高考数学难点归纳22 轨迹方程的求法教案5则范文

时间:2019-05-12 20:50:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高考数学难点归纳22 轨迹方程的求法教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考数学难点归纳22 轨迹方程的求法教案》。

第一篇:高考数学难点归纳22 轨迹方程的求法教案

高考网

http://www.xiexiebang.com

难点22 轨迹方程的求法

求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场

(★★★★)已知A、B为两定点,动点M到A与到B的距离比为常数λ,求点M的轨迹方程,并注明轨迹是什么曲线.●案例探究

[例1]如图所示,已知P(4,0)是圆x+y=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB中点的轨迹方程.错解分析:欲求Q的轨迹方程,应先求R的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)又|AR|=|PR|=(x4)2y2

所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0 因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=代入方程x+y-4x-10=0,得

(x42)(22

2x42,y1y02, 22y2)42x42-10=0 整理得:x2+y2=56,这就是所求的轨迹方程.[例2]设点A和B为抛物线 y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目.知识依托:直线与抛物线的位置关系.错解分析:当设A、B两点的坐标分别为(x1,y1),(x2,y2)时,注意对“x1=x2”的讨论.技巧与方法:将动点的坐标x、y用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x、y的关系.解法一:设A(x1,y1),B(x2,y2),M(x,y)依题意,有

京翰教育http://www.xiexiebang.com/

高考网

http://www.xiexiebang.com

2y14px12y4px22y1y21 xx21yyy121xx1x2yyyy112xx1x1x2① ② ③ ④ ⑤

①-②得(y1-y2)(y1+y2)=4p(x1-x2)若x1≠x2,则有2y1y2x1x2

22

4py1y2

①³②,得y1²y2=16px1x2

③代入上式有y1y2=-16p2

⑥代入④,得4py1y24py1y2

⑦ ⑧

xy

⑥代入⑤,得yy1xx1yy1xy12

4p所以4py1y24p(yy1)4pxy12

即4px-y12=y(y1+y2)-y12-y1y2

⑦、⑧代入上式,得x2+y2-4px=0(x≠0)当x1=x2时,AB⊥x轴,易得M(4p,0)仍满足方程.故点M的轨迹方程为x2+y2-4px=0(x≠0)它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.解法二:设M(x,y),直线AB的方程为y=kx+b

由OM⊥AB,得k=-

xy

由y2=4px及y=kx+b,消去y,得k2x2+(2kb-4p)x+b2=0 所以x1x2=bk22,消x,得ky2-4py+4pb=0

京翰教育http://www.xiexiebang.com/

高考网

http://www.xiexiebang.com 所以y1y2=4pkk4pbk,由OA⊥OB,得y1y2=-x1x2

22所以=-bk,b=-4kp

xy2故y=kx+b=k(x-4p),用k=-

2代入,得x2+y2-4px=0(x≠0)故动点M的轨迹方程为x+y-4px=0(x≠0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?

命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O、A、B,问题转化为求两等圆P、Q,使它们与⊙O相内切,与⊙A、⊙B相外切.建立如图所示的坐标系,并设⊙P的半径为r,则 |PA|+|PO|=1+r+1.5-r=2.5 ∴点P在以A、O为焦点,长轴长2.5的椭圆上,其方程为

16(x2514)22y32=1

同理P也在以O、B为焦点,长轴长为2的椭圆上,其方程为(x-12)2+43y2=1

3912912,),Q(,),∴r=14141414267由①、②可解得P((914)(21214)237

故所求圆柱的直径为●锦囊妙计

cm.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法

直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法

若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法

根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法

若动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.京翰教育http://www.xiexiebang.com/

高考网

http://www.xiexiebang.com 求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练

一、选择题

1.(★★★★)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A.圆

C.双曲线的一支

x2B.椭圆 D.抛物线

9y

2.(★★★★)设A1、A2是椭圆

4=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为()A.C.xx292yy2421 1

B.D.yy292xx2421 1

949

4二、填空题

3.(★★★★)△ABC中,A为动点,B、C为定点,B(--sinB=12a2,0),C(a2,0),且满足条件sinCsinA,则动点A的轨迹方程为_________.4.(★★★★)高为5 m和3 m的两根旗杆竖在水平地面上,且相距10 m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题

5.(★★★★)已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.6.(★★★★)双曲线

xa22yb22=1的实轴为A1A2,点P是双曲线上的一个动点,引A1Q⊥A1P,A2Q⊥A2P,A1Q与A2Q的交点为Q,求Q点的轨迹方程.7.(★★★★★)已知双曲线

xm22yn22=1(m>0,n>0)的顶点为A1、A2,与y轴平行的直线l交双曲线于点P、Q.(1)求直线A1P与A2Q交点M的轨迹方程;

