七年级数学下册 多边形的内角和教案 人教新课标版(合集五篇)

时间:2019-05-12 20:36:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学下册 多边形的内角和教案 人教新课标版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学下册 多边形的内角和教案 人教新课标版》。

第一篇:七年级数学下册 多边形的内角和教案 人教新课标版

7.3.2 多边形的内角和

[教学目标] 1.使学生了解多边形的内角、外角等概念.

2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算. [教学重点、难点] 1.重点:

(1)多边形的内角和公式.(2)多边形的外角和公式.

2.难点:多边形的内角和定理的推导. [教学过程]

一、探究

1.我们知道三角形的内角和为180°.

2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.

3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?

画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.

从中你得到什么结论?

同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.

二、思考几个问题

1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?

3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?

综上所述,你能得到多边形内角和公式吗? 设多边形的边数为n,则

n边形的内角和等于(n一2)·180°.

想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)

分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.

如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.

用心

爱心

专心 1

A 1O234EB5CD

分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠

1、∠

2、∠

3、∠4不是五边形的内角,应舍去.

∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.

EDA 12O34CB

三、例题

例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.

BCA

解:如图,四边形ABCD中,∠A+∠C=180°。

∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180°

这就是说:如果四边形一组对角互补,那么另一组对角也互补.

例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角

用心

爱心

专心 D

和.六边形的外角和等于多少?

A 6B21F5C3ED4

已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.

这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.

解:∵六边形的任何一个外角加上它相邻的内角和为180°.

∴六边形的六个外角加上各自相邻内角的总和为6×180°.

由于六边形的内角和为(6—2)×180°=720°

∴它的外角和为6×180°一720°=360°

如果把六边形横成n边形.(n为不小于3的正整数)同样也可以得到其外角和等于360°.即 多边形的外角和等于360°.

所以我们说多边形的外角和与它的边数无关.

对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.

如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

四、课堂练习

课本P89练习1、2、3题. P90第2、3题

五、课堂小结

引导学生总结本节课主要内容.

六、课后作业

课本P90第4、5、6题. 备选题:

用心

爱心

专心

A BCDFE

一、判断题.

1.当多边形边数增加时,它的内角和也随着增加.()2.当多边形边数增加时.它的外角和也随着增加.()3.三角形的外角和与一多边形的外角和相等.()

4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.()5.四边形的四个内角至少有一个角不小于直角.()

二、填空题.

1.一个多边形的每一个外角都等于30°,则这个多边形为 边形. 2.一个多边形的每个内角都等于135°,则这个多边形为 边形. 3.内角和等于外角和的多边形是 边形. 4.内角和为1440°的多边形是 .

5.一个多边形的内角的度数从小到大排列时,恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是 边形.

6.若多边形内角和等于外角和的3倍,则这个多边形是 边形. 7.五边形的对角线有 条,它们内角和为 . 8.一个多边形的内角和为4320°,则它的边数为 .

9.多边形每个内角都相等,内角和为720°,则它的每一个外角为 . 10.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= . 11.四边形的四个内角中,直角最多有 个,钝角最多有 个,锐角最多有 个.

12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加 .

三、选择题.

1.多边形的每个外角与它相邻内角的关系是()

A.互为余角 B.互为邻补角 C.两个角相等 D.外角大于内角 2.若n边形每个内角都等于150°,那么这个n边形是()A.九边形 B.十边形 C.十一边形 D.十二边形

3.一个多边形的内角和为720°,那么这个多边形的对角线条数为()A.6条 B.7条 C.8条 D.9条

4.随着多边形的边数n的增加,它的外角和()A.增加 B.减小 C.不变 D.不定

用心

爱心

专心

5.若多边形的外角和等于内角和的号,它的边数是()A.3 B.4 C.5 D.7 6.一个多边形的内角和是1800°,那么这个多边形是()A.五边形 B.八边形 C.十边形 D.十二边形 7.一个多边形每个内角为108°,则这个多边形()A.四边形 B,五边形 C.六边形 D.七边形

8,一个多边形每个外角都是60°,这个多边形的外角和为()A.180° B.360° C.720° D.1080° 9.n边形的n个内角中锐角最多有()个. A.1个 B.2个 C.3个 D.4个

10.多边形的内角和为它的外角和的4倍,这个多边形是()A.八边形 B.九边形 C.十边形 D,十一边形

四、解答题.

1.一个多边形少一个内角的度数和为2300°.

(1)求它的边数;(2)求少的那个内角的度数.

2.一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢?3.已知多边形的内角和为其外角和的5倍,求这个多边形的边数. 4.若一个多边形每个外角都等于它相邻的内角的12,求这个多边形的边数. 5.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数. 6.n边形的内角和与外角和互比为13:2,求n.

7.五边形ABCDE的各内角都相等,且AE=DE,AD∥CB吗? 8.将五边形砍去一个角,得到的是怎样的图形?

