弦AB延长线上的一点,已知oOB=10cm,OE=12cm,求AB。3.3-12 参考答案 第一讲 数与式 1.1.1.绝对值 图 1.(1); (2);或 2.D 3.3x-18 公式 11111.(1) (2) (3) 1.1.2.乘法 b 32242.(1)D(2)A 1.1.3.二次根式 24 1.(1)(2)(3)(4). 532100习题 2863 52.C 3.1 4.> 1.1.4.分式 199 1.2.B 3. 4. 2 1.1 1.(1)或(2)-4 211.2 <x<3 (3)x<-3,或x>3 3.(1)(2)(3) 2.1 分解因式 3)1. B 2.(1)(x+2)(x+4) (2) 22(2)(42(1)2)(1 (2)(4). 2)(2)(2 习题1.2 1.(1) (2)(3)23231111 2a3 4(45252723(1)(33)135521 2.(1);(2); 5)(1 (4). (3); 5)3 3.等边三角形 4.(1)()第二讲 函数与方程 2.1 一元二次方程 练习1.(1)C(2)D 22.(1)-3 (2)有两个不相等的实数根(3)x+2x-3=0 3.k<4,且k≠0 4.-1 提示:(x-3)(x-3)=x x-3(x+x)+9 121212习题 2.1 1.(1)C(2)B 提示:②和④是错的,对于②,由于方程的根的判别式Δ<20,所以方程没有实数根;对于④,其两根之和应为-.(3)C 提示:当a=0时,方程不是一元二次方程,不合题意. 25 2.(1)2(2)(3)6(3)3 4113.当 m>-,且m≠0时,方程有两个不相等的实数根;当m=-时,方程有两 441个相等的实数根;当m<-时,方程没有实数根. 44.设已知方程的两根分别是x和x,则所求的方程的两根分别是-x和-x,∵x+x=7,1212122 xx=-1,∴(-x)+(-x)=-7,(-x)×(-x)=xx=-1,∴所求的方程为y+7y-1=0.12121212 2.2 二次函数 22.2.1 二次函数y=ax+bx+c的图象和性质 练 习1.(1)D (2)D 2.(1)4,0(2)2,-2,0(3)下,直线x=-2,(-2,5);-2,大,5;>-2. 3.(1)开口向上;对称轴为直线x=1;顶点坐标为(1,-4);当x=1时,函数有最小值y=-4;当x<1时,y随着x的增大而减小;当x>1时,y随着x的增大而增大.其图象如图所示.(2)开口向下;对称轴为直线x=3;顶点坐标为(3,10);当x=3时,函数有最大值y=10;当x<3时,y随着x的增大而增大;当x>3时,y随着x的增大而减小.其图象如图所示. y (3,10) y 2y=x-2x-3 x=1 -1 O 3 x 2y=-x+6x+1 1 O x -3(1,-4)x=3(2)(1)(第3题) 4.通过画出函数图象来解(图象略).(1)当x=-2时,函数有最大值y=3;无最小值.(2)当x=-1时,函数有最大值y=4;无最小值. 26 (3)当x=-1时,函数有最大值y=4;当x=1时,函数有最小值y=0.(4)当x=0时,函数有最大值y=3;当x=3时,函数有最小值y=-12. 2.2.2 二次函数的三种表示方式 练习1.(1)A(2)C -2.(1)(x+1)(x1)(2)4 3223.(1)y=-x+2x-3(2)y=(x-3)+5 2(3)y=2(x-1+2)(x+1-2)习题2.2 1.(1)D (2)C(3)D 222.(1)y=x+x-2 (2)y=-x+2x+3 23.y=2x-12x+20 24.y=2x-8x-10 2.3 方程与不等式 2.3.1 二元二次方程组解法 练习1.(1)(2)是方程的组解; (3)(4)不是方程组的解. 2.(1) (2) (3) (4) 2.3.2 一元二次不等式解法 练习27 41.(1)x<-1,或x> ;(2)-3≤x≤4; (3)x<-4,或x>1;(4)x=4. 2.不等式可以变为(x+1+a)(x+1-a)≤0,(1)当-1-a<-1+a,即a>0时,∴-1-a≤x≤-1+a; 2≤0,∴x=-1;(2)当-1-a=-1+a,即 a=0时,不等式即为(x+1) (3)当-1-a>-1+a,即a<0时,∴-1+a≤x≤-1-a. 综上,当a>0时,原不等式的解为-1-a≤x≤-1+a; 当a=0时,原不等式的解为x=-1; 当a<0时,原不等式的解为-1+a≤x≤-1-a. 2,0,220,0,412 习题2.3 1024 53111.(1) .,,(2) .2253 332,2,332;3,2,12 3,3,3,(3) (4) 34211,1,1.1,1243 33(3)1-23232.(1)无解(2) 2≤x≤1+2(4)x≤-2,或x≥2 第二讲 三角形与圆 3.1 相似形 练习1 1.D DEADx510102.设.即 , ,,,.2833ABBD5353.ACDC49CFDC 28 4.