第一篇:《平行四边形面积的计算》 教案5
生活教育网http://www.xiexiebang.com
《平行四边形面积的计算》 教案5
教学内容:
义务教育六年制小学《数学》第九册P64~66 教学目的:
1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
4、培养学生自主学习的能力。教学重点:掌握平行四边形面积公式。
教学难点:平行四边形面积公式的推导过程。
教具、学具准备:
1、多媒体计算机及课件;
2、投影仪;
3、硬纸板做成的可拉动的长方形框架;
4、每个学生5张平行四边形硬纸片及剪刀一把。教学过程:
一、复习导入:
1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)
2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)
3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:
1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?
2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?
3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习习近平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、引导探求:
(一)、复习铺垫:
1、什么图形是平行四边形呢?
2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
(二)、推导公式:
1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?
2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
生活教育网http://www.xiexiebang.com生活教育网http://www.xiexiebang.com
3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。
4、学生实验操作,教师巡视指导。
5、学生交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)⑵、有没有不同的剪拼方法?(继续请同学演示)。⑶、微机演示各种转化方法。
6、归纳总结规律:
沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系? ⑶、剪样成的图形面积怎样计算?得出:
因为:平行四边形的面积=长方形的面积=长×宽=底×高 所以:平行四边形的面积=底×高(板书平行四边形面积推导过程)
7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“.”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。
四、巩固练习:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
2、练习:(1)、(微机显示例一)求平行四边形的面积(2)、判断题(微机显示,强调高是底边上的高)
(3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)
(4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。
五、问答总结:
1、通过这节课的学习,你学到了哪些知识?
2、平行四边形面积的计算公式是什么?
3、平行四边形面积公式是如何推导得出的?
六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1
生活教育网http://www.xiexiebang.com生活教育网http://www.xiexiebang.com
生活教育网http://www.xiexiebang.com
第二篇:《平行四边形面积计算》教案
《平行四边形面积计算》教案
李炜
教学内容:
义务教育六年制小学《数学》第九册P64~66 教学目的:
1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。教学重点:掌握平行四边形面积公式。
教学难点:平行四边形面积公式的推导过程。
教具、学具准备:
1、多媒体计算机及课件;
2、投影仪;
3、硬纸板做成的可拉动的长方形框架;
4、每个学生5张平行四边形硬纸片及剪刀一把。教学过程:
一、复习导入:
1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)
2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)
3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:
1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?
2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?
3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习习近平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、引导探求:
(一)、复习铺垫:
1、什么图形是平行四边形呢?
2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
(二)、推导公式:
1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?
2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。
4、学生实验操作,教师巡视指导。
5、学生交流实验情况: ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)
⑵、有没有不同的剪拼方法?(继续请同学演示)。⑶、微机演示各种转化方法。
6、归纳总结规律:
沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系? ⑶、剪样成的图形面积怎样计算?得出:
因为:平行四边形的面积=长方形的面积=长×宽=底×高 所以:平行四边形的面积=底×高(板书平行四边形面积推导过程)
7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“.”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。
四、巩固练习:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
2、练习:(1)、(微机显示例一)求平行四边形的面积(2)、判断题(微机显示,强调高是底边上的高)(3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)(4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。
五、问答总结:
1、通过这节课的学习,你学到了哪些知识?
2、平行四边形面积的计算公式是什么?
3、平行四边形面积公式是如何推导得出的?
六、课后作业:P67 1、2、3、5
第三篇:《平行四边形面积计算》评析
《平行四边形面积计算》评析
各位领导、数学界的专家们:
大家好!今天我们柏城小学因为大家的莅临又一次满校生辉。我们向各位表示衷心的感谢!
感谢教科院的领导给我们提供了这一能够和各位专家共同切磋有关数学教学的宝贵机会,也谢谢各位专家对我们数学教学的指导!
