第一篇:百分数的一般应用题(二)教学设计
百分数的一般应用题
(二)教学内容
教科书第116页例3,完成“做一做”中的题目及练习三十的第1~4题. 教学目的
在解答求一个数是另一数的百分之几的应用题及分数应用题的基础上,通过迁移类推,使学生掌握求一个数比另一个数多(或少)百分之几的应用题,提高学生分析解答应用题的能力. 教学过程
一、复习
1.把下面各数化成百分数. 0.63,1.08,7,1/5 2.翻到课本90页,请同学回答在图中你看到了什么 3.根据这些话,让同学们提出问题。并板书出来。
原计划是实际造林的几分之几? 实际造粒是原计划的几分之几? 原计划比实际造林多几分之几? 实际造粒比原计划少几分之几? 原计划是实际造林的百分之几? 实际造粒是原计划的百分之几? 学生独立在练习本上列式解答,订正时教师板书下面的线段图和算式:
14÷12=116.7% 提问:为什么这样列式?
要求学生分析出从问题“实际造林是原计划的百分之几”可以看出是求实际造林数与计划造林数的比,要以原计划造林的公顷数(12公顷)作为单位“1”,求14是12的百分之几,用除法计算.
提问:从题目看,原计划造林多还是实际造林多?如果把这道题的问题改为“实际造林比原计划多百分之几”该怎样解答呢? 教师将复习题问题改变后成为例3.
二、新课
1.帮助学生理解题意.(1)指名学生读题.
(2)提问:例3的问题与复习题有什么不同? 你怎样理解“实际造林比原计划多百分之几”这句话?
(引导学生利用黑板上的线段图说明,求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数占原计划的百分之几.)
(3)在学生回答的同时,教师完成下面线段图.
(4)启发学生想,“实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较?谁是单位“1”? 2.讨论算法并列出算式.
提问:根据以上分析,要求出“实际造林比原计划多的公顷数”占“原计划的百分之几”必须先算什么?再算什么? 列式:(14-12)÷12 让学生计算出结果,教师板书并写出答案. 3.想一想,这道题还有其他解法吗?
引导学生思考,把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数. 学生列式,教师板书: 14÷12×100%-100% 4.将例3中的问题改成“原计划造林比实际造林少百分之几”该怎样解答呢?
(1)提问:从问题看,哪两个量在比较?把谁看作单位“1”?解答时,先求什么?再求什么?
(引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要以实际造林作为单位“1”.必须先求出原计划造林比实际造林少的公顷数,才能求出原计划造林比实际少的百分之几.)(2)学生列式,教师板书:(14-12)÷14 如果有学生列出14÷14-12÷14也是允许的.(3)观察比较:
将例3的第一种列式及改变问题后的第一种列式进行比较.不同点在什么地方?为什么除数不一样?
通过学生的讨论,再次强调两题中和谁比的标准不同,单位“1”就会发生变化.解答这种题时,仍然要注意找准单位“1”. 5.引导学生观察例3的问题及变化后的问题,提问:“谁能概括说明今天我们学习的是什么新知识?”
学生回答后,教师板书课题:求一个数比另一个数多(或少)百分之几的应用题.
三、巩固练习1.提问:
求一个数比另一个数多(或少)百分之几的应用题的解题方法是什么?(即先求什么,再求什么.)
解答此类应用题必须注意什么?(找准单位“1”.)2.独立解答第30页“做一做”的题目.
订正时要求学生说出:先求十月份比九月份节约用水的吨数,再求节约的吨数占九月份的百分之几.九月份用水吨数为单位“1”,作除数.学生口述算式,教师板书:(800-700)÷800.
教师提出,如果求九月份用水比十月份多百分之几,该怎样列式?学生列式,教师板书:(800-700)÷700.然后教师再次强调问题不同,单位“1”有所变化,必须要仔细审题,弄清数量关系.
四、课堂练习
1.学生做练习三十的第1题.集体订正时要提问算法.
2.学生在书上做练习三十的第3题,要求先在练习本上列式计算,再将结果填在表中.教师要注意行间巡视,看看学生是否掌握了今天所学的解题方法,发现问题,及时纠正.
五、拓展
给同学们传授数学中的一些有趣的知识。1.末尾是5的两位数的平方
十位数×(十位数+1)×100+25 2.延展至:头同尾合十:
头×(头+1)×100+尾×尾 然后不断举例子来说明。
第二篇:《百分数应用题(二)》教学设计
《百分数应用题
(二)》教学设计
教学目标
1.使学生了解一些有关保险的简单知识,知道保险金额、保险费率和保险费的含义,会根据保险费的计算公式进行简单的计算。
2.介绍一些有关税收的知识,向学生进行公民应依法纳税的教育。3.提高学生分析、解答应用题的能力,发展学生思维的灵活性。教学重点和难点
理解保险金额、保险费率和保险费三者之间的关系。
教学过程设计(一)复习准备
1.甲数是12,乙数是15。甲数是乙数的百分之几?乙数是甲数的百分之几?