(2)当m≠n时,求所得圆锥曲线的焦点坐标、准线方程和离心率.京翰教育http://www.xiexiebang.com/

高考网

http://www.xiexiebang.com 8.(★★★★★)已知椭圆

xa22yb22=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R.(1)当P点在椭圆上运动时,求R形成的轨迹方程;

(2)设点R形成的曲线为C,直线l:y=k(x+2a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值.参考答案

难点磁场

解:建立坐标系如图所示,设|AB|=2a,则A(-a,0),B(a,0).设M(x,y)是轨迹上任意一点.则由题设,得|MA||MB|=λ,坐标代入,得

(xa)y(xa)y2222=λ,化简得

(1-λ2)x2+(1-λ2)y2+2a(1+λ2)x+(1-λ2)a2=0(1)当λ=1时,即|MA|=|MB|时,点M的轨迹方程是x=0,点M的轨迹是直线(y轴).(2)当λ≠1时,点M的轨迹方程是x+y+22

22a(1)122x+a2=0.点M的轨迹是以

(-a(1)12,0)为圆心,2a|1|2为半径的圆.歼灭难点训练

一、1.解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|, ∴|PF1|+|PF2|=|PF1|+|PQ|=2a, 即|F1Q|=2a,∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.答案:A 2.解析:设交点P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)∵A1、P1、P共线,∴

yy0xx0yy0xx0yx3yx3

∵A2、P2、P共线,∴

京翰教育http://www.xiexiebang.com/

高考网

http://www.xiexiebang.com

22解得x0=,y0x93yx,代入得x09y041,即x29y241

答案:C

二、3.解析:由sinC-sinB=

12sinA,得c-b=

a212a,2∴应为双曲线一支,且实轴长为,故方程为

16xa216y3a221(xa4).答案:16xa2216y3a221(xa4)

4.解析:设P(x,y),依题意有4x2+4y2-85x+100=0.答案:4x2+4y2-85x+100=0

5(x5)y223(x5)y22,化简得P点轨迹方程为

三、5.解:设过B、C异于l的两切线分别切⊙O′于D、E两点,两切线交于点P.由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC| =|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知,点P的轨迹是以B、C为两焦点的椭圆,以l所在的直线为x轴,以BC的中点为原点,建立坐标系,可求得动点P的轨迹方程为x281y272=1(y≠0)6.解:设P(x0,y0)(x≠±a),Q(x,y).∵A1(-a,0),A2(a,0).x由条件xx0x(x0a)ax0a22 得xay0yy01yax0ayy01而点P(x0,y0)在双曲线上,∴b2x02-a2y02=a2b2.即b(-x)-a(222xay22)2=a2b2

化简得Q点的轨迹方程为:a2x2-b2y2=a4(x≠±a).7.解:(1)设P点的坐标为(x1,y1),则Q点坐标为(x1,-y1),又有A1(-m,0),A2(m,0), 则A1P的方程为:y=

y1x1my1x1m22(xm)

A2Q的方程为:y=-(xm)

①³②得:y=-

2y12x1m(xm)

京翰教育http://www.xiexiebang.com/

高考网

http://www.xiexiebang.com 又因点P在双曲线上,故

x1m22y1n221,即y12nm22(x1m).22代入③并整理得xm22yn22=1.此即为M的轨迹方程.(2)当m≠n时,M的轨迹方程是椭圆.(ⅰ)当m>n时,焦点坐标为(±mn,0),准线方程为x=±

m22m22n2,离心率e=mnm22;

22(ⅱ)当m<n时,焦点坐标为(0,±mn),准线方程为y=±

22n2,离心率

nme=nmn22.8.解:(1)∵点F2关于l的对称点为Q,连接PQ,∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2| 又因为l为∠F1PF2外角的平分线,故点F1、P、Q在同一直线上,设存在R(x0,y0),Q(x1,y1),F1(-c,0),F2(c,0).|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,则(x1+c)2+y12=(2a)2.x1cx02又

yy102得x1=2x0-c,y1=2y0.∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2.故R的轨迹方程为:x+y=a(y≠0)(2)如右图,∵S△AOB=

122

|OA|²|OB|²sinAOB=

12a22sinAOB

当∠AOB=90°时,S△AOB最大值为|2ak|1k2a.2此时弦心距|OC|=.在Rt△AOC中,∠AOC=45°,|OC||OA||2ak|2cos4522,k33.a1k