今天我对徐老师这节课作评析是班门弄斧,不当之处敬请各位领导、专家们指正:
首先,徐老师对这节课的教学目标的设计,既有知识技能目标又有过程性目标,充分体现了《课程标准》对学生在数学思考、解决问题以及情感与态度等方面的要求。
在教学过程中,徐老师一开始有一个谈话:每个小组有四个不同的图形,你们会计算它们的面积吗?小组合作选择一个计算一下。这一谈话实际就是设置了一个开放性的问题,这个问题参与性很强,激起了学生急于探究的欲望。在此徐老师给了学生充分的活动时间,在学生已有的知识经验基础之上,激发学生的学习积极性,向学生提供充分从事数学活动的机会,使他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得了广泛的数学活动经验,利用学生手中的.纸片让他们自己先观察、再剪一剪、拼一拼,然后比较,讨论,分析,归纳,总结,多边形的面积,计算就解决了,而且还使学生初步认识了转化这种数学方法的运用,在此基础上再学习的平行四边形的面积计算就水到渠成,迎刃而解了。《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这也是新课改的重要思想。徐老师在数学教学的过程中充分体现了这一点,发挥了学生的主体作用,引导他们动手、动脑,进行探索、分析、归纳,降低了难度和坡度,使不同的学生都获得了成功的体验,使学生体验到数学活动充满着探索性的创造性,为学生的发展创造了一种宽松的环境。这也正是我们新课程标准所提倡的。在整个教学过程中,徐老师始终鼓励学生自己去发现,自己去思考,自己找到最好的解决办法,这样激发了学生学习的积极性,激活了学生的思维,让学生最大限度的参与到探索新知识的教学过程中。概括说徐老师这节课体现了以下两大特点:
1、加强操作,让学生自主探索平行四边形面积计算公式,让学生经历平行四边形面积计算公式的探索过程是本节课的重要目标。本节课在平行四边形面积公式推导这一环节中,让学生采用动手实践、合作学习等多样化的学习方式去自主发现平行四边形的面积计算公式。在共同操作中,学生积极动手、动脑,从不同角度思考,将平行四边形转化成一个长方形,并通过观察讨论,发现了长方形与平行四边开之间的关系。这样既充分张扬了学生的创造个性,也为概括平行四边形面积计算公式提供了丰富的感性活动。
2、练习设计注重层次性,体现了对公式的运用和实践能力的培养。
这节课在练习反馈这一节上安排了5道题,总体上说,体现了对平行四边形面积计算公式的理解,既有层次性、实践性,又做到了前后照应;既注重让学生直接运用公式计算平行四边形的面积,更注重让学生计算一些没有直接告诉底和高或近似的平行四边形的面积,不但强化了学生的动手操作,也有利于让学生综合运用知识解决问题,培养学生的实践能力。从现实生活中发现和提出数学问题,然后找出解决问题的有效方法,体会数学在现实生活中的应用价值。
总的来说,徐老师在教学环节的安排上,既考虑了数学学科的特点,也考虑了学生的心理特征,能够让学生充分利用已有知识经验去探索新知识,在教学环节的处理上有详有略,有扶有放,把教学的重心落在让学生对平行四边形面积计算公式的探索理解上,注重让学生经历知识的形成过程,有利于培养学生的学习能力。
徐老师这堂课是精彩的,因为她留给了学生充分的时空,使学生的思维之翼在科学的轨道上展翅翱翔,她教给了学生思想,注重了学生的学法。
谢谢大家!