作交于,则得,又 ACDCEGCE交5.作于,即 ABABEGEGEF 11523. 练习2 1. C2.12,18 .(1)因 为所以是平行四边形;(2)当时,为菱形;当时,为正方形.EFGH 2o5.(1)当时,;(2).习题3.1 1.B 2.B 3..为直角三角形斜边上的高,又可证.ABC BF.证略 2.(1);(2).3.C 8020 解得,3.2 三角形 练习1 练习2 oo71.5或 2.或 .设两直角边长为,斜边长为2,则,且,1.5.可利用面积证 习题3.2 A组 .B 2.D 3.4.5.8 120 29 3.3 圆 练习1,,1.取COMD17 AB中点M,连CM,MD,则,且 共线,158,25,9,.534cm34cm,32,2.O到ABCD的距离分别为3cm,4cm,梯形的高为1cm或7cm,梯形的面积为7或49.cm 3.半径为3cm,OE=2cm.,OF=.4.外公切线长为12,内公切线长为.433,26cm练习1.(1)以A为圆心,3cm为半径的3.3 圆;(2)与平行,且与距离为2cm的两条平行线;(3)与ABll平行,且与AB,CD距离相等的一条直线.2.两条平行直线,图略.习题1.B 2.A 3.B 4.AB=8cm.30 第四讲 不 等 式 【例1】解不等式xx60. 【例2】解下列不等式:(1)(x2)(x3)6【例3】解下列不等式: (1)x2x80 (2)(x1)(x2)(x2)(2x1) (3)xx20 (2)x4x40 【例4】已知对于任意实数x,kx2xk恒为正数,求实数k的取值范围. 【例5】已知关于x的不等式kx2(k21)x30的解为1k3,求k的值. 【例6】解下列不等式: (1) 2x3 0x1 (2) x3 0 2 xx1 3 x2 【例8】求关于x的不等式mx22mxm的解. 【例7】解不等式 【例9】已知关于x的不等式kkxx2的解为x,求实数k的值. 2 A组 1.解下列不等式: (1)2xx0 (2)x3x180(4)x(x9)3(x3) (3)xx3x12.解下列不等式: x1 0 x12 (3)1 x (1) 3x1 2 2x12x2x1 0(4) 2x1 (2)(2) 3.解下列不等式: 1211xx0 235 4.已知不等式xaxb0的解是2x3,求a,b的值. 5.解关于x的不等式(m2)x1m. 6.已知关于x的不等式kx2kk2x的解是x1,求k的值. 7.已知不等式2xpxq0的解是2x1,求不等式pxqx20的解. (1)x2x2x2 B组 1.已知关于x的不等式mxxm0的解是一切实数,求m的取值范围. x2x3 12的解是x3,求k的值. kk 3.解关于x的不等式56xaxa. 4.a取何值时,代数式(a1)2(a2)2的值不小于0? 2.若不等式 c0的解是x,其中0,求不等式5.已知不等式axbxcx2bxa0的解. 初高中数学衔接问题初探 李俊林 摘要:学生由初中升入高中将面临许多变化,受这些变化的影响,许多学生不能尽快适应高中学习,学习成绩大幅度下降,过早地失去学数学的兴趣,甚至打击他们的学习信心。如何搞好初高中数学教学的衔接,帮助学生尽快适应高中数学教学特点和学习特点,度过“难关”,就成为高一数学教学的首要任务。 关键词: 成绩分化;差异;衔接;措施 一、关于初高中数学成绩分化原因的分析 (一)环境与心理的变化 对高一新生来讲,学习环境是全新的,新教材、新同学、新教师、新集体,学生需要有一个由陌生到熟悉的适应过程。另外,考取了高中,有些学生会产生“松口气”的想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前就耳闻高中数学很难学,高中数学课一开始也确有些难理解的抽象概念,如集合、充要条件等,使他们从开始就处于被动局面。 (二)教材的变化 首先,初中教材偏重于实数集内的运算,缺少对概念的严格定义或对概念的定义不全,如函数的定义,三角函数的定义就是如此;对不少数学定理没有严格论证,或直接用公理形式给出而回避了证明,比如不等式的许多性质就是这样处理的;教材坡度较缓,直观性强,对每一个概念都配备了足够的例题和习题。高中教材从知识内容上整体数量较初中剧增;在知识的呈现、过程和联系上注重逻辑性,在数学语言在抽象程度上发生了突变,高一教材开始就是集合、函数定义及相关证明、逻辑关系等,概念多而抽象,符号多,定义、定理严格、论证严谨逻辑性强,教材叙述比较严谨、规范,抽象思维明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了“起点高、难度大、容量多”的特点。另外,初中数学教材中每一新知识的引入往往与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解、接受和掌握。 (三)课时的变化 在初中,由于内容少,题型简单,课时较充足。因此课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有足够的时间进行举例示范,学生也有足够的时间进行巩固。