Kuaarm高考数学难点突破 难点31 数学归纳法解题

时间:2019-05-14 11:37:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《Kuaarm高考数学难点突破 难点31 数学归纳法解题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《Kuaarm高考数学难点突破 难点31 数学归纳法解题》。

第一篇:Kuaarm高考数学难点突破 难点31 数学归纳法解题

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。

--泰戈尔

难点31 数学归纳法解题

数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场

(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=

n(n1)(an2+bn+c).12●案例探究

[例1]试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:an+cn>2bn.命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(ak-ck)(a-c)>0恒成立(a、b、c为正数),从而ak+1+ck+1>ak·c+ck·a.b证明:(1)设a、b、c为等比数列,a=,c=bq(q>0且q≠1)

qbnnnn1∴a+c=n+bq=b(n+qn)>2bn

qqnn

ancnacn(2)设a、b、c为等差数列,则2b=a+c猜想>()(n≥2且n∈N*)

22下面用数学归纳法证明:

a2c2ac2()①当n=2时,由2(a+c)>(a+c),∴

22akckack(), ②设n=k时成立,即

22ak1ck11(ak+1+ck+1+ak+1+ck+1)则当n=k+1时,2411>(ak+1+ck+1+ak·c+ck·a)=(ak+ck)(a+c)44ackacack+1>()·()=()

2221[例2]在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-成等比数列.2(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;(3)求数列{an}所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.2知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.错解分析:(2)中,Sk=-

1应舍去,这一点往往容易被忽视.2k3111}是以{}为首项,为公差的等差数列,进而求得SnS12技巧与方法:求通项可证明{通项公式.11成等比数列,∴Sn2=an·(Sn-)(n≥2)

(*)222(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-

3212由a1=1,a2=-,S3=+a3代入(*)式得:a3=-

3315解:∵an,Sn,Sn-

(n1)1 2同理可得:a4=-,由此可推出:an= 2(n1)35(2n3)(2n1)(2)①当n=1,2,3,4时,由(*)知猜想成立.2②假设n=k(k≥2)时,ak=-成立

(2k3)(2k1)故Sk2=-21·(Sk-)(2k3)(2k1)2∴(2k-3)(2k-1)Sk2+2Sk-1=0 11(舍),Sk2k12k311由Sk+12=ak+1·(Sk+1-),得(Sk+ak+1)2=ak+1(ak+1+Sk-)

22∴Sk=

2ak1ak11122aaak1k1k12k12k12(2k1)2

2ak1,即nk1命题也成立.[2(k1)3][2(k1)1]1(n1)由①②知,an=对一切n∈N成立.2(n2)(2n3)(2n1)(3)由(2)得数列前n项和Sn=

1,∴S=limSn=0.n2n1●锦囊妙记

(1)数学归纳法的基本形式

设P(n)是关于自然数n的命题,若 1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.(2)数学归纳法的应用

具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练

一、选择题

1.(★★★★★)已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为()A.30

B.26

C.36

D.6 2.(★★★★)用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证()A.n=1

B.n=2

C.n=3

D.n=4

二、填空题

1311511173.(★★★★★)观察下列式子:1,122,1222…则可归

223423234纳出_________.4.(★★★★)已知a1=an=_________.三、解答题

5.(★★★★)用数学归纳法证明42n1+3n+2能被13整除,其中n∈N*.6.(★★★★)若n为大于1的自然数,求证:

3an1,an+1=,则a2,a3,a4,a5的值分别为_________,由此猜想

an3211113.n1n22n247.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(1+

1)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试bn比较Sn与1logabn+1的大小,并证明你的结论.38.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an·an+1=-qn,求an表达式,又如果limS2n<3,求q的取值范围.n

参考答案

难点磁场

14(abc)6a31b11 解:假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有22(4a2bc)2c10709a3bc于是,对n=1,2,3下面等式成立