京翰教育http://www.xiexiebang.com/

第二篇:曲线轨迹方程的求法教案

曲线的轨迹方程的求法

高二年级数学组 王莉

一、教学目标

(1)使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法。(2)通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力。

(3)通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础。

二、教学重难点

1、重点:求动点的轨迹方程的常用技巧与方法。

2、难点:各种方法的灵活运用。

三、教学工具

(1)教师自制的多媒体课件、三角板,圆规(2)上课环境为多媒体大屏幕环境

四、教学方法

数形结合、合作探究

五、教学过程

1、高考导向。求的轨迹方程是解析几何的的基本问题,是高考中的一个热点和重点,近几年高考试题中以综合问题出现较多。

2、诊测补偿

(1)解析几何要要解决的两个基本问题是什么?(2)什么是动点的轨迹?(3)求动点的轨迹方程的常用方法 有哪些?

3、求曲线方程的步骤:

(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件p的点M的集合P={M︱p(M)};(3)用坐标表示条件p(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上。

4、求曲线的轨迹方程常采用的方法有直接法、定义法(待定系数法、相关点法、参数法。

题型一 直接法求曲线方程

1、如图已知F(1,0),直线l:x=-1,P为平面上的动点,过点P作l的垂线,垂足为Q,且 解:设

学后反思 当动点所满足的条件本身就是一些几何量的等量关系或这些几何条件简单明了易于表达时,只要将这种关系“翻译”成含x、y的等式就能得到曲线的轨迹方程,这种求轨迹方程的方法称之为直接法。题型二 利用定义或待定系数法求曲线方程

2、已知圆

,求动点P的轨迹方程。

C1x3: C1及圆

2y12 和圆

C2x3:

2y29

动圆M同时与圆

C2相外切.求动圆圆心M的轨迹方程。

分别外切于点A和点B,解: 设动圆M与圆 C1及圆

C2 ,半径为R,则 由两圆相切的定义知,这表明动点M到两定点

C1、C2的距离的差是常数2.根据双曲线的定义,动点M的轨迹为双曲线的左支(点M到到

C2 的距离大,C1的距离小),2b8 其中a=1,c=3,则

y2x18则其轨迹方程为(x≤-1).2学后反思

若动点轨迹的条件符合某一基本轨迹的定义,如圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义求出动点的轨迹方程: 首先要结合圆锥曲线的定义,分析出曲线的类型,再按定义写出标准方程。

(例1)题型三 相关点法求曲线方程

(例2)

3、以原点为圆心,以r=2为半径的圆,过圆上任意一点p作x轴的垂线,求中点M的轨迹方程。

解:过圆上任意一点p向x轴作垂线,垂足为Q

即 学后反思

对涉及较多点之间的关系问题,可先设出它们各自的坐标,并充分利用题设建立它们之间的相关关系;再对它们进行转化和化简,最后求出所求动点坐标所满足的方程.这种根据已知动点的轨迹方程,求另外一点的轨迹方程的方法称为代入法或相关点法.题型四 用参数法求轨迹方程

2y4x的顶点O引两条互相垂直的直线分别与抛物线相交于A、4、过抛物线B两点,求线段AB的中点P的轨迹方程.解: 由题意知,两直线的斜率都存在.设直线OA的斜率为k,则OA:y=kx,OB: y1xk

ykx2y4x由 得1yxky24x同理由 得12x22kky21kk 设P(x,y),则

22y2x8y2x8 由②^2-2×①,得 即2y2x8 故线段AB的中点P的轨迹方程为学后反思

本题运用了参数法求轨迹.当动点P的坐标x、y之间的直接关系不易建立时,可适当地选取中间变量t,并用t表示动点的坐标x、y,从而得到动点轨迹的参数方程

xftygt 消去参数t,便可得到动点P的轨迹方程.其中应

注意方程的等价性和参数t与动点P(x,y)关系的密切性.(练习1)

(例4)

5、课堂练习

ABCDA1B1C1D1中, 是侧面 BB1C1C内一动点,若P到直线 BC1、如图,正方体

C1D1的距离相等,则动点 的轨迹所在的曲线是()与直线

A.直线 B.圆 C.双曲线 D.抛物线

2、等腰三角形ABC中,若一腰的两个端点分别为A(4,2)、B(-2,0),A为顶点,求另一腰的一个端点C的轨迹方程。

3、已知一条直线 L和它上方的一点F ,点F到L的距离是2,一条曲线也在L的上方,它上面的每一个点到 F的距离减去到L的距离的差都是2,建立适当地坐标系,求这条曲线的方程。

