第一篇:模电考试精华总结版大全
第一章 半导体二极管
一.半导体的基础知识
1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。
*P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。6.杂质半导体的特性
*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。7.PN结
* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。8.PN结的伏安特性
二.半导体二极管
*单向导电性------正向导通,反向截止。*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴(正偏),二极管导通(短路);若 V阳 该式与伏安特性曲线 的交点叫静态工作点Q。 2)等效电路法 直流等效电路法 *总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴(正偏),二极管导通(短路);若 V阳 微变等效电路法 三.稳压二极管及其稳压电路 *稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。 第二章 三极管及其基本放大电路 一.三极管的结构、类型及特点 1.类型---分为NPN和PNP两种。2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触 面积较小;集电区掺杂浓度较高,与基区接触面积较大。二.三极管的工作原理 1.三极管的三种基本组态 2.三极管内各极电流的分配 * 共发射极电流放大系数(表明三极管是电流控制器件 式子 称为穿透电流。 3.共射电路的特性曲线 *输入特性曲线---同二极管。 * 输出特性曲线 (饱和管压降,用UCES表示 放大区---发射结正偏,集电结反偏。截止区---发射结反偏,集电结反偏。4.温度影响 温度升高,输入特性曲线向左移动。温度升高ICBO、ICEO、IC以及β均增加。三.低频小信号等效模型(简化) hie---输出端交流短路时的输入电阻,常用rbe表示; hfe---输出端交流短路时的正向电流传输比,常用β表示; 四.基本放大电路组成及其原则 1.VT、VCC、Rb、Rc、C1、C2的作用。2.组成原则----能放大、不失真、能传输。五.放大电路的图解分析法 1.直流通路与静态分析 *概念---直流电流通的回路。*画法---电容视为开路。*作用---确定静态工作点 *直流负载线---由VCC=ICRC+UCE 确定的直线。*电路参数对静态工作点的影响 1)改变Rb :Q点将沿直流负载线上下移动。 2)改变Rc :Q点在IBQ所在的那条输出特性曲线上移动。3)改变VCC:直流负载线平移,Q点发生移动。2.交流通路与动态分析 *概念---交流电流流通的回路 *画法---电容视为短路,理想直流电压源视为短路。*作用---分析信号被放大的过程。*交流负载线---连接Q点和V CC’点 V CC’= UCEQ+ICQR L’的 直线。 3.静态工作点与非线性失真 (1)截止失真 *产生原因---Q点设置过低 *失真现象---NPN管削顶,PNP管削底。*消除方法---减小Rb,提高Q。(2)饱和失真 *产生原因---Q点设置过高 *失真现象---NPN管削底,PNP管削顶。*消除方法---增大Rb、减小Rc、增大VCC。 4.放大器的动态范围 (1)Uopp---是指放大器最大不失真输出电压的峰峰值。(2)范围 *当(UCEQ-UCES)>(VCC’ - UCEQ)时,受截止失真限制,UOPP=2UOMAX=2ICQRL’。 *当(UCEQ-UCES)<(VCC’ - UCEQ)时,受饱和失真限制,UOPP=2UOMAX=2(UCEQ-UCES)。 *当(UCEQ-UCES)=(VCC’ - UCEQ),放大器将有最大的不失真输出电压。 六.放大电路的等效电路法 1.静态分析 (1)静态工作点的近似估算 (2)Q点在放大区的条件 欲使Q点不进入饱和区,应满足RB>βRc。 2.放大电路的动态分析 * 放大倍数 * 输入电阻 * 输出电阻 七.分压式稳定工作点共射 放大电路的等效电路法 1.静态分析 2.动态分析 *电压放大倍数 在Re两端并一电解电容Ce后 输入电阻 在Re两端并一电解电容Ce后 * 输出电阻 八.共集电极基本放大电路 1.静态分析 2.动态分* 电压放 析 大倍数 * 输入电阻 * 输出电阻 3.电路特点 * 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。* 输入电阻高,输出电阻低。 