第四篇:平行四边形面积计算教学反思
平行四边形面积计算教学反思
昌乐县实验小学
代云霞
在教学中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学片断中,教师带领学生进行实地考察幼儿园建筑工地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到“灵感”的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:“你能想什么办法自己去发现平行四边形面积的计算公式呢?”这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。
(四)初步体验科学探究的方法
科学探究的方法是创新能力的必要基础,是每个公民必须具备的基本素质。纵观这个片断的教学过程,初步体现了“提出问题——大胆猜测——反复验证——总结规律——灵活运用”这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的创新过程。而现有的教材较多地呈现了知识的结论,很少反映知识的产生过程。因此,我在进行教学时对教材进行了重组,在把握教材内涵的基础上,把教材的知识结论变成学生主动参与、探究问题、发现规律的创新过程,培养了学生科学探究的精神,不仅使学生的智慧、能力得到发展,而且获得了深层次的情感体验。
第五篇:《平行四边形面积计算》教学设计
《平行四边形面积计算》教学设计
教学目标
1、知识与技能:让学生亲自参与课堂教学,如观察、操作、分析、讨论、归纳等数学活动过程,探索并掌握平行四边形的面积计算方法,能正确的计算平行四边形的面积,并应用公式解决简单的实际问题。
2、过程与方法:让学生体会转化方法的价值,进一步体会“等积变形”的思想方法,培养学生应用已有的知识经验解决新问题的能力,发展学生的空间观念的推理能力。
3、情感与态度:让学生在动手操作、探索思考的过程中,提高“空间与图形”内容的学习兴趣,逐步形成积极的数学学习情感。【教学重点】平行四边形的面积计算 【教学难点】平行四边形面积的推导过程
【教学准备】多媒体课件,每人一张平行四边形的纸片(与例题同样大小),小组内准备好教材的三个图形及剪刀 【教学过程】
一、创设情境,质疑引新知
1、课件出示:一个长方形和一个平行四边形的停车位
谈话:小明和小芳住在同一小区,但小明家住在西面,可停车位却在东面,而小芳家住在东面,可停车位却在西面,为了方便,他们商量交换停车位,怎样交换才公平呢?(面积相等)那么这两个停车位的面积相等吗?(无法判断)
2、呈现格子图后,问:现在你能比较吗? 数格子的方法:不满一格算半格(发现比较麻烦)问:还有其他更好的方法吗?(割补法)板书:割补
3、课件出示:平行四边形转化为长方形的过程
4、小结:通过割补的方法我们可以把平行四边形转化为已经学过的长方形来比较,知道了他们的面积是相等的。这种转化的思想在计算或比较平面图形的面积时经常用到。今天我们就用这种方法来研究平行四边形面积的计算。
板书:平行四边形面积的计算
[设计意图:以学生已有的知识经验和生活经验为依托,根据数学学科的特点注重渗透数学思想和方法。教材中的例1是为了渗透“转化”这种思想方法为后面的学习埋下伏笔,而我们发现在实际教学中例1的两张图较为简单,因此我组将它改成一个平行四边形和一个长方形,通过不出现格子图——呈现格子图,用数格子的方法判断(麻烦)——割补平移,让学生初步感受转化的方法在图形面积计算中的作用。这样既体现了数学教学的层次性,也达到了与例1相同的教学目的,又很好地与例2相衔接。]
二、猜想验证,探索方法
1、大胆猜想,自主探索
(1)谈话:我们已经知道长方形的面积和它的长和宽有关,那同学们不妨大胆猜想一下平行四边形的面积可能与它的什么有关? 预设:
生1:底和高,底乘高等于平行四边形的面积。生2:相邻两边的积等于平行四边形的面积。
师:同学们有了这么多想法真了不起,通常我们为了证明一个猜想是否正确,都需要我们去做什么?(验证)
小组合作:每人一个与例2相同的平形四边形,想办法来验证你们的猜想,看能不能在活动过程中,发现平行四边形面积的计算方法。(2)交流操作的情况(根据学生反馈课件相应演示)
方法一:沿着平行四边形的高把图形剪开,把平行四边形分成一个直角三角形和一个直角梯形,将左边的三角形平移到右边,得到一个长方形。
方法二:沿着平行四边形的高把图形剪开,把平行四边形分成两个直角梯形,将左边的平移到右边,得到一个长方形。学生可能还有其他剪法,可以选择性的实物投影展示(3)体会“等积变形”,引发猜想
问:这几种剪法有什么相同的地方?为什么都沿着平行四边形的高剪开?(长方形有四个直角,只有沿高剪开,拼时才能出现直角。)把平行四边形转化成长方形,什么变了?什么没变? 使学生明确:形状变了,面积没变。
(4)小结:刚才我们把一个平行四边形沿着一条高剪开后,通过平移就把这个平行四边形转化成长方形,在转化的过程中面积没有变,平行四边形的底就是转化后长方形的长,平行四边形的高就是长方形的宽。
(5)提问:那是不是任意一个平行四边形都能转化成长方形?它们的边之间是不是都有这样的关系呢?