2.甲数是120,它的75%是多少? 3.()与()的比率叫做利率。4.利息=()×()×()师述:前几天我们学习了有关储蓄的知识,今天我们来学习有关保险和税收的知识。
板书:百分数应用题(二)学习新课 1.导入。
师述:为了减少企业、个人财产和生命遇到灾害时所受的损失,中国人民保险公司开办了各种保险业务。在一定时期内,参加保险的企业或个人向保险公司交纳一定数量的保险费,如果财产或人身受到自然灾害(如洪水,干旱等)或意外事故,造成损失,保险公司就负责按照预先的规定给予赔偿。
板书:交到保险公司的钱叫保险费。
师述:参加保险的财产价值称为保险金额。板书:保险金额
师述:保险费是由保险金额乘以保险费率得到的。保险费率和银行利率一样,是由保险公司确定。
板书:保险费率
板书:保险费=保险金额×保险费率 2.出示例3。
例3林海家参加了中国人民保险公司的家庭财产保险,参加保险的财产价值是9800元。如果每年的保险费率是0.3%,林海家每年应付保险费多少元?
(1)学生读题。
(2)问:这道题求什么?(3)问:怎样计算保险费?
板书:9800×0.3%=9800×0.003=29.4(元)答:林海家每年应付保险费29.4元。
追问:为什么用9800×0.3%,而不是用9800÷0.3%? 3.练习。赵华家今年参加家庭财产保险,保险金额是8000元,保险费率是0.3%。需交保险费多少元?
4.税收的意义。
师述:税收是国家财政收入的主要来源,税收取之于民,用之于民。根据《中华人民共和国个人所得税法》规定,我国公民有依法纳税的义务。
在税法中规定:每月收入不高于800元的,免缴个人所得税;月收入超过800元的,每月收入扣除800元后的余额部分,分九级按5%~45%的比例缴纳个人所得税(如月收入超过800元而又不高于1300元的,扣除800元后的余额部分应按5%的税率缴纳个人所得税)。
5.出示例4。
例4张文父亲的月工资是1000元。按个人所得税法规定,每月工资收入扣除800元后的余额部分,按5%的比例缴纳个人所得税。张文的父亲每月应缴纳个人所得税多少元?
(1)学生默读题。
(2)问:每月工资收入扣除800元后的余额部分,指的是什么?(3)指名说思路。(4)应怎样列式计算。板书:
(1000-800)×5% =200×5% =10(元)答:张文的父亲每月应缴纳个人所得税10元。6.练习。
歌舞团演员王华参加一场演出,取得收入3000元。按个人所得税法规定,演出收入扣除800元后的余额部分,按20%的比例缴纳个人所得税。此次演出后,王华应缴纳个人所得税多少元?
7.课堂小结。
今天我们学习了哪些知识?
师述:今天我们学习了有关保险和税收的知识。知道了怎样来计算保险费和应纳个人所得税的方法,还知道了这两种类型题实际上就是求一个数的百分之几是多少。
(三)巩固反馈 1.填空:
保险费=()×()保险费率=()÷()2.八一小学为117名老师投了家庭财产保险,每家保险的金额定为8000元。如果按每年交纳0.3%的保险费率来交保险费,学校一年为老师交纳保险费多少元?
3.一个图书馆对325万元的图书进行了防火保险。如果每年的保险费是1300元,那么防火保险的保险费率是多少?
4.一个事业单位的全体职工去年参加了团体人身意外伤害保险。每年的保险费率是0.2%,每人的保险金额都是5000元,这个单位去年向保险公司交纳了1200元保险费。这个单位共有职工多少人? 5.小霞母亲的月工资是1200元。按个人所得税法规定,每月工资收入扣除800元后的余额部分,按5%的比例缴纳个人所得税。小霞的母亲每月应缴纳个人所得税多少元?
6.东路小学600名学生去年都参加了平安保险,每人保险金额是8000元,保险费率是0.1%。结果去年有两名学生意外受伤,每人得到赔款1200元。这些赔款占全校交纳保险费总额的百分之几?
课堂教学设计说明
本节课从概念入手,给学生讲清了有关保险和税收的意义以及计算方法。对学生进行了自我保护和遵守国家法律的教育。由于学生对求一个数的百分之几是多少和求一个数是另一个数的百分之多少已经比较熟练,故在课堂中讲解的较少,着手于对题型的认识和分析解题思路,以便发展学生的思维灵活性和对应用题的分析、比较、解答的能力。
第三篇:百分数应用题教学设计
百分数应用题教学设计
权印小学 王续红
百分数应用题教学设计
1、复习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。教学过程设计
(一)复习准备
1.解答“一个数是另一个数的百分之几”用什么方法?(用除法)2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)3.口答,只列式不计算。(用投影出示)(1)5是4的百分之几?4是5的百分之几?