1·22+2·32+…+n(n+1)2=

n(n1)(3n211n10)12记Sn=1·22+2·32+…+n(n+1)2

k(k1)(3k2+11k+10)12k(k1)那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2

2(k1)(k2)=(3k2+5k+12k+24)12(k1)(k2)=[3(k+1)2+11(k+1)+10]

12设n=k时上式成立,即Sk=也就是说,等式对n=k+1也成立.综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.歼灭难点训练

一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36 ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.证明:n=1,2时,由上得证,设n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k =(6k+27)·3k-(2k+7)·3k

-=(4k+20)·3k=36(k+5)·3k2(k≥2)f(k+1)能被36整除

∵f(1)不能被大于36的数整除,∴所求最大的m值等于36.答案:C 2.解析:由题意知n≥3,∴应验证n=3.答案:C

二、3.解析:1131211即1

11222(11)2111511221,即1

2122323(11)2(21)21112n1*(n∈N)222n123(n1)归纳为1答案:11112n1(n∈N*)222n123(n1)13a1233同理,4.解析:a2a1317253 23a23333333a3,a4,a5,猜想ana238359451055n53

33333 答案:、、、78910n

5三、5.证明:(1)当n=1时,421+1+31+2=91能被13整除

(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3 =42k+1·13+3·(42k+1+3k+2)∵42k+1·13能被13整除,42k+1+3k+2能被13整除 ∴当n=k+1时也成立.由①②知,当n∈N*时,42n+1+3n+2能被13整除.×

11713 2122122411113(2)假设当n=k时成立,即 k1k22k241111111则当nk1时,k2k32k2k12k2k1k1131111311 242k12k2k1242k12k213113242(2k1)(k1)246.证明:(1)当n=2时,b11b117.(1)解:设数列{bn}的公差为d,由题意得,∴bn=3n-2 10(101)10b1d145d32(2)证明:由bn=3n-2知

11)+…+loga(1+)43n211=loga[(1+1)(1+)…(1+)]

43n2111而logabn+1=loga33n1,于是,比较Sn与logabn+1的大小比较(1+1)(1+)…3341(1+)与33n1的大小.3n2Sn=loga(1+1)+loga(1+取n=1,有(1+1)=38343311 取n=2,有(1+1)(1+)38373321 推测:(1+1)(1+

1411)…(1+)>33n1(*)43n2①当n=1时,已验证(*)式成立.11)…(1+)>33k1 43k21111)(1)33k1(1)则当n=k+1时,(11)(1)(143k23(k1)23k1②假设n=k(k≥1)时(*)式成立,即(1+1)(1+

3k233k1

3k1(3k233k1)3(33k4)33k1(3k2)3(3k4)(3k1)29k40 22(3k1)(3k1)33k1(3k2)33k433(k1)13k1111从而(11)(1)(1)(1)33(k1)1,即当n=k+1时,(*)式成立

43k23k1由①②知,(*)式对任意正整数n都成立.于是,当a>1时,Sn>

11logabn+1,当 0<a<1时,Sn<logabn+1 338.解:∵a1·a2=-q,a1=2,a2≠0, ∴q≠0,a2=-9, 2an1,即an+2=q·an an2q∵an·an+1=-qn,an+1·an+2=-qn+1 两式相除,得于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-

1n

q(n=1,2,3,…)22qk1 n2k1时(kN)综合①②,猜想通项公式为an=1k

q n2k时(kN)2下证:(1)当n=1,2时猜想成立

-(2)设n=2k-1时,a2k-1=2·qk1则n=2k+1时,由于a2k+1=q·a2k-1 ∴a2k+1=2·qk即n=2k-1成立.可推知n=2k+1也成立.设n=2k时,a2k=-所以a2k+2=-1k

q,则n=2k+2时,由于a2k+2=q·a2k, 21kq+1,这说明n=2k成立,可推知n=2k+2也成立.2综上所述,对一切自然数n,猜想都成立.2qk1 当n2k1时(kN)这样所求通项公式为an=1k

q 当n2k时(kN)2S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n)=2(1+q+q2+…+qn-1)-(q+q2+…+qn)2