6、小结

求曲线的方程常用的几种方法

(1)直接法(2)定义法(待定系数法)(3)相关点法(4)参数法

六、作业

习题3-4 A 1、2、4 B、2

第三篇:求轨迹方程教案

求轨迹的方程

娄底一中 刘瑞华

教学目标:

1、掌握和熟练运用求轨迹方程的常用方法.2、培养思维的灵活性和严密性.3、进一步渗透“数形结合”的思想 教学重点和难点:

重点:落实轨迹方程的几种常规求法。

难点:教会学生如何审题,选用适当的方法求轨迹的方程。教学方法:

讨论法、类比法. 教具准备: 多媒体投影. 教学设计:

求曲线的轨迹方程是解析几何最基本、最重要的课题之一,是用代数方法研究几何问题的基础。这类题目把基本知识、方法技巧、逻辑思维能力、解题能力融于一体,因而也是历届高考考查的重要内容之一。

一、知识回顾

求曲线轨迹方程的基本步骤

在求曲线的轨迹方程时,要经历审题、寻找和确定求解途径、分清解答步骤、逐步推演、综合陈述、完整作答或给出恰当的结论等多个不可缺少的环节,其基本步骤是:

(1)建系设点:建立适当的坐标系,设曲线上任一点坐标M(x,y);

(2)列式:写出适合条件的点的集合PMP(M),关键是根据条件列出适合条件的等式;

(3)代换:用坐标代换几何等式,列出方程f(x,y)0;(4)化简:把方程f(x,y)0化成最简形式;

(5)证明:以化简后的方程的解为坐标的点都是曲线上的点。

二、基础训练



1、已知向量OP与OQ是关于y轴对称,且2OPOQ1则点Px,y的轨迹方程是____________

2.△ABC中,A为动点,B、C为定点,B(-则动点A的轨迹方程为_________.aa1,0),C(,0),且满足条件sinC-sinB=sinA,222x2y21上的动点,则F1F2P重心的轨迹方程为

3、点P是以F1,F2为焦点的椭圆

259___________________.4、已知点Px,y满足xy4,则点Qx,yx22的y轨迹方程为_____________________ 解答与分析:

1、yx221 方法为:直译法即是如果动点满足的几何条件本身就是一些几何量的等量2关系,则只需直接把这些关系“翻译”成x,y的等式,由此得到曲线的方程.

x2y21 方法为:定义法就是若动点的轨迹的条件符合某一基本轨迹(如:圆,椭2、43圆,双曲线,抛物线)的定义,则可以根据定义直接写出动点的轨迹方程.

9x2y21y0方法为:代入法就是若动点P(x,y)依赖于已知方程的曲线上另一个动3、25点C(x0,y0)运动时,找出点P与点C之间的坐标关系式,用(x,y)表示(x0,y0)再将x0,y0代入已知曲线方程,即可得到点P的轨迹方程。

4、y22x42x2方法为:所谓参数法就是在求曲线方程时,如果动点坐标x,y关系不易表达,可根据具体题设条件引进一个(或多个)中间变量来分别表示动点坐标x,y,间接地把x,y的关系找出来,然后消去参数即可得到动点的轨迹方程.

小结:

一、由以上几个题目可以看出求动点的轨迹方程常用的方法有: 1.直译法;2.定义法

3.相关点法(代入法);4.参数法

二、求动点的轨迹方程中的注意点:

1.注意方程的纯粹性和完备性即不多不少。2.注意平面几何知识的运用。3.注意要求是求轨迹方程还是轨迹

三、例题讲解

22例1.已知定点A(2,0),点Q是圆x+y=1的动点,∠AOQ的平分线交AQ于M,当Q点在圆上移动时,求动点M的轨迹方程。的性质,知 分析1:由三角形的内角平分线|AM|2,|MQ||AM||OA|

|MQ||OQ| 而|OA|2,|OQ|1,故 即点M分AQ成比为2,若设出M(x,y),则由分点坐标公式,可表示出点Q的坐标,因Q、M为相关点,(Q点运动导致点M运动),可采用相关点法求点M的轨迹方程。

解法1:设M(x,y),由三角形内角平分线性质定理,得 ∵M在AQ上,∴点M分AQ成比为2,|AM||AO|2,|MQ||OQ|22·x0x120)若设点Q的坐标为(x0,y0),则 又A(2,02·y0y123x2x02 y3y0222而点Q(x0,y0)在圆x2y21上