第三章 场效应管及其基本放大电路 一.结型场效应管(JFET)1.结构示意图和电路符号 2.输出特性曲线 (可变电阻区、放大区、截止区、击穿区) 转移特性曲线 UP-----截止电压 二.绝缘栅型场效应管(MOSFET) 分为增强型(EMOS)和耗尽型(DMOS)两种。结构示意图和电路符号 2.特性曲线 *N-EMOS的输出特性曲线 * N-EMOS的转移特性曲线式中,IDO是UGS=2UT时所对应的iD值。* N-DMOS的输出特性曲线 注意:uGS可正、可零、可负。转移特性曲线上iD=0处的值是夹断电压UP,此曲线表示式与结型场效应管一致。三.场效应管的主要参数 1.漏极饱和电流IDSS 2.夹断电压Up 3.开启电压UT 4.直流输入电阻RGS 5.低频跨导gm(表明场效应管是电压控制器件) 四.场效应管的小信号等效模型 E-MOS 的跨导gm--- 五.共源极基本放大电路 1.自偏压式偏置放大电路 * 静态分析 动态分析 若带有Cs,则 2.分压式偏置放大电路 * 静态分析 * 动态分析 若源极带有Cs,则 六.共漏极基本放大电路 * 静态分析 或 * 动态分析 第四章 多级放大电路 一.级间耦合方 1.阻容耦合----各级静态工作点彼此独立;能有效地传输交流信号;式体积小,成本低。但不便于集成,低频特性差。2.变压器耦合---各级静态工作点彼此独立,可以实现阻抗变换。体积大,成本高,无法采用集成工艺;不利于传输低频和高频信号。3.直接耦合----低频特性好,便于集成。各级静态工作点不独立,互相有影响。存在“零点漂移”现象。 *零点漂移----当温度变化或电源电压改变时,静态工作点也随之变化,致使uo偏离初始值“零点”而作随机变动。二.单级放大电路的频率响应 1.中频段(fL≤f≤fH) 波特图---幅频曲线是20lgAusm=常数,相频曲线是φ=-180o。 2.低频段 (f ≤ fL) ‘ 3.高频段(f ≥fH) 4.完整的基本共射放大电路的频率特性 三.分压式稳定工作点电路的频率响应 1.下限频率的估算 2.上限频率的估算 四.多级放大电路的频率响应 1.频响表达式 2.波特图 3.五章 功率放大电路 一.功率放大电路的三种工作状态 1.甲类工作状态 导通角为360o,ICQ大,管耗大,效率低。2.乙类工作状态 ICQ≈0,导通角为180o,效率高,失真大。3.甲乙类工作状态 导通角为180o~360o,效率较高,失真较大。二.乙类功放电路的指标估算 1.工作状态 任意状态:Uom≈Uim 尽限状态:Uom=VCC-UCES 理想状态:Uom≈VCC 2.输出功率3.直流电源提供的平均功率 4.管耗 Pc1m=0.2Pom 5.效率 理想时为78.5% 三.甲乙类互补对称功率放大电路 1.问题的提出 在两管交替时出现波形失真——交越失真(本质上是截止失真)。 2.解决办法 甲乙类双电源互补对称功率放大器OCL----利用二极管、三极管和电阻上的压降产生偏置电压。 动态指标按乙类状态估算。 甲乙类单电源互补对称功率放大器OTL----电容 C2 上静态电压为VCC/2,并且取代了OCL功放中的负电源-VCC。 动态指标按乙类状态估算,只是用VCC/2代替。四.复合管的组成及特点 1.前一个管子c-e极跨接在后一个管子的b-c极间。2.类型取决于第一只管子的类型。3.β=β1·β 2 第六章 集成运算放大电路 一.集成运放电路的基本组成 1.输入级----采用差放电路,以减小零漂。 2.中间级----多采用共射(或共源)放大电路,以提高放大倍数。3.输出级----多采用互补对称电路以提高带负载能力。 4.偏置电路----多采用电流源电路,为各级提供合适的静态电流。二.长尾差放电路的原理与特点 1.抑制零点漂移的过程----当T↑→ iC1、iC2↑→ iE1、iE2 ↑→ uE↑→ uBE1、uBE2↓→ iB1、iB2↓→ iC1、iC2↓。 Re对温度漂移及各种共模信号有强烈的抑制作用,被称为“共模反馈电阻”。2静态分析 1)计算差放电路IC 设UB≈0,则UE=-0.7V,得 2)计算差放电路UCE • 双端输出时 • 单端输出时(设VT1集电极接RL)对于VT1: 对于VT2: 3.动态分析 1)差模电压放大倍数 • 双端输出 • 单端输出时 从VT1单端输出 : 从VT2单端输出 : 2)差模输入电阻 3)差模输出电阻 • 双端输出:• 单端输出: 三.集成运放的电压传输特性 当uI在+Uim与-Uim之间,运放工作在线性区域 : 四.理想集成运放的参数及分析方法 1.理想集成运放的参数特征 * 开环电压放大倍数 Aod→∞; * 差模输入电阻 Rid→∞; * 输出电阻 Ro→0; * 共模抑制比KCMR→∞; 2.