而到高中,由于知识点增多,灵活性加大,自习辅导课减少,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类题型也不可能讲全讲细以及巩固强化。这也使高一新生开始不适应高中学习而影响成绩的提高。 (四)教学方法的变化 初、高中教学方法上的差异也是高一新生成绩下降的一个重要原因。初中数学教学中重视直观、形象教学,一些重点题目学生可以反复练习,强化学习效果。而高中数学教学则更强调数学思想和方法,注重举一反三,在严格的论证和推理上下工夫。高中数学的课堂教学 往往采用粗线条模式,为学生构建一定的知识框架,讲授一些典型例题,以落实“双基”培养能力。刚进入高中的学生不容易适应这种教学方法.听课时存在思维障碍,难以适应快速的教学推进速度,从而产生学习障碍,影响学习成绩。 (五)学习方法的变化 在初中,教师讲得细,类型归纳得全,练得熟。考试时学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得好成绩。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目。因此,高中数学学习要求学生勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。然而,刚入学的高一新生往往继续沿用初中学法,致使学习困难增多,完成当天作业都很困难,更别提预习、复习及总结等自我消化自我调整的时间。这显然不利于良好学法的形成和学习质量的提高。 二、搞好初高中衔接所采取的主要措施 高中数学教学中要突出四大能力,即运算能力,空间想象能力,逻辑推理能力和分析问题解决问题的能力。要渗透四大数学思想方法,即数形结合,函数与方程,等价与变换,划分与讨论。这些虽然在初中教学中有所体现,但在高中教学中才能充分反映出来。这些能力、思想方法也正是高考命题的要求。 (一)做好准备工作,为搞好衔接打好基础 1.搞好入学教育 这是搞好衔接的基础工作,也是首要工作。通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其它措施的落实奠定基础。这里主要做好几项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是适当在刚开学时用一定时间复习初中数学中比较重要的基础知识、重点题型、重要方法;三是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;四是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项,尽快适应高中学习。 2.摸清底细,规划教学 为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,我们一方面通过进行摸底考试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。 (二)优化课堂教学环节,搞好初高中衔接 立足于大纲和教材,尊重学生实际,实行层次教学。重视新旧知识的联系与区别,建立知识网络。展示知识的形成过程和方法探索过程,培养学生创造能力。培养学生自我反思自 我总结的良好习惯,提高学习的自觉性。重视专题教学。利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识、应用形式、解决方法和解题规律。并借此机会对学生进行学法的指点,有意渗透数学思想方法。 (三)加强学法指导,培养良好学习习惯 良好学习习惯是学好高中数学的重要因素。它包括:制定计划、课前自习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习这几个方面。改进学生的学习方法,可以这样进行:引导学生养成认真制定计划的习惯,合理安排时间,从盲目的学习中解放出来;引导学生养成课前预习的习惯。可布置一些思考题和预习作业,保证听课时有针对性。还要引导学生学会听课,要求做到“心到”,即注意力高度集中;“眼到”,即仔细看清老师每一步板演;“手到”,即适当做好笔记;“口到”,即随时回答老师的提问,以提高听课效率。引导学生养成及时复习的习惯,下课后要反复阅读书本,回顾堂上老师所讲内容,查阅有关资料,或向教师同学请教,以强化对基本概念、知识体系的理解和记忆。引导学生养成独立作业的习惯,要独立地分析问题,解决问题。切忌有点小问题,或习题不会做,就不加思索地请教老师同学。引导学生养成系统复习小结的习惯,将所学新知识融入有关的体系和网络中,以保持知识的完整性。 (四)培养学生的数学兴趣 心理学研究成果表明:推动学生进行学习的内部动力是学习动机,而兴趣则是构建学习动机中最现实、最活跃的成份。浓厚的学习兴趣无疑会使人的各种感受尤其是大脑处于最活泼的状态,使感知更清晰、观察更细致、思维更深刻、想象更丰富、记忆更牢固,能够最佳地接受教学信息。