3x223y24)()21,化简,得(x)2y2 22392242 点M的轨迹方程为(x)y。

x0y01,即(性质,知 分析2:由三角形的内角平分线|AM||AO|2,|QM||QO| 若过M作MN∥OQ交OA于N,则|AN||AM|2,|ON||QM|0),而 从而N(,|MN| 23|MN||AM|2,|OQ|1,|OQ||AQ|3222|OQ|为定值,可见动点M到定点N的距离为定值。3332 因此M的轨迹是以N为圆心,半径为的圆,32242 其方程为(x)y,39 而当∠AOQ=180°时,其角分线为y轴,它与AQ交点为原点O,显然,该点也满足上述轨迹方程。

注:此种解法为定义法。例

2、设过点A1,0的直线与抛物线x24y交于不同的两点P,Q,求线段PQ中点M的轨迹方程。

解:法一:设Mx,y,Px1,y1,Qx2,y2,又由已知可设直线PQ的方程y为:ykx1,则由

ykx1消去x24yy得: x24kx4k0

x1x24k,x1x24k

x222y1x2x1x22x1x21y2444k22k

xx1x22k2消去k得:y1x2x

yy1y2222k22k又直线PQ与抛物线有两个交点

16k216k0即k1或k0

x2或x0点M的轨迹方程为:y12x2x,x2或x0

法二:设Mx,y,Px1,y1,Qx2,y2,由P,Q在抛物线上得

x214y1两式相减得:x2x221x24y1y2 24y2变形得x1x1y224yxx4kPQ

122x4kyPQ又kPQx1,消去k12PQ得y2xx。又由y12x2x得其交点坐标为0,0,2,1 x24yQPoAx因为中点必须在抛物线内,由图可知x2或x0

点M的轨迹方程为:y

四、小结

略。

五、作业

12xx,x2或x0 

21、过抛物线x24y的焦点的弦PQ的中点的轨迹方程?

2、过点A1,0的直线与圆xy221交于不同的两点P,Q则PQ的中点的轨迹方程? 4

第四篇:数学高考复习名师精品教案:第67课时:第八章 圆锥曲线方程-轨迹问题

数学高考复习名师精品教案

第67课时:第八章 圆锥曲线方程——轨迹问题(2)

课题:轨迹问题(2)一.复习目标:

1.掌握求轨迹方程的另几种方法——相关点法(代入法)、参数法(交规法); 2.学会用适当的参数去表示动点的轨迹,掌握常见的消参法. 二.知识要点:

1.相关点法(代入法):对于两个动点P(x0,y0),Q(x,y),点P在已知曲线上运动导致点Q运动形成轨迹时,只需根据条件找到这两个点的坐标之间的等量关x0f(x,y)系并化为然后将其代入已知曲线的方程即得到点Qyg(x,y)0的轨迹方程.

2.参数法(交规法):当动点P的坐标x,y之间的直接关系不易建立时,可适当地选取中间变量t,并用t表示动点P的坐标x,y,从而动点轨迹的参数方程xf(t)消去参数t,便可得到动点Pyg(t)的的轨迹的普通方程,但要注意方程的等价性,即有t的范围确定出x,y的范围. 三.课前预习: 1.已知椭圆Q分FP x225y2161的右焦点为F,Q、P分别为椭圆上和椭圆外一点,且点的比为1:2,则点P的轨迹方程为(C)

(A)(x6)752y2481(B)(x6)752y2481(C)(x6)2252y21441(D)(2x3)22524y21441

2.设动点P在直线x10上,O为坐标原点,以OP为直角边,点O为直角顶点作等腰直角三角形OPQ,则动点Q的轨迹是(B)

(A)(B)两条平行直线(C)抛物线(D)双曲线

3.已知点P(x,y)在以原点为圆心的单位圆上运动,则点Q(xy,xy)的轨迹是(B)

(B)

抛物线

(C)椭圆

(D)双曲线(A)圆

4.双曲线x24y231关于直线xy20对称的曲线方程是

(y2)42(x2)321

5.倾斜角为的直线交椭圆4x24y21于A,B两点,则线段AB中点的轨迹方程是x4y0(|x|455)

四.例题分析: 例1.动圆C:(x1)2y21,过原点O作圆的任一弦,求弦的中点的轨迹方程.

解:

(一)直接法:设OQ为过O的任一条弦P(x,y)是其中点,则CPOQ,则1212CPOQ0 ∴(x1,y)(x,y)0,即(x)y(0x1)

4(二)定义法:∵OPC90120,动点P在以M(2212,0)为圆心,OC为直径的圆上,∴所求点的轨迹方程为(x)y14(0x1)

ykx

(三)参数法:设动弦PQ的方程为ykx,由 得: 22(x1)y1(1k)x2x0,设P(x1,y1),Q(x2,y2)22,PQ的中点为(x,y),则:

12)y22xx1x2211k2,ykxk1k2 消去k得(x114(0x1)

例2.求过点A(1,2),离心率为,且以x轴为准线的椭圆的下方的顶点轨迹方程.