理想集成运放的分析方法 1)运放工作在线性区: * 电路特征——引入负反馈 * 电路特点——“虚短”和“虚断”: “虚短”---“虚断”---2)运放工作在非线性区 * 电路特征——开环或引入正反馈 * 电路特点—— 输出电压的两种饱和状态: 当u+>u-时,uo=+Uom 当u+ 第七章 放大电路中的反馈 一.反馈概念的建立 *开环放大倍数---A *闭环放大倍数---Af *反馈深度---1+AF *环路增益---AF: 1.当AF>0时,Af下降,这种反馈称为负反馈。2.当AF=0时,表明反馈效果为零。 3.当AF<0时,Af升高,这种反馈称为正反馈。 4.当AF=-1时,Af→∞。放大器处于 “ 自激振荡”状态。二.反馈的形式和判断 1.反馈的范围----本级或级间。2.反馈的性质----交流、直流或交直流。直流通路中存在反馈则为直流反馈,交流通路中存 在反馈则为交流反馈,交、直流通路中都存在反馈 则为交、直流反馈。 3.反馈的取样----电压反馈:反馈量取样于输出电压;具有稳定输出电压的作用。 (输出短路时反馈消失)电流反馈:反馈量取样于输出电流。具有稳定输出电流的作用。 (输出短路时反馈不消失) 4.反馈的方式-----并联反馈:反馈量与原输入量在输入电路中以电 流形式相叠加。Rs越大反馈效果越好。 反馈信号反馈到输入端) 串联反馈:反馈量与原输入量在输入电路中以电压的形式相叠加。Rs越小反馈效果越好。 反馈信号反馈到非输入端)5.反馈极性-----瞬时极性法: (1)假定某输入信号在某瞬时的极性为正(用+表示),并设信号的频率在中频段。 (2)根据该极性,逐级推断出放大电路中各相关点的瞬时极性(升 高用 + 表示,降低用 - 表示)。(3)确定反馈信号的极性。(4)根据Xi 与X f 的极性,确定净输入信号的大小。Xid 减小为负反 馈;Xid 增大为正反馈。 三.反馈形式的描述方法 某反馈元件引入级间(本级)直流负反馈和交流电压(电流)串 联(并联)负反馈。四.负反馈对放大电路性能的影响 1.提高放大倍数的稳定性 2.3.扩展频带 4.减小非线性失真及抑制干扰和噪声 5.改变放大电路的输入、输出电阻 *串联负反馈使输入电阻增加1+AF倍 *并联负反馈使输入电阻减小1+AF倍 *电压负反馈使输出电阻减小1+AF倍 *电流负反馈使输出电阻增加1+AF倍 五.自激振荡产生的原因和条件 1.产生自激振荡的原因 附加相移将负反馈转化为正反馈。2.产生自激振荡的条件 若表示为幅值和相位的条件则为: 第八章 信号的运算与处理 分析依据------“虚断”和“虚短” 一.基本运算电路 1.反相比例运算电路 R2 =R1//Rf 2.同相比例运算电路 R2=R1//Rf 3.反相求和运算电路 R4=R1//R2//R3//Rf 4.同相求和运算电路 R1//R2//R3//R4=Rf//R5 5.加减运算电路 R1//R2//Rf=R3//R4//R5 二.积分和微分运算电路 1.积分运算 2.微分运算 第九章 信号发生电路 一.正弦波振荡电路的基本概念 1.产生正弦波振荡的条件(人为的直接引入正反馈)自激振荡的平衡条件 : 即幅值平衡条件: 相位平衡条件: 2.起振条件: 幅值条件 :相位条件: 3.正弦波振荡器的组成、分类 正弦波振荡器的组成 (1)放大电路-------建立和维持振荡。 (2)正反馈网络----与放大电路共同满足振荡条件。(3)选频网络-------以选择某一频率进行振荡。 (4)稳幅环节-------使波形幅值稳定,且波形的形状良好。* 正弦波振荡器的分类 (1)RC振荡器-----振荡频率较低,1M以下;(2)LC振荡器-----振荡频率较高,1M以上;(3)石英晶体振荡器----振荡频率高且稳定。二.RC正弦波振荡电1.RC串并联正弦波振 2.RC移相式正弦波振荡电路 路 荡电路 三.LC正弦波振荡电路 1.变压器耦合式LC振荡电路 判断相位的方法: 断回路、引输入、看相位 2.三点式LC振荡器 *相位条件的判断------“射同基反”或 “三步曲法” (1)电感反馈三点式振荡器(哈特莱电路) (2)电容反馈三点式振荡器(考毕兹电路) (3)串联改进型电容反馈三点式振荡器(克拉泼电路) (4)并联改进型电容反馈三点式振荡器(西勒电路) (5)四.石英晶体振荡电路 1.并联型石英晶体振荡器 2.串联型石英晶体振荡器 第十章 直流电源 一.直流电源的组成框图 • 电源变压器:将电网交流电压变换为符合整流电路所需要的交流电压。 • 整流电路:将正负交替的交流电压整流成为单方向的脉动电压。• 滤波电路:将交流成分滤掉,使输出电压成为比较平滑的直流电压。 • 稳压电路:自动保持负载电压的稳定。• 二.单相半波整流电路 1.输出电压的平均值UO(AV) 2.输出电压的脉动系数S 3.正向平均电流ID(AV) 4.最大反向电压URM 三.单相全波整流电路 1.输出电压的平均值UO(AV) 2.