9.四边形ABCD中,∠A+∠B=210°,∠C=4∠D.求:∠C或∠D的度数. 10.在四边形ABCD中,AB=AC=AD,∠DAC=2∠BAC. 求证:∠DBC=2∠BDC.

用心

爱心

专心 5

第二篇:多边形及多边形内角和教案

多边形及多边形的内角和

【教学目标】 知识与能力: 1.了解多边形定义。

2.掌握多边形内角和的计算公式.3.掌握“多边形外角和等于360°”.

4.会用多边形的内角和与外角和的性质解决简单几何问题. 过程与方法:

1.通过类比归纳得出多边形的概念,培养学生的类比能力,渗透化归思想方法。

2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力;

3.通过探索多边形的内角和公式,感受数学思考过程的条理性; 4.探索多边形内角和公式,体验归纳发现规律的思想方法. 【教学重点、难点】

Ø重点:本节教学的重点是任意多边形的内角和公式. Ø难点:例2的解题思路不易形成,是本节教学的难点.。【教学过程】

1、创设情境,导入新课 1/4页

(1)昨天我们已经学习了四边形的定义,今天清晨,小明在广场的小路上跑步,请问小明跑步的图案可以抽象出什么图形呢?(2)上图广场上的小路可以抽象出一个边数为5的多边形——五边形。我们知道边数为 3的多边形——三角形,边数为4的多边形——四边形,„„边数为n的多边形——n边形(n≥3,n是整数).[设计意图:数学源于生活。教师创设生活情境,通过类比让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。] 【合作交流,探究新知】

(1)你能设法求出这个五边形的五个内角和吗?先启发学生回顾四边形的内角和及推理 方法,提出多边形对角线定义:连结多边形不相邻两顶点的线段叫做多边形的对角线(是下面解决多边形问题的常用辅助线)。

(2)启发学生用连结对角线的方法把多边形划分成若干个三角形来完成书本第96页的合作学习。

(3)再启发学生观察所能划分成的三角形个数与边数n有关。(4)结论:n边形的内角和为(n-2)×180°(n≥3).(5)及时巩固

【总结回顾,反思内化】 这节课学了什么?学生自由发言。

教师小结:(1)从n边形的一个顶点出发有 条对角线.(2)一个n边形共有 条对角线】。(3)n边形的内角和为

(4)任何多边形的外角和为360°(5)数学思想:类比(多边形定义类比四边形定义)转化(多边形内角和问题可以转化为三角形问题)。【作业布置,延伸拓展】

第三篇:多边形及其内角和教案

多边形

教学目标:

1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形.

教学重点、难点:

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形. 2.难点:

多边形定义的准确理解.

课时安排:第一课时

教学方法:自主探索,合作交流 预习提示:

(1)你能仿照三角形的定义给多边形定义吗?

(2)什么叫多边形的边、顶点、对角线、内角和外角?试画图说明。(3)凸多边形与凹多边形有什么区别?(4)什么叫正多边形?

教学过程:

一、知识探索

投影:图形见课本P84图7.3一l.

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形. 如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

2.多边形的边、顶点、内角和外角.

多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.

3.多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线. 让学生画出五边形的所有对角线. 4.凸多边形与凹多边形

看投影:图形见课本P80.7.3—6.

在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.

5.正多边形

由正方形的特征出发,得出正多边形的概念.

各个角都相等,各条边都相等的多边形叫做正多边形.

二、课堂练习

课本P81练习1.2.

三、课堂小结

引导学生总结本节课的相关概念.

四、课后作业

课本P84第1题.

课堂检测:

1.下列不是凸多边形的是()

2.下列图形中∠1是外角的是()

3.下列说法正确的是()

A.一个多边形外角的个数与边数相同。B.一个多边形外角的个数是边数的二倍。C.每个角都相等的多边形是正多边形。D.每条边都相等的多边形是正多边形。

4、为迎接2008奥运会,北京四家宾馆A、B、C、D 决定建一个停车场,使它到四个宾馆的距离和最小.请你帮他们确定停车场的位置,并说明理由.7.3.2 多边形的内角和

[教学目标] 1.使学生了解多边形的内角、外角等概念.

2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.

[教学重点、难点] 1.重点:

(1)多边形的内角和公式.

(2)多边形的外角和公式.

2.难点:多边形的内角和定理的推导. [教学过程]

一、探究

1.我们知道三角形的内角和为180°.

2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.

3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?

画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果,从中你得到什么结论?

同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.

二、思考几个问题

1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?

3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?

综上所述,你能得到多边形内角和公式吗? 设多边形的边数为n,则

n边形的内角和等于(n一2)·180°.

想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)

分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.

如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.

A 1O234EB5

分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠

1、∠

2、∠

3、∠4不是五边形的内角,应舍去.

∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.

CDEDA 12O34CB

三、例题

1如果一个四边形的一组对角互补,那么另一组对角有什么关系? 已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.