2(1qn)1q(1qn)1qn4q()()

1q2(1q)1q21qn4q)()由于|q|<1,∴limq0,故limS2n=(nn1q2n依题意知 4q2<3,并注意1-q>0,|q|<1解得-1<q<0或0<q<

2(1q)5

第二篇:高考数学难点突破难点—— 运用向量法解题

难点3 运用向量法解题

平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场

(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线 AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值.●案例探究

[例1]如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.(1)求证:C1C⊥BD.(2)当CD的值为多少时,能使A1C⊥平面C1BD?请给出证明.CC1命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a⊥ba·b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设CD=a, CB=b,CC1=c,依题意,|a|=|b|,CD、CB、CC1中两两所成夹角为θ,于是BDCDDB=a-b,CC1BD=c(a-b)=c·a-c·b=|c|·|a|cosθ-|c|·|b|cosθ=0,∴C1C⊥BD.(2)解:若使A1C⊥平面C1BD,只须证A1C⊥BD,A1C⊥DC1,由CA1C1D(CAAA1)(CDCC1)

=(a+b+c)·(a-c)=|a|2+a·b-b·c-|c|2=|a|2-|c|2+|b|·|a|cosθ-|b|·|c|·cosθ=0,得 当|a|=|c|时,A1C⊥DC1,同理可证当|a|=|c|时,A1C⊥BD,∴CD=1时,A1C⊥平面C1BD.CC1[例2]如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分别是A1B1、A1A的中点.(1)求BN的长;

I(2)求cos的值;

(3)求证:A1B⊥C1M.命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属 ★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O-xyz,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy内的A、B、C点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C为原点建立空间直角坐标系O-xyz.依题意得:B(0,1,0),N(1,0,1)∴|BN|=(10)2(01)2(10)23.(2)解:依题意得:A1(1,0,2),C(0,0,0),B1(0,1,2).∴BA1=(1,1,2),CB1=(0,1,2)BA1CB1=1×0+(-1)×1+2×2=3 |BA1|=(10)2(01)2(20)26

|CB1|(00)2(10)2(20)25 cosBA1,CB1BA1CB1|BC1||CB1|36530.10(3)证明:依题意得:C1(0,0,2),M(,2)

112211C1M(,0),A1B(1,1,2)

2211∴A1BC1M(1)1(2)00,A1BC1M,22∴A1B⊥C1M.●锦囊妙计

1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.II 3.用空间向量解决立体几何问题一般可按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?

(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?

(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?

(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论? ●歼灭难点训练

一、选择题

1.(★★★★)设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD为()A.正方形

B.矩形 C.菱形

D.平行四边形

2.(★★★★)已知△ABC中,AB=a,a·b<0,S△ABC=AC=b,15,|a|=3,|b|=5,则a与b的夹角是()4A.30°

B.-150°

C.150°

D.30°或150°

二、填空题

3.(★★★★★)将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),则向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,若AB=16 cm,AC=17 cm,则CD=_________.三、解答题

5.(★★★★★)如图,在△ABC中,设AB=a,AC =b,AP =c, AD=λa,(0<λ<1),AE =μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为2a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M(-1,0),N(1,0),且点P使MPMN,PMPN,NMNP成公差小于零的等差数列.(1)点P的轨迹是什么曲线?

(2)若点P坐标为(x0,y0),Q为PM与PN的夹角,求tanθ.8.(★★★★★)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明:BD∥平面EFGH;

III(3)设M是EG和FH的交点,求证:对空间任一点O,有OM 参考答案

难点磁场

解:(1)点M的坐标为xM=

1(OAOBOCOD).41172990;yM,M(0,)2222221.29|AM|(50)2(1)22(2)|AB|(51)2(17)210,|AC|(51)2(12)25

D点分BC的比为2.∴xD=121172211,yD

12312311114|AD|(5)2(1)22.333(3)∠ABC是BA与BC的夹角,而BA=(6,8),BC=(2,-5).cosABCBABC|BA||BC|62(8)(5)62(8)222(5)25210292629 145歼灭难点训练