[设计意图:让学生主动探究一个平行四边形转化为长方形的过程中,一方面鼓励学生用不同的方法实现转化,另一方面强调沿着高剪开,以便达到转化成长方形的目的。这样,激活了学生的已有经验,加深学生对图形转化的理解,使学生的探索活动具有一定的挑战性,又利于最终教学目标的实现。]
2、实践验证,得出结论
(1)请同学们按小组剪下P127页的三个平行四边形进行验证(要求:把平行四边形的底和高填写在表格里,再把转化后的长方形的长和宽填写在表格里,并计算出长方形的面积。)转化成的长方形平行四边形
长(cm)宽(cm)面积(cm2)底(cm)高(cm)面积(cm2)(2)小组讨论
转化后的长方形与平行四边形的面积相等吗?为什么?填出平行四边形的面积。
长方形的长和宽与平行四边形的底和高有什么关系?你是怎样知道的?
(3)根据学生的讨论教师归纳:任何一个平行四边形都能转化成长方形,并且平行四边形的底与转化后长方形的长相等,高与长方形的宽相等。(4)那么根据长方形的面积公式,怎样求出平行四边形的面积?你是怎样想的? 板书:
长 方 形 的 面 积 = 长 × 宽
平行四边形的面积 = 底 × 高(5)用字母表示公式
谈话:如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,请用字母写出平行四边形的面积公式。板书:
平行四边形的面积 = 底 × 高
S = a × h S = ah(6)小结:通过刚才同学们亲身体验,我们得出了平行四边形面积的计算公式,也就是说平行四边形的面积与它的底和高有关,而并不与它的邻边有关。
(7)指导学生完成“试一试”
先独立解答再集体交流,强调求平行四边形的面积要两个条件,即底和高。
[设计意图:这个环节的学习充满着观察、操作、验证、推理和归纳等探索性与挑战性的活动,引导学生投入到探索与交流的学习中,经历了由个别现象——普遍规律的验证过程与平行四边形面积公式推导过程,理解了平行四边形面积公式,感受了转化的数学思想。]
三、巩固应用,提高能力
1、完成练一练(第三张图形适当变化,出示一条底,两条不同边上的高)
先学生独立计算面积,再集体交流。
强调:计算平行四边形的面积一定要找到对应的底和高。(课件出示)
2、练习2第1题
(1)理解题意:使画出的平行四边形与给出的长方形面积相等,长方形的长×宽=平行四边形的底×高=15,所以底和高的情况可能有5和3,3和5,1 和15,15和1(2)学生操作,画出平行四边形
(3)追问:如果长方形的面积是18,那么平行四边形的底和高可能是多少?(口答)如果平行四边形的面积是24,那么和它面积相等的长方形的长与宽分别是多少呢?
四、拓展延伸,发展思维
1、练习2第5题
(1)学生独立计算长方形的面积与周长,共同订正
(2)提问:如果把这个长方形拉成平行四边形后周长有没有发生变化?(没有)面积呢?(学生交流)
(3)课件演示过程:平行四边形的高与长方形的宽比较长度。发现:长方形的长与拉成的平行四边形的底是一样的,而长方形的宽与拉成的平行四边形的高并不相等,高比长方形的宽短了,所以面积变小了。
(4)小结:把长方形拉成平行四边形后,周长不变,面积变小。如果继续拉,拉的越平,它的高就越短,面积也就越小了。(课件演示动态变化过程)
2、小小设计师。
小区要在一块长8米,宽6米的空地上建一个面积是30平方米的平行四边形观赏鱼池(底和高是整米数),如果你是设计师你如何设计? [设计意图:练习题设计分为“巩固应用”与“拓展延伸”两部分,注重练习设计的层次性,为节省时间将同一层次的练习作为课后作业。让学生灵活运用所学知识,使其在解决问题的过程中加深对平行四边形面积计算方法的理解。最后的开放题设计培养了学生全面分析、解决问题的能力与审美观,体会数学知识在日常生活中的实际应用价值。]
五、全课总结
以学生日记的形式出现,让全班同学一起回顾所学知识进行填空。通过今天这节课的学习,让我感受到了数学知识的密切联系,原来平行四边形的面积可以转化为()的面积来进行计算,平行四边形的底就是转化后长方形的(),平行四边形的()就相当于转化后长方形的()……
六、布置作业 练习二的第2、3、4题 【板书设计】平行四边形的面积计算 割补
长 方 形 的 面 积 = 长 × 宽平行四边形的面积 = 底 × 高 S = a × h S = ah