输出电压的脉动系数S 3.正向平均电流ID(AV) 4.最大反向电压URM 四.单相桥式整流电路 UO(AV)、S、ID(AV) 与全波整流电路相同,URM与半波整流电路相同。 五.电容滤波电路 1. 放电时间常数的取值 2.输出电压的平均值UO(AV) 3.输出电压的脉动系数S.整流二极管的平均电流I D(AV) 六.三种单相整流电容滤波电路的比较 七.并联型稳压电路 1.稳压电路及其工作原理 *当负载不变,电网电压 变化时的稳压过程: *当电网电压不变,负载变化时的稳压过程 : 2.电路参数的计算 * 稳压管的选择 常取UZ=UO;IZM=(1.5~3)IOmax * 输入电压的确定 一般取UI(AV)=(2~3)UO * 限流电阻R的计算 R的选用原则是:IZmin 第一章 半导体二极管 一.半导体的基础知识 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。 2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。 *P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。 *N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。6.杂质半导体的特性 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。7.PN结 * PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。 * PN结的单向导电性---正偏导通,反偏截止。 8.PN结的伏安特性 二.半导体二极管 *单向导电性------正向导通,反向截止。 *二极管伏安特性----同PN结。 *正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。 *死区电压------硅管0.5V,锗管0.1V。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴(正偏),二极管导通(短路); 若 V阳 该式与伏安特性曲线 的交点叫静态工作点Q。 2)等效电路法 直流等效电路法 *总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴(正偏),二极管导通(短路); 若 V阳 *三种模型 微变等效电路法 三.稳压二极管及其稳压电路 *稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。 第二章 三极管及其基本放大电路 一.三极管的结构、类型及特点 1.类型---分为NPN和PNP两种。 2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触 面积较小;集电区掺杂浓度较高,与基区接触面积较大。 二.三极管的工作原理 1.三极管的三种基本组态 2.三极管内各极电流的分配 * 共发射极电流放大系数(表明三极管是电流控制器件 式子 称为穿透电流。 3.共射电路的特性曲线 *输入特性曲线---同二极管。 * 输出特性曲线 (饱和管压降,用UCES表示 放大区---发射结正偏,集电结反截止区---发射结反偏,集电结反偏。4.温度影响 温度升高,输入特性曲线向左移动。温度升高ICBO、ICEO、IC以及β三.低频小信号等效模型(简化)hie---输出端交流短路时的输入 常用rbe表示; hfe---输出端交流短路时的正向电流传输比,常用β表示; 四.基本放大电路组成及其原则 1.VT、VCC、Rb、Rc、C1、C2用。 2.组成原则----能放大、不失真、输。 能传的作电阻,均增加。偏。五.放大电路的图解分析法 1.直流通路与静态分析 *概念---直流电流通的回路。 *画法---电容视为开路。 *作用---确定静态工作点 *直流负载线---由VCC=ICRC+UCE 确定的直线。*电路参数对静态工作点的影响 1)改变Rb :Q点将沿直流负载线上下移动。 2)改变Rc :Q点在IBQ所在的那条输出特性曲线上移动。 3)改变VCC:直流负载线平移,Q点发生移动。 2.交流通路与动态分析 *概念---交流电流流通的回路 *画法---电容视为短路,理想直流电压源视为短路。 *作用---分析信号被放大的过程。 *交流负载线---连接Q点和V CC’点 V CC’= UCEQ+ICQR L’的 直线。 3.静态工作点与非线性失真 (1)截止失真 *产生原因---Q点设置过低 *失真现象---NPN管削顶,PNP管削底。*消除方法---减小Rb,提高Q。(2)饱和失真 *产生原因---Q点设置过高 *失真现象---NPN管削底,PNP管削顶。