一、1.解析:AB =(1,2),DC =(1,2),∴AB=DC,∴AB∥DC,又线段AB与线段DC无公共点,∴AB∥DC且|AB|=|DC|,∴ABCD是平行四边形,又|AB|=5,AC =(5,3),|AC|=34,∴|AB|≠|AC},∴ABCD不是菱形,更不是正方形;又BC=(4,1),∴1·4+2·1=6≠0,∴AB不垂直于BC,∴ABCD也不是矩形,故选D.答案:D 2.解析:∵1511·3·5sinα得sinα=,则α=30°或α=150°.242又∵a·b<0,∴α=150°.答案:C

二、3.(2,0)4.13 cm

IV

三、5.解:∵BP与BE共线,∴BP=mBE=m(AE-AB)=m(μb-a), ∴AP=AB+BP=a+m(μb-a)=(1-m)a+mμb

又CP与CD共线,∴CP=nCD=n(AD-AC)=n(λa-b), ∴AP=AC+CP=b+n(λa-b)=nλa+(1-n)b 由①②,得(1-m)a+μmb=λna+(1-n)b.②

1manm10∵a与b不共线,∴

即m1nnm10解方程组③得:m=

111,n代入①式得c=(1-m)a+mμb=[λ(1-μ)a+μ(1-111λ)b].6.解:(1)以点A为坐标原点O,以AB所在直线为Oy轴,以AA1所在直线为Oz轴,以经过原点且与平面ABB1A1垂直的直线为Ox轴,建立空间直角坐标系.由已知,得A(0,0,0),B(0,a,0),A1(0,0,2a),C1(-

3aa,222a).3a,0,0), 2(2)取A1B1的中点M,于是有M(0,,2a),连AM,MC1,有MC1=(-且AB=(0,a,0),AA1=(0,02a)

a2由于MC1·AB=0,MC1·AA1=0,所以MC1⊥面ABB1A1,∴AC1与AM所成的角就是AC1与侧面ABB1A1所成的角.∵AC1=(3aaa,2a),AM(0,2a), 222a29AC1AM02a2a

443212a232而|AC1|aa2a3a,|AM|2aa

444292a34 323aa2cosAC1,AM所以AC1与AM所成的角,即AC1与侧面ABB1A1所成的角为30°.V 7.解:(1)设P(x,y),由M(-1,0),N(1,0)得,PM =-MP=(-1-x,-y),PNNP =(1-x,-y),MN =-NM=(2,0),∴MP·MN=2(1+x), PM·PN=x2+y2-1,NMNP =2(1-x).于是,MPMN,PMPN,NMNP是公差小于零的等差数列,等价于

122x2y3xy1[2(1x)2(1x)] 即 2x02(1x)2(1x)0所以,点P的轨迹是以原点为圆心,3为半径的右半圆.(2)点P的坐标为(x0,y0)PMPNx0y012,|PM||PN|(1x)2y0(1x0)2y0(42x0)(42x0)24x0cosPMPN|PM|PN14x0222222

10x03,cos1,0,23sin1cos211sin2,tan3x|y0| 02cos4x08.证明:(1)连结BG,则EGEBBGEB(BCBD)EBBFEHEFEH 由共面向量定理的推论知:E、F、G、H四点共面,(其中(2)因为EHAHAE121BD=EH)21111ADAB(ADAB)BD.2222所以EH∥BD,又EH面EFGH,BD面EFGH

所以BD∥平面EFGH.(3)连OM,OA,OB,OC,OD,OE,OG 由(2)知EH被M平分,所以 11BD,同理FGBD,所以EHFG,EH22FG,所以EG、FH交于一点M且 VI OM1(OAOBOCOD).41111111(OEOG)OEOG[(OAOB)][(OCOD)]2222222.VII