2解:设椭圆下方的焦点F(x0,y0),椭圆的下方的顶点为

由定义又x0|AF|23212y,∴|AF|1,即点F的轨迹方程是(x,∴点的P轨迹方程为(x1)2201)(y02)1,22x,y0(32y2)1.2例3.设椭圆方程为x坐标原点,点求: y241,过点M(0,1)的直线l交椭圆于点A、B,O是

N的坐标为(11,)221P满足OP(OAOB),点

2,当l绕点M旋转时,(1)动点P的轨迹方程;

(2)|NP|的最小值与最大值.(1)解法一:直线l过点M(0,1)设其斜率为k,则l的方程为ykx1.记A(x1,y1)、B(x2,y2),由题设可得点A、B的坐标(x1,y1)、(x2,y2)是方程组

① ykx12 的解.2y1② x4将①代入②并化简得,(4k2)x22kxx,1224k于是 8yy.1224k2kx30,所以

OP12(OAOB)(x1x22,y1y22)(k4k2,44k2).设点P的坐标为(x,y),则

kx,24k消去参数4y.24kk得4x2yy0 ③

2当k不存在时,A、B中点为坐标原点(0,0),也满足方程③,所以点P的轨迹方程为4x2yy0.2解法二:设点P的坐标为(x,y),因A(x1,y1)、B(x2,y2)在椭圆上,所以

21xy1421, ④ x22212y2421.⑤

④—⑤得xx21414(y1y2)0,所以 22(x1x2)(x1x2)(y1y2)(y1y2)0.当x1x2时,有x1x214(y1y2)y1y2x1x20.⑥

x1x2x,2y1y2并且 ⑦ y,2y1y2y1.x1x2x将⑦代入⑥并整理得 4x2当x10)x2时,点

yy0.⑧

2A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,也满足⑧,所以点P的轨迹方程为

x2(y1412)21161.五.课后作业: 1.抛物线y2(A)y24x经过焦点的弦的中点的轨迹方程是()

2x1(B)y2(x1)(C)y2x12(D)y22x1

2.已知椭圆x29y241的左、右顶点分别为A1和A2,垂直于椭圆长轴的动直线与椭圆的两个交点分别为P1和P2,其中P1的纵坐标为正数,则直线A1P1与A2P2的交点M的轨迹方程()

(A)x29y241(B)y29x241(C)x29y241(D)y29x241

3.已知抛物线yx2mx1(mR)的顶点为A,那么当m变化时,此抛物线焦点F的轨迹方程是___________________________. 4.自椭圆Mx220y241上的任意一点P向x轴引垂线,垂足为Q,则线段PQ的中点的轨迹方程为

x25.已知椭圆9y251的两个焦点分别是F1、F2,△MF1F2的重心G恰为椭圆上的点,则点M的轨迹方程为 .

6.如图,7.设x,yRi,j为直角坐标平面内x,y轴正方向上的单位向量,若向的轨迹C的方程. 量a(x5)iyj b(x5)iyj,|a||b|8,求点M(x,y)7.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两个观测点晚4s,已知各观测点到中心的距离都是1020m,试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s;相关各点均在同一平面上)8.设双曲线C:xa22yb22右准线l1(a0,b0)的离心率为e,与两条渐近线交于P,Q两点,右焦点为F,且PQF为等边三角形.

(1)求双曲线C的离心率e的值;(2)若双曲线C被直线yaxb截得的弦长为bea22,求双曲线C的方程;(3)设双曲线C经过点(1,0),以F为左焦点,l为左准线的椭圆,其短轴的端点为B,求BF中点的轨迹方程.

第五篇:高考数学难点之数学归纳法解题.doc

高考数学难点之数学归纳法解题

数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场

(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=●案例探究

[例1]试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:an+cn>2bn.命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(ak-ck)(a-c)>0恒成立(a、b、c为正数),从而ak+1+ck+1>ak·c+ck·a.证明:(1)设a、b、c为等比数列,a=

n(n1)(an2+bn+c).12b,c=bq(q>0且q≠1)qbnnnn1∴a+c=n+bq=b(n+qn)>2bn

qqnn

ancnacn(2)设a、b、c为等差数列,则2b=a+c猜想>()(n≥2且n∈N*)

22下面用数学归纳法证明:

a2c2ac2()①当n=2时,由2(a+c)>(a+c),∴

222

22akckack(), ②设n=k时成立,即22ak1ck11(ak+1+ck+1+ak+1+ck+1)则当n=k+1时,241k+1k+1k1(a+c+a·c+ck·a)=(ak+ck)(a+c)44ackacack+1>()·()=()