(2)甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的数是乙数的百分之几?(3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的数是甲数的百分之几? 4.板书应用题。我们原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
分析:通过读题,在这道题中,谁是标准量? 你是从哪句话中找出来的?应怎样列式呢?
如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。板书课题:百分数应用题
(二)学习新课 1.出示例3。
例3我们原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?(1)学生默读题。
(2)例3与复习题4比较,有什么异同?(两道题条件相同,问题不同。)问题不同在哪儿?
(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)教师在例3中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的? 教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)板书:多的公顷数是计划的百分之几?(5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式? 板书: 实际比计划多的÷计划的
(6)怎样列式计算呢? 板书:(14-12)÷12 =2÷12 ≈0.167 =16.7%
答:实际造林比原计划多16.7%。问:14-12是在求什么?
问:为什么除以12,而不除以14呢?(7)还有其它的解法吗?(学生讨论)汇报讨论结果:
板书:
14÷12-1 ≈1.167-1 =0.167 =16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么?
2.把例3中的问题改为“原计划造林比实际造林少百分之几?” 问:你怎样理解“原计划造林比实际造林少百分之几”这句话的? 问:谁做单位“1”?(实际公顷数)问:怎样用文字算式表达? 板书:少的÷实际的 问:怎样列式计算? 投影订正:(14-12)÷14 =2÷14 ≈0.143 =14.3%
答:原计划造林比实际造林少14.3%。问:14-12得到什么?为什么再除以14呢? 问:还有不同的解法吗? 板书:1-12÷14 问:为什么例3与改变后的题得数不同?(单位“1”不同。)问:这两道题有什么相同之处?(解题思路完全一样。)3.把例3的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。(2)指名说解题思路。(3)板书算式: 多的公顷数÷计划的 2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)4.把3题的问题稍作改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。(2)说解题思路。
板书:实际比计划少的÷实际的 2÷(12+2)(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
1.分析下面每个问题的含义,然后列出文字表达式。(1)今年的产量比去年的产量增加了百分之几?(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?(4)1999年电视机的价格比1998年降低了百分之几?(5)现在生产一个零件的时间比原来缩短了百分之几?(6)第二季度的产值比第一季度提高了百分之几?(7)十一月份比十月份超额完成了百分之几?(8)男生人数比女生人数多百分之几? 2.在练习本上只列式不计算。
(1)某校有男生500人,女生450人。男生比女生多百分之几?(2)某校有男生500人,女生450人。女生比男生少百分之几?(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几? 3.判断题。
男生比女生多20%,女生就比男生少20%。()课堂教学设计说明
本节课是在学生学习了一个数是另一个数的百分之几的基础上进行的。教学时抓住这一知识的连接点以旧引新,使学生很自然地由旧知识过渡到新知识。两个知识点连成一线,融会贯通。在新课教学中引导学生思考求比一个数多(或少)百分之几的题的解题思路,培养学生的分析能力。在教学方法上采取一题多变的方法,让学生在比较、区别中理解数量之间的关系,提高学生的辨别能力和思维水平。
第四篇:百分数应用题教学设计
求一个数比另一个书多(少)百分之几的应用题
教学目的
1.初步掌握 “求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能正确解答此类应用题.
2.进一步提高分析、比较、解答应用题的能力,培养认真审题的好习惯.
教学重点
掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答.
教学难点
掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答.
教学过程
一、复习准备
(一)列式计算.
1.5是4的百分之几?4是5的百分之几?
2.甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的是乙数的百分之几?
(二)求一个数是另一个数的百分之几用什么方法?解答这类应用题的关键是什么?
(三)引入新课
今天我们继续学习百分数应用题板书课题.
二、新课教学
(一)出示3
例3.一个乡去年原计划造林12公顷,实际造林14公顷.实际造林比原计划多百分之几?
1.读题,理解题意.
2.讨论:“实际造林比原计划多百分之几”什么意思?
教师板书:多出来的部分占原计划的百分之几.
3.列式计算
(14-12)÷12
=2÷12
≈0.167
=16.7%
5.思考:这道题还有其他解法吗?
14÷12-1
≈1.167-1
=0.167
=16.7%
提问:为什么要减去1?
(二)反馈
1.把例3中的问题改成“原计划比实际造林少百分之几?”该怎样解答?
思考:这道题与例题有什么相同的地方?有什么不同的地方?
2.一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林多百分之几?