第三篇:高考数学难点之数学归纳法解题.doc

高考数学难点之数学归纳法解题

数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场

(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=●案例探究

[例1]试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:an+cn>2bn.命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(ak-ck)(a-c)>0恒成立(a、b、c为正数),从而ak+1+ck+1>ak·c+ck·a.证明:(1)设a、b、c为等比数列,a=

n(n1)(an2+bn+c).12b,c=bq(q>0且q≠1)qbnnnn1∴a+c=n+bq=b(n+qn)>2bn

qqnn

ancnacn(2)设a、b、c为等差数列,则2b=a+c猜想>()(n≥2且n∈N*)

22下面用数学归纳法证明:

a2c2ac2()①当n=2时,由2(a+c)>(a+c),∴

222

22akckack(), ②设n=k时成立,即22ak1ck11(ak+1+ck+1+ak+1+ck+1)则当n=k+1时,241k+1k+1k1(a+c+a·c+ck·a)=(ak+ck)(a+c)44ackacack+1>()·()=()

222>[例2]在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;

用心

爱心

专心

1成等比数列.2(3)求数列{an}所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.1应舍去,这一点往往容易被忽视.2k3111技巧与方法:求通项可证明{}是以{}为首项,为公差的等差数列,进而求得通错解分析:(2)中,Sk=-SnS12项公式.解:∵an,Sn,Sn-12成等比数列,∴Sn2=an·(Sn-12)(n≥2)

(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-23 由a1=1,a2=-23,S3=13+a3代入(*)式得:a3=-215 1(n1)同理可得:a4=-235,由此可推出:an=2(2n3)(2n1)(n1)(2)①当n=1,2,3,4时,由(*)知猜想成立.②假设n=k(k≥2)时,a2k=-(2k3)(2k1)成立

故S2k2=-(2k3)(2k1)·(Sk-12)∴(2k-3)(2k-1)Sk2+2Sk-1=0 ∴Sk=112k1,Sk2k3(舍)由Sk+12=ak+1·(Sk+1-12),得(Sk+ak+1)2=ak+1(ak+1+Sk-12)1(2k1)2a2k12ak12k1a2k1ak12k112ak1a2

k1[2(k1)3][2(k1)1],即nk1命题也成立.1(n1)由①②知,an=2对一切n∈N成立.(2n3)(2n1)(n2)用心

爱心

专心

(*)

(3)由(2)得数列前n项和Sn=●锦囊妙记

(1)数学归纳法的基本形式

1,∴S=limSn=0.n2n1设P(n)是关于自然数n的命题,若 1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.(2)数学归纳法的应用

具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练

一、选择题

1.(★★★★★)已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为()A.30 A.n=1 B.26 B.n=2

C.36 C.n=3

D.6 D.n=4 2.(★★★★)用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证()

二、填空题

3.(★★★★★)观察下列式子:1出_________.4.(★★★★)已知a1=an=_________.三、解答题

5.(★★★★)用数学归纳法证明42n1+3n+2能被13整除,其中n∈N*.6.(★★★★)若n为大于1的自然数,求证:

131151117,122,1222…则可归纳2234232343an1,an+1=,则a2,a3,a4,a5的值分别为_________,由此猜想

a32n

11113.n1n22n247.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(1+较Sn与

1)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比bn1logabn+1的大小,并证明你的结论.38.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an·an+1=-qn,求an表达式,用心

爱心

专心 又如果limS2n<3,求q的取值范围.n

参考答案

难点磁场

14(abc)6a31b11 解:假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有22(4a2bc)2c10709a3bc于是,对n=1,2,3下面等式成立 1·22+2·32+…+n(n+1)2=n(n1)(3n211n10)12k(k1)(3k2+11k+10)12记Sn=1·22+2·32+…+n(n+1)2 设n=k时上式成立,即Sk=那么Sk+1=Sk+(k+1)(k+2)2===k(k1)(k+2)(3k+5)+(k+1)(k+2)2 2(k1)(k2)(3k2+5k+12k+24)12(k1)(k2)[3(k+1)2+11(k+1)+10]