222>[例2]在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;

用心

爱心

专心

1成等比数列.2(3)求数列{an}所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.1应舍去,这一点往往容易被忽视.2k3111技巧与方法:求通项可证明{}是以{}为首项,为公差的等差数列,进而求得通错解分析:(2)中,Sk=-SnS12项公式.解:∵an,Sn,Sn-12成等比数列,∴Sn2=an·(Sn-12)(n≥2)

(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-23 由a1=1,a2=-23,S3=13+a3代入(*)式得:a3=-215 1(n1)同理可得:a4=-235,由此可推出:an=2(2n3)(2n1)(n1)(2)①当n=1,2,3,4时,由(*)知猜想成立.②假设n=k(k≥2)时,a2k=-(2k3)(2k1)成立

故S2k2=-(2k3)(2k1)·(Sk-12)∴(2k-3)(2k-1)Sk2+2Sk-1=0 ∴Sk=112k1,Sk2k3(舍)由Sk+12=ak+1·(Sk+1-12),得(Sk+ak+1)2=ak+1(ak+1+Sk-12)1(2k1)2a2k12ak12k1a2k1ak12k112ak1a2

k1[2(k1)3][2(k1)1],即nk1命题也成立.1(n1)由①②知,an=2对一切n∈N成立.(2n3)(2n1)(n2)用心

爱心

专心

(*)

(3)由(2)得数列前n项和Sn=●锦囊妙记

(1)数学归纳法的基本形式

1,∴S=limSn=0.n2n1设P(n)是关于自然数n的命题,若 1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.(2)数学归纳法的应用

具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练

一、选择题

1.(★★★★★)已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为()A.30 A.n=1 B.26 B.n=2

C.36 C.n=3

D.6 D.n=4 2.(★★★★)用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证()

二、填空题

3.(★★★★★)观察下列式子:1出_________.4.(★★★★)已知a1=an=_________.三、解答题

5.(★★★★)用数学归纳法证明42n1+3n+2能被13整除,其中n∈N*.6.(★★★★)若n为大于1的自然数,求证:

131151117,122,1222…则可归纳2234232343an1,an+1=,则a2,a3,a4,a5的值分别为_________,由此猜想

a32n

11113.n1n22n247.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(1+较Sn与

1)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比bn1logabn+1的大小,并证明你的结论.38.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an·an+1=-qn,求an表达式,用心

爱心

专心 又如果limS2n<3,求q的取值范围.n

参考答案

难点磁场

14(abc)6a31b11 解:假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有22(4a2bc)2c10709a3bc于是,对n=1,2,3下面等式成立 1·22+2·32+…+n(n+1)2=n(n1)(3n211n10)12k(k1)(3k2+11k+10)12记Sn=1·22+2·32+…+n(n+1)2 设n=k时上式成立,即Sk=那么Sk+1=Sk+(k+1)(k+2)2===k(k1)(k+2)(3k+5)+(k+1)(k+2)2 2(k1)(k2)(3k2+5k+12k+24)12(k1)(k2)[3(k+1)2+11(k+1)+10]

12也就是说,等式对n=k+1也成立.综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.歼灭难点训练

一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36 ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.证明:n=1,2时,由上得证,设n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k =(6k+27)·3k-(2k+7)·3k =(4k+20)·3k=36(k+5)·3k-2(k≥2)f(k+1)能被36整除

∵f(1)不能被大于36的数整除,∴所求最大的m值等于36.答案:C 2.解析:由题意知n≥3,∴应验证n=3.用心

爱心

专心 答案:C

二、3.解析:1131211即1

11222(11)2111511221,即1

2122323(11)2(21)21112n1*(n∈N)222n123(n1)归纳为1答案:11112n1(n∈N*)222n123(n1)13a1233同理,4.解析:a2a1317253 23a23333333a3,a4,a5,猜想ana238359451055n5333333 答案:、、、78910n

5三、5.证明:(1)当n=1时,42

×1+1

+31+2=91能被13整除

(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3 =42k+1·13+3·(42k+1+3k+2)∵42k+1·13能被13整除,42k+1+3k+2能被13整除 ∴当n=k+1时也成立.由①②知,当n∈N*时,42n+1+3n+2能被13整除.6.证明:(1)当n=2时,11713 2122122411113 k1k22k24(2)假设当n=k时成立,即则当nk1时,1111111k2k32k2k12k2k1k1131111311 242k12k2k1242k12k213113242(2k1)(k1)24b11b117.(1)解:设数列{bn}的公差为d,由题意得,∴bn=3n-2 10(101)d310bd14512用心