3.一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林少百分之几?
三、巩固练习
(一)分析下面每个题的含义,然后列出文字表达式.
1.实际用电比计划节约了百分之几?
2.十月份的利润比九月份的利润超过了百分之几?
3.2014年的电视机价格比2015年降低了百分之几?
(二)只列式不计算.
1.育红小学有男生400人,女生250人,男生比女生多百分之几?
2.育红小学有男生500人,女生450人,女生比男生少百分之几?
3.一种机器零件,成本从2.4元降低到0.8元,成本降低了百分之几?
4.一种机器零件,成本从2.4元降低了0.8元,成本降低了百分之几?
(三)思考
男生比女生多10%,女生就比男生少().
四、课堂小结
通过今天的学习,你有哪些收获?
四、课后作业
1.某工程队原计划一周修路24千米,实际修了28千米.实际修的占原计划的百分之几?实际比原计划多修百分之几?
2.某校上期优学生500人,这个学期比上期减少了10%,这个学期有学生多少人?
五、附板书设计
百分数应用题
例3.一个乡去年原计划造林12公顷,实际造林14公顷,实际造林比原计划多百分之几?(14-12)÷12
=2÷12
≈0.167
=16.7%
答:实际造林比原计划多16.7%.
关键:找准单位“1”.
第五篇:百分数应用题(教学设计)
百分数应用题 教学设计
(二)教学目标 知识目标
在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
能力目标
进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。情感目标
体验百分数与实际生活的紧密联系。教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。
教学过程(一)复习准备
1.解答“一个数是另一个数的百分之几”用什么方法?(用除法)2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)3.应用题。
一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几? 分析:通过读题,在这道题中,谁是标准量? 你是从哪句话中找出来的?应怎样列式呢?
如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:百分数应用题(二)学习新课 1.出示例3。
例2 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?(1)学生默读题。
(2)例2与复习题3比较,有什么异同?(两道题条件相同,问题不同。)问题不同在哪儿?
(复习题3求的是实际造林是计划造林的百分之几,例2是求实际造林比原计划多百分之几。)教师在例2中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的? 教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)板书:多的公顷数是计划的百分之几?
(5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式? 板书:多的÷计划的(6)怎样列式计算呢? 板书:(14-12)÷12 =2÷12 ≈0.167 =16.7%
答:实际造林比原计划多16.7%。问:14-12是在求什么?
问:为什么除以12,而不除以14呢?(7)还有其它的解法吗?(学生讨论)汇报讨论结果: 板书: 14÷12-1 ≈1.167-1 =0.167 =16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么?
2.把例2中的问题改为“原计划造林比实际造林少百分之几?” 问:你怎样理解“原计划造林比实际造林少百分之几”这句话的? 问:谁做单位“1”?(实际公顷数)问:怎样用文字算式表达? 板书:少的÷实际的 问:怎样列式计算? 投影订正:(14-12)÷14 =2÷14 ≈0.143 =14.3%
答:原计划造林比实际造林少14.3%。问:14-12得到什么?为什么再除以14呢? 问:还有不同的解法吗? 板书:1-12÷14 问:为什么例3与改变后的题得数不同?(单位“1”不同。)问:这两道题有什么相同之处?(解题思路完全一样。)3.把例2的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。(2)指名说解题思路。(3)板书算式: 多的公顷数÷计划的 2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例2相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)4.把2题的问题稍作改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。(2)说解题思路。板书:少的÷实际的 2÷(12+2)(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
1.分析下面每个问题的含义,然后列出文字表达式。(1)今年的产量比去年的产量增加了百分之几?(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?(4)1999年电视机的价格比1998年降低了百分之几?(5)现在生产一个零件的时间比原来缩短了百分之几?(6)第二季度的产值比第一季度提高了百分之几?(7)十一月份比十月份超额完成了百分之几?(8)男生人数比女生人数多百分之几? 2.在练习本上只列式不计算。(投影出示)(1)某校有男生500人,女生450人。男生比女生多百分之几?(2)某校有男生500人,女生450人。女生比男生少百分之几?(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几? 3.判断题。
男生比女生多20%,女生就比男生少20%。()课堂教学设计说明
本节课是在学生学习了一个数是另一个数的百分之几的基础上进行的。教学时抓住这一知识的连接点以旧引新,使学生很自然地由旧知识过渡到新知识。两个知识点连成一线,融会贯通。在新课教学中引导学生思考求比一个数多(或少)百分之几的题的解题思路,培养学生的分析能力。在教学方法上采取一题多变的方法,让学生在比较、区别中理解数量之间的关系,提高学生的辨别能力和思维水平。
论文、课题均可安排,需要的可以与我联系,确保最低价。
联系:1261783279(QQ/微信)