不少学生之所以视数学学习为苦役、为畏途,主要原因还在于缺乏对数学的兴趣。因此,教师要着力于培养和调动学生学习数学的兴趣。课堂教学的导言,需要教师精心构思,一开头,就能把学生深深吸引,使学生的思维活跃起来。在教学过程中,教师还要通过生动的语言、精辟的分析、严密的推理、让学生从行之有效的数学方法和灵活巧妙的解题技巧中感受数学的无穷魅力,从枯燥乏味中解放出来,进入其乐无穷的境地,以保持学习兴趣的持久性。平时多注意观察学生情绪变化,开展心理咨询,做好个别学生思想工作。学生学不好数学,少责怪学生,要多找自己的原因。要深入学生当中,从各方面了解关心他们,特别是差生,帮助他们解决思想、学习及生活上存在的问题。使学生提高认识,增强学好数学的信心。在提问和布置作业时,从学生实际出发,多给学生创设成功的机会,以体会成功的喜悦,激发学习热情。 (五)培养学生的自学能力 培养学生自学能力,是初高中数学衔接非常重要的环节,在高一年级开始,可选择适当内容在课内自学。教师根据教材内容拟定自学提纲──基本内容的归纳、公式定理的推导证明、数学中研究问题的思维方法等。学生自学后由教师进行归纳总结,并给以自学方法的指导,以后逐步放手让学生自拟提纲自学,并向学生提出预习及进行章节小结的要求。应要求 学生把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的总结,以便推广和灵活运用。 (六)培养学生良好心理素质 重视培养学生正确对待困难和挫折的良好心理素质。由于高中数学的特点,决定了高一学生在学习中的困难大挫折多。为此,我们在教学中注意培养学生正确对待困难和挫折的良好心理素质,使他们善于在失败面前,能冷静地总结教训,振作精神,主动调整自己的学习,并努力争取今后的胜利。 三、结束语 总之,在高一数学的起步教学阶段,分析清楚学生学习数学困难的原因,抓好初高中数学教学衔接,便能使学生尽快适应新的学习模式,从而更高效、更顺利地接受新知和发展能力,为他们的高中学习奠定坚实的基础。 [参考文献] [1]江家齐.《教育与新学科》.修订2版.广东:广东教育出版社,1993年.156页 [2]郑和钧.《协同教学原则》.《湖南教育》,1993年11月.28页 [3]张筱玮.《中学数学理论与实践》.修订版.吉林:东北师范大学出版,2000年.125页 [4]钟以俊.《中外实用教学方法手册》.广西教育出版社,1990年10月.98页 作者简介:中学一级教师,专科,从事初高中数学教育多年,研究方向为数学教学。 第六讲 简单的二元二次方程组 2xy0(1)xy11(1) 【例1】解方程组2【例2】解方程组 2 xy28(2)xy30(2) 222xy5(xy)(1)xxy12(1) 【例3】解方程组2【例4】解方程组 22 xxyy43(2)xyy4(2)x2y226(1)xyx3(1) 【例5】解方程组【例6】解方程组 3xyy8(2)xy5(2) 1.解下列方程组: (1)xy26 yx (3)xy12 2x3xyy2 52.解下列方程组: (1)xy3 xy2 3.解下列方程组: (1)x(2x3)0 yx2 1 (3)(xy2)(xy)0 x2y2 8 4.解下列方程组: 22(1)xy3 x2y2 0 1.解下列方程组: (1)x2y3x22y3x20 2.解下列方程组: (1) xy3 xy2 3.解下列方程组: (1)22 3xy8x2xyy2 4 4.解下列方程组:(1)x2y25 xy2 A组 (2)x22y28 y2 x (4)x2y03x22xy10 (2)xy1 xy6 (2)(3x4y3)(3x4y3)0 3x2y5 (4) (xy)(xy1)0 (xy)(xy1)0 (2) xyx16 xyx8 B组 (2)2x3y12x23xyy2 4x3y30 (2) x2y4 2xy21 (2)xy24 xy21 2 (2)xy4x2y2 10 初中升高中衔接练习题(数学) 乘法公式1.填空:(1)(); (2); (3) . 2.选择题:(1)若是一个完全平方式,则等于() (A) (B) (C) (D) (2)不论,为何实数,的值() (A)总是正数 (B)总是负数 (C)可以是零 (D)可以是正数也可以是负数 因式分解 一、填空题:1、把下列各式分解因式: (1)__________________________________________________。 (2)__________________________________________________。 (3)__________________________________________________。 (4)__________________________________________________。 (5)__________________________________________________。 (6)__________________________________________________。 (7)__________________________________________________。 (8)__________________________________________________。 (9)__________________________________________________。 (10)__________________________________________________。 2、若则。 二、选择题:(每小题四个答案中只有一个是正确的) 1、在多项式(1)(2)(3)(4) (5)中,有相同因式的是() A.只有(1)(2) B.只有(3)(4) C.只有(3)(5) D.(1)和(2);(3)和(4);(3)和(5) 2、分解因式得() A B C D3、分解因式得() A、B、C、D、4、若多项式可分解为,则、的值是() A、,B、,C、,D、,5、若其中、为整数,则的值为() A、或 B、C、D、或 三、把下列各式分解因式1、2、3、4、提取公因式法 一、填空题:1、多项式中各项的公因式是_______________。 2、__________________。 3、____________________。 4、_____________________。 5、______________________。 6、分解因式得_____________________。 7.计算= 二、判断题:(正确的打上“√”,错误的打上“×”) 1、………………………………………………………… () 2、…………………………………………………………… () 3、…………………………………………… () 4、……………………………………………………………… () 公式法 一、填空题:,的公因式是___________________________。 二、判断题:(正确的打上“√”,错误的打上“×”) 1、………………………… () 2、………………………………… () 3、………………………………………………… () 4、………………………………………… () 5、……………………………………………… () 三、把下列各式分解1、2、3、4、分组分解法 用分组分解法分解多项式(1) (2) 关于x的二次三项式ax2+bx+c(a≠0)的因式分解. 1.选择题:多项式的一个因式为() (A) (B) (C) (D) 2.分解因式:(1)x2+6x+8; (2)8a3-b3; (3)x2-2x-1; (4). 根的判别式 1.选择题:(1)方程的根的情况是() (A)有一个实数根 (B)有两个不相等的实数根 (C)有两个相等的实数根 (D)没有实数根 (2)若关于x的方程mx2+ (2m+1)x+m=0有两个不相等的实数根,则实数m的取值范围是()(A)m< (B)m>- (C)m<,且m≠0 (D)m>-,且m≠0 2.填空:(1)若方程x2-3x-1=0的两根分别是x1和x2,则= . (2)方程mx2+x-2m=0(m≠0)的根的情况是 . (3)以-3和1为根的一元二次方程是 . 3.已知,当k取何值时,方程kx2+ax+b=0有两个不相等的实数根? 4.已知方程x2-3x-1=0的两根为x1和x2,求(x1-3)(x2-3)的值. 习题2.1 A 组1.选择题:(1)已知关于x的方程x2+kx-2=0的一个根是1,则它的另一个根是() (A)-3 (B)3 (C)-2 (D)2 (2)下列四个说法: ①方程x2+2x-7=0的两根之和为-2,两根之积为-7; ②方程x2-2x+7=0的两根之和为-2,两根之积为7; ③方程3 x2-7=0的两根之和为0,两根之积为; ④方程3 x2+2x=0的两根之和为-2,两根之积为0. 其中正确说法的个数是() (A)1个 (B)2个(C)3个 (D)4个 (3)关于x的一元二次方程ax2-5x+a2+a=0的一个根是0,则a的值是() (A)0 (B)1 (C)-1 (D)0,或-1 2.填空:(1)方程kx2+4x-1=0的两根之和为-2,则k= . (2)方程2x2-x-4=0的两根为α,β,则α2+β2= . (3)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是 . (4)方程2x2+2x-1=0的两根为x1和x2,则| x1-x2|= . 3.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1) x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根? 4.求一个一元二次方程,使它的两根分别是方程x2-7x-1=0各根的相反数. B 组1.