*消除方法---增大Rb、减小Rc、增大VCC。 4.放大器的动态范围 (1)Uopp---是指放大器最大不失真输出电压的峰峰值。 (2)范围 *当(UCEQ-UCES)>(VCC’ - UCEQ)时,受截止失真限制,UOPP=2UOMAX=2ICQRL’。 *当(UCEQ-UCES)<(VCC’ - UCEQ)时,受饱和失真限制,UOPP=2UOMAX=2(UCEQ-UCES)。 *当(UCEQ-UCES)=(VCC’ - UCEQ),放大器将有最大的不失真输出电压。 六.放大电路的等效电路法 1.静态分析 (1)静态工作点的近似估 (2)Q点在放大区的条件 欲使Q点不进入饱和区,应满足RB>βRc。 2.放大电路的动态分析 * 放大倍数 * 输入电阻 算 * 输出电阻 七.分压式稳定工 放大电路的1.静态分析 2.动态分析 *电压放大倍数 在Re两端并一电解电容Ce后 输入电阻 在Re两端并一电解电容Ce后 * 输出电阻 作点共射 等效电路法 八.共集电极基本放大电路 1.静态分析 2.动态分析 * 电压 放大倍数 * 输入电阻 * 输出电阻 3.电路特点 * 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。 * 输入电阻高,输出电阻低。 场效应管及其放大电路 一.结型场效应管(JFET) 1.结构示意图和电路符号 2.输出特性曲线 (可变电阻区、放大区、区、击穿区) 转移特性曲线 截止UP-----截止电压 二.绝缘栅型场效应管(MOSFET) 分为增强型(EMOS)和耗尽型(DMOS)两种。结构示意图和电路符号 2.特性曲线 *N-EMOS的输出特性曲线 * N-EMOS的转移特性曲线式中,IDO是UGS=2UT时所对应的iD值。* N-DMOS的输出特性曲线 模电总结 三极管仿真电路 场效应管方正电路 场效应管 说明了 栅极(G)上电流为0 漏极(D)上电流也很小 源极(S)上电流更小 场效应管的作用 1、场效应管可应用于放大。由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。 2、场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。 3、场效应管可以用作可变电阻。 4、场效应管可以方便地用作恒流源。 5、场效应管可以用作电子开 单管共射放大电路 1、输入信号和输出信号反相; 2、有较大的电流和电压增益; 3、一般用作放大电路的中间级。 4、共射极放大器的集电极跟零电位点之间是输出端,接负载电阻 共集电极放大电路 共集放大电路又叫射极跟随器,这种放大电路的放大倍数接近1,就是说,该放大电路的输出跟输入信号相同,即输出信号随输入信号的变化发生相同的变化,具有“跟随”的作用。 它具有输入电阻大(索取信号能量的能力大),输出电阻小(给予负载信号能量的能力大)的特点,可以做多级放大器的中间级,即缓冲级 共基极放大电路 1、输入信号与输出信号同相; 2、电压增益高; 3、电流增益低(≤1); 4、功率增益高; 5、适用于高频电路。 共基极放大电路的输入阻抗很小,会使输入信号严重衰减,不适合作为电压放大器。但它的频宽很大,因此通常用来做宽频或高频放大器。在某些场合,共基极放大电路也可以作为“电流缓冲器”(Current Buffer)使用。 RC高通电路 差分放大电路 差分放大电路对共模输入信号有很强的抑制能力,对差模信号却没有多大的影响,因此差分放大电路一般做集成运算的输入级和中间级,可以抑制由外界条件的变化带给电路的影响,如温度噪声等。你可以去找一些集成电路看一下,第一级基本上都是差分放大。 本学期对模电的学习,基本类似大一第二学期的电路课程的学习,从器件拓展到电路,从小信号再到大信号,先基础后应用的顺序逐步展开。以下,我也将从这几方面对本学期的模电进行大致总结以了解本人该学期对模电的掌握情况。 一、器件 在第一章常用半导体器件当中,我们首先介绍的模电主角晶体管场效应管的组成材质半导体以及有p型半导体以及n型半导体组成的pn结。随后我们介绍了pn结的应用,半导体二极管,半导体二极管中还包含了稳压管、发光二极管几种特殊类型。在半极管的基础上,我们引出了本学期模电的主角晶体管场效应管。 二、电路 在掌握了器件特性的基础上,我们对模电的学习拓展到了电路。1.基本放大电路: 共射放大电路、共集放大电路、共基放大电路、以及共源、共漏、共栅。其中共射电路对应共源电路、共集电路对应共漏电路、共基电路对应共栅电路。共射电路:输入电阻输出电阻都比较居中、输入信号与输出信号反向。 共集电路:输入电阻很大、输入电阻很小,输入输出同相,不能放大电压但能放大电流放大倍数接近1。 共基电路:输入电阻很小、输出电阻很大,输入输出同相,不能放大电流但能放大电压。