爱心

专心(2)证明:由bn=3n-2知 Sn=loga(1+1)+loga(1+=loga[(1+1)(1+而(1+11)+…+loga(1+)43n211)…(1+)] 43n2111logabn+1=loga33n1,于是,比较Sn与logabn+1的大小比较(1+1)(1+)…3341)与33n1的大小.3n2取n=1,有(1+1)=38343311 取n=2,有(1+1)(1+)38373321 推测:(1+1)(1+1411)…(1+)>33n1(*)43n2①当n=1时,已验证(*)式成立.11)…(1+)>33k1 43k21111)(1)33k1(1)则当n=k+1时,(11)(1)(143k23(k1)23k1②假设n=k(k≥1)时(*)式成立,即(1+1)(1+3k233k1

3k13k23(3k1)3(33k4)33k1(3k2)3(3k4)(3k1)29k40 22(3k1)(3k1)33k1(3k2)33k433(k1)13k1111从而(11)(1)(1)(1)33(k1)1,即当n=k+1时,(*)式成立

43k23k1由①②知,(*)式对任意正整数n都成立.于是,当a>1时,Sn>11logabn+1,当 0<a<1时,Sn<logabn+1 338.解:∵a1·a2=-q,a1=2,a2≠0, ∴q≠0,a2=-9, 2∵an·an+1=-qn,an+1·an+2=-qn+1

用心

爱心

专心 两式相除,得an1,即an+2=q·an an2q于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-

1n

q(n=1,2,3,…)22qk1 n2k1时(kN)综合①②,猜想通项公式为an=1k

q n2k时(kN)2下证:(1)当n=1,2时猜想成立(2)设n=2k-1时,a2k-1=2·qk可推知n=2k+1也成立.设n=2k时,a2k=-所以a2k+2=-

-1

则n=2k+1时,由于a2k+1=q·a2k-1

∴a2k+1=2·qk即n=2k-1成立.1kq,则n=2k+2时,由于a2k+2=q·a2k, 21kq+1,这说明n=2k成立,可推知n=2k+2也成立.2综上所述,对一切自然数n,猜想都成立.2qk1 当n2k1时(kN)这样所求通项公式为an=1k

当n2k时(kN)q 2S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n)=2(1+q+q2+…+qn-1)-1(q+q2+…+qn)22(1qn)1q(1qn)1qn4q()()

1q2(1q)1q21qn4q)()由于|q|<1,∴limq0,故limS2n=(nn1q2n依题意知

4q2<3,并注意1-q>0,|q|<1解得-1<q<0或0<q<

2(1q)5用心

爱心

专心

下载高考数学难点归纳22 轨迹方程的求法教案5则范文word格式文档
下载高考数学难点归纳22 轨迹方程的求法教案5则范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    五年级数学简易方程教案

    简 易 方 程 第一课时:用字母表示数(一) 教学内容:教材P44-P46例1-例3 做一做,练习十第1-3题 教学目的:1、使学生理解用字母表示数的意义和作用。 2、能正确运用字母表示运算定律,表......

    小学数学方程及其应用题教案

    一、解简易方程 (一)、方程的概念 什么是方程? 首先,它是一个等式(用等号连接的式子)。 等式分为两种: 1.恒等式,如abba,a2a3a.你用任意数值代替a,b,等式两边都相等。 2.非恒等式,......

    高考数学难点归纳18 不等式的证明策略教案

    高考网http://www.xiexiebang.com 难点18 不等式的证明策略 不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中......

    高考数学难点归纳20 不等式的综合应用教案

    高考网http://www.xiexiebang.com 难点20 不等式的综合应用 不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出.不等式的应......

    高一数学函数教案22

    2.7(第三 课时 对数的换底公式) 教学目的:掌握对数的换底公式,并能解决有关的化简、求值、证明问题。 教学重点:换底公式及推论 教学难点:换底公式的证明和灵活应用. 教学过程: 一......

    高考数学难点归纳15 三角函数的图象和性质教案

    高考网 http://www.xiexiebang.com/ 难点15 三角函数的图象和性质 三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助......

    五年级上册数学《简易方程》教案

    简易方程 1、用字母表示数1、方程意义 一、用字母表示 2、用字母表示运算定律A、等式的基本性质 3、用字母表示计算公式二、解简易方程2、解方程B、方程的解 4、用字母表示......

    初一数学用方程解决问题教案

    课题:10.4用方程解决问题(1)【学习目标】1、掌握列二元一次方程组解应用题的基本方法。2、培养学生独立思考、积极参与的学习习惯,帮助学生了解数学知识在生活中的应用价值。......