选择题:若关于x的方程x2+(k2-1) x+k+1=0的两根互为相反数,则k的值为().(A)1,或-1 (B)1 (C)-1 (D)0 2.填空:(1)若m,n是方程x2+2005x-1=0的两个实数根,则m2n+mn2-mn的值等于 . (2)如果a,b是方程x2+x-1=0的两个实数根,那么代数式a3+a2b+ab2是 . 3.已知关于x的方程x2-kx-2=0. (1)求证:方程有两个不相等的实数根; (2)设方程的两根为x1和x2,如果2(x1+x2)>x1x2,求实数k的取值范围. 4.一元二次方程ax2+bx+c=0(a≠0)的两根为x1和x2.求: (1)| x1-x2|和; (2)x13+x23. 5.关于x的方程x2+4x+m=0的两根为x1,x2满足| x1-x2|=2,求实数m的值. C 组1.选择题: (1)已知一个直角三角形的两条直角边长恰好是方程2x2-8x+7=0的两根,则这个直角三角形的斜边长等于() (A) (B)3 (C)6 (D)9 (2)若x1,x2是方程2x2-4x+1=0的两个根,则的值为() (A)6 (B)4 (C)3 (D) (3)如果关于x的方程x2-2(1-m)x+m2=0有两实数根α,β,则α+β的取值范围为() (A)α+β≥ (B)α+β≤ (C)α+β≥1 (D)α+β≤1 (4)已知a,b,c是ΔABC的三边长,那么方程cx2+(a+b)x+=0的根的情况是() (A)没有实数根 (B)有两个不相等的实数根 (C)有两个相等的实数根 (D)有两个异号实数根 2.填空:若方程x2-8x+m=0的两根为x1,x2,且3x1+2x2=18,则m= . 3.已知x1,x2是关于x的一元二次方程4kx2-4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1-x2)(x1-2 x2)=-成立?若存在,求出k的值;若不存在,说明理由; (2)求使-2的值为整数的实数k的整数值;(3)若k=-2,试求的值. 4.已知关于x的方程. (1)求证:无论m取什么实数时,这个方程总有两个相异实数根; (2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1,x2. 5.若关于x的方程x2+x+a=0的一个大于1、零一根小于1,求实数a的取值范围. 二次函数y=ax2+bx+c的图象和性质 1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是() (A)y=2x2 (B)y=2x2-4x+2 (C)y=2x2-1 (D)y=2x2-4x (2)函数y=2(x-1)2+2是将函数y=2x2() (A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的2.填空题 (1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=,n= . (2)已知二次函数y=x2+(m-2)x-2m,当m= 时,函数图象的顶点在y轴上;当m= 时,函数图象的顶点在x轴上;当m= 时,函数图象经过原点. (3)函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为 ;当x= 时,函数取最 值y= ;当x 时,y随着x的增大而减小. 3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.(1)y=x2-2x-3; (2)y=1+6 x-x2. 4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值: (1)x≤-2; (2)x≤2; (3)-2≤x≤1; (4)0≤x≤3. 二次函数的三种表示方式 1.选择题: (1)函数y=-x2+x-1图象与x轴的交点个数是() (A)0个 (B)1个 (C)2个 (D)无法确定 (2)函数y=-(x+1)2+2的顶点坐标是() (A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2) 2.填空: (1)已知二次函数的图象经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y=a (a≠0) . (2)二次函数y=-x2+2x+1的函数图象与x轴两交点之间的距离为 . 二次函数的简单应用 选择题:(1)把函数y=-(x-1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为() (A)y= (x+1)2+1 (B)y=-(x+1)2+1 (C)y=-(x-3)2+4 (D)y=-(x-3)2+1第二篇:2014初高中数学衔接材料04
第三篇:初高中数学衔接问题初探
第四篇:2014初高中数学衔接材料06
第五篇:初高中数学衔接练习题