2.多级放大电路 实际应用中,常对放大电路性能提出多方面要去,一些是基本放大电路无法实现的。在基本放大电路的基础上,我们学习了由多个基本放大电路连接组成的多级放大电路。各级基本放大电路的连接方式不同,包括直接耦合、阻容耦合、变压器耦合和光电耦合。 阻容耦合电路:不能放大变化缓慢的信号,在信号频率高、输出功率大的情况下才会使用 3.差动放大电路 作用:减小温漂,常用作集成运放的输入端。4.反馈电路 当反馈采样点接在输入点则可判断为电压反馈,否则则是电流反馈。当反馈输入端接在输入信号端则是并联负反馈,否则则是串联反馈。 负反馈类型: 电压串联负反馈 电流串联负反馈 电压并联负反馈 电流并联负反馈 5.基本运算电路 同相加法器:信号输入接正信号 差分放大器:两个输入信号一个接正一个接负,其正输入端还需要有等大电阻接地。积分电路 微分电路 6、稳压电路: 桥式整流 调整管 串联型稳压电路 三、应用 1、有源滤波器:有源低通、有源高通、有源带通、有源带阻 2、振荡器:RC桥式正弦波振荡电路、LC正弦波振荡电路。LC又包括电感三点式、电容三点式、变压器式 3、电压比较器:过零电压比较器、带Uref的简单单限电压比较器、滞会电压比较器、窗口电压比较器 实验三单级低频放大器的设计、安装和调试 1.RC和RL的变化对静态工作点有否影响? 答:RC的变化会影响静态工作点,如其它参数不变,则RC↑==>VCE↓。RL的变化对静态工作点无影响,原因是C2的隔直作用。 2.RC和RL的变化对放大器的电压增益有何影响? RL答:本实验电路中AUrbe,RL′= RC // RL,RL′增加时,∣AU∣的值变大,反之则减小。 3.放大器的上、下偏置电阻RB1和RB2若取得过小,将对放大器的静态和动态指标产生什么影响? 答:上、下偏置电阻RB1和RB2取得很小时,静态稳定性提高,但静态功耗大增而浪费能源,而且还会使放大器的输入动态电阻减小以致信号分流过大。 4.C3若严重漏电或者容量失效而开路,两种器件故障分别对放大器产生什么影响? 答:C3若严重漏电会使R4短路失效,放大器不能稳定工作,严重时会造成放大器处于饱和工作状态,而不能放大信号。 C3容量失效而开路时,由于R4的作用,使放大器处于深度负反馈工作状态,不能放大信号,AU≈-1。 Au=VOL/Vi>>1,所以Vi< 实验八集成运放的线性应用 1.集成运放用于交流信号放大时,采用单、双电源供电时各有什么优缺点? 答:运放采用单电源供电:优点:电源种类少。缺点:电路中需增加器件,运放输出端的静态电位不为零(VCC/2或-VCC/2)。 采用双电源供电:优点:应用电路相对简单,输出端静态电位近似为零。缺点:电源种类多。 2.理想运放具有哪些最主要的特点? 答:(1)差模电压增益Ad为无穷大;(2)共模电压增益AC为零;(3)输入阻抗Rin为无穷大;(4)输出阻抗RO为零;(5)有无限的带宽,传输时无相移;(6)失调、温漂、噪声均为零。 3.集成运放用于直流信号放大时,为何要进行调零? 答:实际的集成运放不是理想的运放,往往存在失调电压,为了提高实验测量精度,所以要进行调零。 实验十负反馈放大器 1.负反馈放大器有哪四种组成形式,各种组成形式的作用是什么? 答:负反馈放大器有电压串联、电压并联、电流串联和电流并联负反馈四种组成形式。电压串联负反馈具有稳定输出电压,降低输出电阻,提高输入电阻的作用。电压并联负反馈具有稳定输出电压、降低输出电阻和输入电阻的作用。电流串联负反馈具有稳定输出电流,提高输出电阻和输入电阻的作用。电流并联负反馈具有稳定输出电流,提高输出电阻,降低输入电阻的作用。 2.如果把失真的信号加入到放大器的输入端,能否用负反馈的方式来改善放大器的输出失真波形? 答:不能。因为负反馈放大器只能改善和消除电路内部因素造成的失真。 实验十一 电平检测器的设计与应用 4)二极管VD1和VD2分别起什么作用? 答:分别保证发射极和集电极的偏置。 5)实验中,驱动二极管V的基极电阻Rb的阻值如何确定?取值过大或者过小产生什么问题? 答:Rb1420.71420.725.2k过大或者过小影响集电极电流的值,过大无法驱动继电器,过小烧坏三极管,红灯不亮。ICQ/50/100 实验三单级低频放大器的设计、安装和调试 1.RC和RL的变化对静态工作点有否影响? 答:RC的变化会影响静态工作点,如其它参数不变,则RC↑==>VCE↓。RL的变化对静态工作点无影响,原因是C2的隔直作用。 2.RC和RL的变化对放大器的电压增益有何影响? RL答:本实验电路中AUrbe,RL′= RC // RL,RL′增加时,∣AU∣的值变大,反之则减小。 3.放大器的上、下偏置电阻RB1和RB2若取得过小,将对放大器的静态和动态指标产生什么影响? 