12也就是说,等式对n=k+1也成立.综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.歼灭难点训练

一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36 ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.证明:n=1,2时,由上得证,设n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k =(6k+27)·3k-(2k+7)·3k =(4k+20)·3k=36(k+5)·3k-2(k≥2)f(k+1)能被36整除

∵f(1)不能被大于36的数整除,∴所求最大的m值等于36.答案:C 2.解析:由题意知n≥3,∴应验证n=3.用心

爱心

专心 答案:C

二、3.解析:1131211即1

11222(11)2111511221,即1

2122323(11)2(21)21112n1*(n∈N)222n123(n1)归纳为1答案:11112n1(n∈N*)222n123(n1)13a1233同理,4.解析:a2a1317253 23a23333333a3,a4,a5,猜想ana238359451055n5333333 答案:、、、78910n

5三、5.证明:(1)当n=1时,42

×1+1

+31+2=91能被13整除

(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3 =42k+1·13+3·(42k+1+3k+2)∵42k+1·13能被13整除,42k+1+3k+2能被13整除 ∴当n=k+1时也成立.由①②知,当n∈N*时,42n+1+3n+2能被13整除.6.证明:(1)当n=2时,11713 2122122411113 k1k22k24(2)假设当n=k时成立,即则当nk1时,1111111k2k32k2k12k2k1k1131111311 242k12k2k1242k12k213113242(2k1)(k1)24b11b117.(1)解:设数列{bn}的公差为d,由题意得,∴bn=3n-2 10(101)d310bd14512用心

爱心

专心(2)证明:由bn=3n-2知 Sn=loga(1+1)+loga(1+=loga[(1+1)(1+而(1+11)+…+loga(1+)43n211)…(1+)] 43n2111logabn+1=loga33n1,于是,比较Sn与logabn+1的大小比较(1+1)(1+)…3341)与33n1的大小.3n2取n=1,有(1+1)=38343311 取n=2,有(1+1)(1+)38373321 推测:(1+1)(1+1411)…(1+)>33n1(*)43n2①当n=1时,已验证(*)式成立.11)…(1+)>33k1 43k21111)(1)33k1(1)则当n=k+1时,(11)(1)(143k23(k1)23k1②假设n=k(k≥1)时(*)式成立,即(1+1)(1+3k233k1

3k13k23(3k1)3(33k4)33k1(3k2)3(3k4)(3k1)29k40 22(3k1)(3k1)33k1(3k2)33k433(k1)13k1111从而(11)(1)(1)(1)33(k1)1,即当n=k+1时,(*)式成立

43k23k1由①②知,(*)式对任意正整数n都成立.于是,当a>1时,Sn>11logabn+1,当 0<a<1时,Sn<logabn+1 338.解:∵a1·a2=-q,a1=2,a2≠0, ∴q≠0,a2=-9, 2∵an·an+1=-qn,an+1·an+2=-qn+1

用心

爱心

专心 两式相除,得an1,即an+2=q·an an2q于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-

1n

q(n=1,2,3,…)22qk1 n2k1时(kN)综合①②,猜想通项公式为an=1k

q n2k时(kN)2下证:(1)当n=1,2时猜想成立(2)设n=2k-1时,a2k-1=2·qk可推知n=2k+1也成立.设n=2k时,a2k=-所以a2k+2=-

-1

则n=2k+1时,由于a2k+1=q·a2k-1

∴a2k+1=2·qk即n=2k-1成立.1kq,则n=2k+2时,由于a2k+2=q·a2k, 21kq+1,这说明n=2k成立,可推知n=2k+2也成立.2综上所述,对一切自然数n,猜想都成立.2qk1 当n2k1时(kN)这样所求通项公式为an=1k

当n2k时(kN)q 2S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n)=2(1+q+q2+…+qn-1)-1(q+q2+…+qn)22(1qn)1q(1qn)1qn4q()()