答:上、下偏置电阻RB1和RB2取得很小时,静态稳定性提高,但静态功耗大增而浪费能源,而且还会使放大器的输入动态电阻减小以致信号分流过大。 4.C3若严重漏电或者容量失效而开路,两种器件故障分别对放大器产生什么影响? 答:C3若严重漏电会使R4短路失效,放大器不能稳定工作,严重时会造成放大器处于饱和工作状态,而不能放大信号。 C3容量失效而开路时,由于R4的作用,使放大器处于深度负反馈工作状态,不能放大信号,AU≈-1。 Au=VOL/Vi>>1,所以Vi< 实验八集成运放的线性应用 1.集成运放用于交流信号放大时,采用单、双电源供电时各有什么优缺点? 答:运放采用单电源供电:优点:电源种类少。缺点:电路中需增加器件,运放输出端的静态电位不为零(VCC/2或-VCC/2)。 采用双电源供电:优点:应用电路相对简单,输出端静态电位近似为零。缺点:电源种类多。 2.理想运放具有哪些最主要的特点? 答:(1)差模电压增益Ad为无穷大;(2)共模电压增益AC为零;(3)输入阻抗Rin为无穷大;(4)输出阻抗RO为零;(5)有无限的带宽,传输时无相移;(6)失调、温漂、噪声均为零。 3.集成运放用于直流信号放大时,为何要进行调零? 答:实际的集成运放不是理想的运放,往往存在失调电压,为了提高实验测量精度,所以要进行调零。 实验十负反馈放大器 1.负反馈放大器有哪四种组成形式,各种组成形式的作用是什么? 答:负反馈放大器有电压串联、电压并联、电流串联和电流并联负反馈四种组成形式。电压串联负反馈具有稳定输出电压,降低输出电阻,提高输入电阻的作用。电压并联负反馈具有稳定输出电压、降低输出电阻和输入电阻的作用。电流串联负反馈具有稳定输出电流,提高输出电阻和输入电阻的作用。电流并联负反馈具有稳定输出电流,提高输出电阻,降低输入电阻的作用。 2.如果把失真的信号加入到放大器的输入端,能否用负反馈的方式来改善放大器的输出失真波形? 答:不能。因为负反馈放大器只能改善和消除电路内部因素造成的失真。 实验十一 电平检测器的设计与应用 4)二极管VD1和VD2分别起什么作用? 答:分别保证发射极和集电极的偏置。 5)实验中,驱动二极管V的基极电阻Rb的阻值如何确定?取值过大或者过小产生什么问题? 答:Rb 1420.71420.725.2k过大或者过小影响集电极电流的值,过大无法驱动继电器,过小烧坏三极管,红灯不亮。ICQ/50/100 《电路和模拟电子学》 课程总结 姓名:杨超 学号:1104031001 班级:网络工程一班 指导老师:肖连军 2012年6月18日 课程总结 一个学期将要结束,终于,模电课也将要结束。对于模电课,我从最开始的好奇,到中间的担忧,到现在,可谓有所收获了。 刚接触模电的时候,我可以说对其一无所知的。但是,我也是比较感兴趣的,这其中就有很多原因的,首先是基于对未知的好奇心,以及高中就比较喜欢物理与电路,其次是听人家说模电比较难,想要看看自己亲身体验下有什么情况,算是挑战一下困难吧。刚开始上课时,我是很认真听课的,课下也做相应的预习与复习,也做做书上每章后面的练习题。总之,开始学模电时,我觉得自己还是有干劲的。 到后来,我就觉得自己有些跟不上老师的节奏了。刚开始上第一章电路的基本概念时,我觉得老师将课好,很仔细,但是到了讲第二以及后面的几章时,我就跟不上了。我觉得老师讲这几章,太具有跳跃性了,一会儿是讲这里,一会儿是讲那里,一会儿是第二章,一会儿是第五章。我看第二章得时候讲第五章,我看第五章的时候又讲第三章,我又要往回看。最后,弄得自己都有些糊涂了。本来就有很多不懂的东西,又在这些小事上浪费了不少时间,并且,看书时,精神有不大集中。最后导致题目有些不会做,重点也没掌握到。因此,在这段时间我还是很担心模电的,很怕自己挂科,什么也没学到。 到最后,也就是现在,我觉得模电还是有很多东西没搞懂。比如说,有些题目不会做,有些图不能读懂,还有一些实验仪器用的不熟练等等。但是,这些问题都将不再是我担心的事情了。因为,学习模电的过程中,我知道了一个道理:问题不能阻止学习的脚步,我一直在前进,一直在进步。或许,我现在面临着许多的问题,这不懂,那不懂,但是,我还是把以前那些不懂的地方都弄懂了,这也是进步。这就足够了。 电路与模拟电子学这本书共十章,分别为:电路的基本概念、电阻电路分析、动态电路分析、交流电路分析、半导体二极管及其应用电路、放大电路基础、负反馈放大电路、集成运放的应用、波形产生电路与直流稳压电路、模拟可编程器件的原理及其应用。可能是由于时间原因吧,我们只上前八章,但内容还是很多,知识点更多,这给我们的学习带来很多困难。 这本书的主要内容是在电路分析这一块和半导体应用电路及放大电路,学完这本书让我们能够对一般性的、常用的模拟电子基本单元电路进行分析,同时对较简单的单元电路进行设计——会看、会算、会选。