1q2(1q)1q21qn4q)()由于|q|<1,∴limq0,故limS2n=(nn1q2n依题意知

4q2<3,并注意1-q>0,|q|<1解得-1<q<0或0<q<

2(1q)5用心

爱心

专心

第四篇:难点31数学归纳法解题(定稿)

中国特级教师高考复习方法指导〈数学复习版〉

难点31数学归纳法解题

数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场

(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=n(n1)(an2+bn+c).1

2●案例探究

·a.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.错解分析:(2)中,Sk=-1应舍去,这一点往往容易被忽视.2k

3111}是以{}为首项,为公差的等差数列,进而求得通项公式.SnS12技巧与方法:求通项可证明{

中国教育开发网

11成等比数列,∴Sn2=an·(Sn-)(n≥2)(*)2

22(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=- 3

212由a1=1,a2=-,S3=+a3代入(*)式得:a3=- 3315解:∵an,Sn,Sn-

(n1)12同理可得:a

=-,由此可推出:a=.具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练

一、选择题

1.(★★★★★)已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为()

A.30B.26C.36D.6

2.(★★★★)用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证()

A.n=1B.n=2C.n=3D.n=

4二、填空题

3.(★★★★★)观察下列式子:1131151117,122,1222…则可归纳出_________.22342323

44.(★★★★)已知a1=

三、解答题 3an1,an+1=,则a2,a3,a4,a5的值分别为_________,由此猜想an=_________.an

325.(★★★★)用数学归纳法证明42n1+3n+2能被13整除,其中n∈N*.与13

S2n<那么Sk+1=Sk+(k+1)(k+2)=(k+2)(3k+5)+(k+1)(k+2)2

(k1)(k2)=(3k2+5k+12k+24)12

(k1)(k2)=[3(k+1)2+11(k+1)+10] 12也就是说,等式对n=k+1也成立.综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.歼灭难点训练

一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36

∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.证明:n=1,2时,由上得证,设n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k

=(6k+27)·3k-(2k+7)·3k

-=(4k+20)·3k=36(k+5)·3k2(k≥2)

f(k+1)能被36整除

∴当n=k+1时也成立.由①②知,当n∈N*时,42n+1+3n+2能被13整除.11713 21221224

11113(2)假设当n=k时成立,即 k1k22k246.证明:(1)当n=2时,则当nk1时,1111111k2k32k2k12k2k1k1

131111311 242k12k2k1242k12k2

13113242(2k1)(k1)24

b11b117.(1)解:设数列{bn}的公差为d,由题意得,∴bn=3n-2)与k1(3k2)3k43(k1)13k1

111从而(11)(1)(1)(1)(k1)1,即当n=k+1时,(*)式成立 43k23k1

由①②知,(*)式对任意正整数n都成立.于是,当a>1时,Sn>11logabn+1,当 0<a<1时,Sn<logabn+1 33

8.解:∵a1·a2=-q,a1=2,a2≠0,∴q≠0,a2=-9, 2

an1,即an+2=q·an an2q∵an·an+1=-qn,an+1·an+2=-qn+1 两式相除,得

于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-1nq(n=1,2,3,…)

第五篇:数学教学突出重点,突破难点

数学教学突出重点,突破难点

2011-12-01 15:09:58|分类: 默认分类 |标签: |举报 |字号大

所谓教学重点,就是学生必须掌握的基本技能。如:意义、性质、法则、计算等等。如何在数学教学中突破重点和难点呢?这就需要我们每一位数学教师在教学实践中不断地学习、总结、摸索。

1、认真备课,吃透教材,抓住教材的重难点是突破重难点的前提

做为一个数学教师,把我们的主要精力,放在发展学生智力上,着眼于培养和调动学生的积极性和主动性,引导学生学会自己走路,首先自己要识途。我感到,要把数学之路探清认明,唯一的办法就是深钻教材,抓住各章节的重点和难点,备课时既能根据知识的特点,又能根据学生认识事物的规律,精心设计,精心安排,取得事半功倍的效果。因此,有课前的充实准备,就为教学时突破重点和难点提供了有利条件。

2、以旧知识为生长点,突破重点和难点

数学是系统性很强的学科,每项新知识往往是旧知识的延伸和发展,又是后续知识的基础。知识的链条节节相连、环环相扣、旧里蕴新,又不断化新为旧,不仅纵的有这样的联系,还有横的联系,纵横交错,形成知识网络,学生能认识知识之间的联系,才能深刻理解,融汇贯通。数学教学就是要借助于数学知识的逻辑结构,引导学生由旧入新,组织积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的连结,用数学学科本身的逻辑关系,训练学生的思维。数学教学并没有固定模式,实际教学中还要考虑到教学内容的一些特点,当新旧知识之间有紧密的逻辑关系或所学知识与旧知识之间没有实质性的变化,只是认知结构中原有知识的特例时,教学时就以原有知识为生长点,直接由旧到新,即从学生已有的知识和经验出发。因为学生获取知识,总是在已有的知识经验的参与下进行的,脱离了已有的知识经验基础进行教学,其原有的知识经验就无法参与,而新旧知识连结纽带的断裂,必然会给学生带来理解上的困难,使其难以掌握所学的知识。正因如此,自己在教学中运用了迁移规律,来实现重、难点的突破。

3、处理好尊重教材与灵活处理教材的关系

随着新课程改革的深入,“灵活处理教材”或者说“创造性使用教材”已经为广大教师们所认同。“创造性使用教材”的观点主要指:教材是落实教学大纲,实现教学计划的重要载体,也是教师进行课堂教学的主要依据。教学内容不仅包括教材内容,而且还包括师生在教学过程中的活动,教材内容只不过是教学内容的重要部分。教师必须充分发挥自身的创造性,把学生作为教学的基本出发点重新处理教材,做到尊重教材与灵活处理教材相结合,确定符合实际的内容范围和难度要求。

下载Kuaarm高考数学难点突破 难点31 数学归纳法解题word格式文档
下载Kuaarm高考数学难点突破 难点31 数学归纳法解题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    美术课如何突破难点

    美术课如何突破难点 在如今学生围绕考试而读书的大环境下,美术科成了所谓的次科,自然对美术老师提出了更高的难题。如何使学生更加喜欢美术课,对美术产生浓厚的兴趣呢?谈谈我的......

    韵母难点突破(范文模版)

    韵母难点突破 普通话的韵母是各自成系统的,特别是前鼻韵母和后鼻韵母区分得很清楚,而在武汉话里,有混读现象。另外eng与ong,u与ou等混读现象,以及丢失介音u等,都是武汉人学习普通......

    高考数学难点突破_难点不等式的证明策略

    不等式的证明策略 不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式......

    高考八大标点符号难点突破教师版

    高考八大标点符号难点突破(讲义稿) 标点符号:逗号、句号、问号、引号、冒号、分号、顿号、书名号。 (一) 难点一、问号的运用的三个难点: 1、在一个句子中用了疑问代词但全句是陈......

    如何突破教学重难点

    如何突破教学重难点 列东中学 所谓教学重点,即是“在教材内容的逻辑结构的特定层次中占相对重要的前提判断”,也就是“在整个知识体系或课题体系中处于重要地位和突出作用的内......

    20120525突破作文难点

    作文辅导教程:突破作文难点,引导思维规律龙门中心小学白锋艺小学生作文以写记叙文为主。记叙文的内容详略得当才能重点突出,才能很好地表达文章的中心思想。 但是,学生往往不分......

    初中生物教学难点突破

    初中生物教学难点突破 在初中生物教学过程中,当学生的能力不能够理解某个知识点时,该知识点就是该学生学习的难点,几乎每个章节都会有难点出现。因为初中生处于形象思维向抽象......

    初中生物教学如何突破难点

    初中生物教学如何突破难点 难点多为教科书中比较抽象的知识点以及过于复杂的知识点,因而突破难点必须化抽象为具体、化复杂为简明。 关键词 转化 抽象 具体 当某个学生的能......