了解对一般电路的分析后,主要是知道放大电路的分析,放大电路可谓是一难点,更是一重点,放大电路分为单级放大、多级放大和反馈放大,其中单级放大中有晶体管(共射、共基、共集)和场效应管(共源、共漏),多级放大分为组态(直接、阻容、变压器、光电)和电路(阻容耦合多级、直接耦合多级、差动、OTL/OCL、运放),反馈电路中电路组态又分为电压-串联、电压-并联、电流-串联、电流-并联等,可见模电知识点的多、杂。 电模的学习让我们知道了对于任意一个电路要学会三点——会看,会算,会选:会看:电路的识别及定性分析,首先根据电路特征判断其属于哪种电路,然后根据电路特点判断其性能特点。会算:电路的定量分析,对于放大电路应会求解静态工作点、电压放大倍数、输入电阻、输出电阻,上限/下限截止频率,对运算电路应会求解运算关系,对有源滤波器应会求解幅频特性,对电压比较器应会求解电压传输特性,对波形发生电路应会求解振荡频率,对于功率放大电路应会求解输出功率,对直流稳压电路应会求解输出电压的可调范围等等。会选:在已知需求情况下选择电路形式,在已知功能情况下选择元器件类型,在已知性能指标情况下选择电路参数。例如:选用正弦波振荡电路应主要根据频率范围,选用稳压电路应 主要根据输出电压、输出电流的需求,选用放大电路,应根据静态、动态及环境等综合需求。此外,还要注意题目的综合性和灵活性。实际上,模拟电子技术基础课程中集成运放的应用部分就或多或少带有综合性。例如,非正弦波发生电路中既含有运算电路(积分电路)又含有电压比较器(滞回比较器),它既包含集成运放工作在线性区的电路又包含集成运放工作在非线性区的电路。又如功率放大电路需要和前级电路匹配才能输出最大功率,且为了消除非线性失真通常要引入负反馈,因此,实用功放涉及到放大的概念、放大电路的耦合问题、反馈的判断和估算、功放的输出功率、大功率管的选择原则等等。 现在,模电学完了,我回忆一下过去,整理一下记忆,我发现自己确实收获颇多,也对模电课有了一些自己的看法。 第一,经过自己近三四个月学习模电的经验,我总算比较系统的了解了模电这门课程。万事开头难这句话在模电这门课程上体现的淋漓尽致。首先,模电这门课它是一门先难后易的课程,模电它上手比较难。模电虽然是一门新课程,但它又与其他电学书有相当大的关系。比如说,它与《电路分析》这门课有联系,如果电路分析学的不好的话,那么在学习模电的过程中一定会有一些障碍的。所以在电学方面有些不感冒的同学,在刚开始学模电的时候就有听不懂的问题,甚至导致厌恶模电的不良结果。当然,这对我来说只是小问题,我虽然电学学的不怎么样,但自问还是懂得不少的,故模电课还是能够接受的。其次,学习模电要求有一个好的学习习惯:课前,必须预习课本;课后,必须认真看课本;最后才是做题,巩固知识。很多人可能会认为这根其他的课程没什么不一样的,不都是这样做的。但是,我觉得模电不一样。对模电来说,这些过程都是必须的。其他的课程你可以不预习,不看书,不做题。但是,如果模电不预习的话,就有可能听不懂;如果模电不看书的话,就有可能懂不了新知识;如果模电你不做题的话,你很难知道那些知识掌握没有。因此,这些过程每次上模电课之前都要走一遍,一步也不能少! 第二,我觉得模电对我们学生要求比较高。你很难想象一本书竟然要求学生课内课外都必须照顾到。但模电就是这样要求的。模电不仅仅要求书本上的知识,还要求课外的知识,更是要求网上学习能力。书本上的知识包括理论知识和实验知识。理论知识就是要求我们学生学好书本上的一些理论,包括一些公式及定律以及课后的习题。此外,我们还必须能够记忆电路图,并灵活运用我们所学的知识来读懂一些电路图。这就是所谓的读图了。当然,这只是理论知识,考验的是思考及学习能力。所以,模电对我们的要求是很高的。总的来说,模电,你下功夫学习容易,但是要学好就难了。 第三,我觉得老师对我们的要求也很严格。这主要体现在作业和考试两个方面。首先,是作业方面。每次作业要按时交上,这不必说,还要将作业做好做对。做好,要按照要求的格式将作业写,好表述清楚,思路清晰,页面干净整齐,画的图要横平竖直,整体好看,元件不能画错,连接的节点也要标出来。做对,就是作业的结果要正确,表达无误。然后就是考试方面。老师虽然可以让我们选择考试方式,但是,我觉得考试还是较为严格的。并且,考试涉及的范围挺广。 最后,我觉得,老师虽然要求严格,但是,对我来说,其效果也是很好的。我每天都有按时到教室上课,然后认真听讲。作业也都较为认真的按照要求完成了。最终考核也将没多大问题,而以往不懂的地方也能够弄懂。所以,模电虽然有难度,要求高,但是还是一门比较实用的课程。在不久的将来,我觉得我会为模电课程要求高,实用性强而受益的。总的来说,电模还是一门比较受用的一门课,对我们的能力的提升也起到很大的作用,其他的就不说了,勇往直前吧! 杨超 1104031001 网络工程一班 2012年6月18日第二篇:模电总结
第三篇:模电总结
第四篇:模电实验考试
第五篇:模电课程总结