BCA D

解:如图,四边形ABCD中,∠A+∠C=180°。

∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180°

这就是说:如果四边形一组对角互补,那么另一组对角也互补.

2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边

形的外角和.六边形的外角和等于多少?

A B216F5C3ED4

已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.

这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.

解:∵六边形的任何一个外角加上它相邻的内角和为180°.

∴六边形的六个外角加上各自相邻内角的总和为6×180°.

由于六边形的内角和为(6—2)×180°=720°

∴它的外角和为6×180°一720°=360°

如果把六边形横成n边形.(n为不小于3的正整数)同样也可以得到其外角和等于360°.即 多边形的外角和等于360°.

所以我们说多边形的外角和与它的边数无关.

对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°. 如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

四、课堂练习

课本P83--84练习1、2、3题.

习题7.3

第2、3题

五、课堂小结

引导学生总结本节课主要内容.

六、课后作业

课本P85第4、5、6题.

第四篇:山东省中学七年级数学下册《7.3.2 多边形内角和》教案 新人教版

山东省文登市高村中学七年级数学下册《7.3.2 多边形内角和》教案

(1)新人教版

教学要求:

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

教学重点: 三角形的内角和是180°的规律。

教学难点:使学生理解三角形的内角和是180°这一规律。

教学用具:每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。教学过程:

一、复习准备

1、一个平角是多少度?1个平角等于几个直角?(黑板上画出)

2、三角形按角的不同可以分成哪几类?

二、教学新课

1、幻灯出示一组三角形(前三幅):(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

3、下面以小组为单位拿出我们准备好的不同类型的三角形,用手中的量角器量这些三角形的度数分别是多少?计算三角形三个内角的和是多少度?(师:讲完要求才开始)

4、指名学生汇报各组度量和计算的结果。你有什么发现?(师:板书)

5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,一定能弄清这个问题的。

6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?也就是把三个内角拼成一个角或两个角,只需测量一次了。

7、请看老师演示:直角三角形(再用纸片演示三个角拼在一起的角)

8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

9、请同学们拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(指名:直角三角形和钝角三角形的内角和也是180°,板在黑板上)

10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)

11、老师板书结论:三角形的内角和是180°。

12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

13、幻灯出示:在三角形中,已知∠1﹦78°。求∠3的度数。让学生在课堂笔记本上试做。

14、指名汇报怎样列式计算的。两种方法均可。∠3=180°-78°-44°=58° ∠3=180°(78°+44°)=58°

15、出示幻灯:实践应用“闯关”

三、巩固练习1、88页第9题 这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的? 2、88页第10题 等腰三角形有什么特点?(两底角相等)

四、布置作业 1、85页做一做 2、88页第12题

第五篇:人教版七年级数学《多边形的内角和》说课稿

各位评委、各位老师:

大家好!我是来自钱场中学的陈芬老师。我说课的内容是人教版义务教育课程标准实验教科书,七年级数学(下)第七章第三节《多边形的内角和》。

下面,我从以下几个方面对本节课的教学设计进行说明。

一、教材分析

1、教材的地位和作用

本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

2、教学重点和难点

重点:多边形的内角和与外角和

难点:探索多边形内角和时,如何把多边形转化成三角形。

二、教学目标分析

1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。

2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

三、教法和学法分析

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1、教学方法的设计

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

四、教学过程分析

1、本节教学将按以下六个流程展开

下载七年级数学下册 多边形的内角和教案 人教新课标版(合集五篇)word格式文档
下载七年级数学下册 多边形的内角和教案 人教新课标版(合集五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《多边形的内角和》教案

    《多边形的内角和》教案 以下是查字典数学网为您推荐的 《多边形的内角和》教案,希望本篇文章对您学习有所帮助。 《多边形的内角和》教案 众所周知,数学课堂是以学生为中......

    多边形的内角和教案

    一、教学目标1、知识目标 (1)使学生了解多边形的有关概念。 (2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。2、能力目标 (1)通过对“多边形内角和公式”......

    11.3多边形及其内角和 教案(汇编)

    11.3 多边形及其内角和 11.3.1 多边形 [教学目标] 1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形. [教学重点、难点] 1.重点: (1)了解多边形及其有关......

    (人教新课标)五年级数学下册教案轴对称

    (人教新课标)五年级数学下册教案轴对称 教学目标: 1.知识与技能:使学生进一步认识图形的轴对称。 2.过程与方法:探索图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称......

    冀教版四年级数学下册《六、3.多边形_三角形内角和》教案

    冀教版四年级数学下册教案 六、多边形 三角形内角和 教学目的: 1.知识与技能:探索并发现三角形内角和等于180°,能应用三角形内角和的性质解决一些简单问题。 2.过程与方法: 经......

    9.2巴西 教案 (人教新课标版七年级下册)

    《巴西》教学设计 ■课标要求 “大量混血种人的社会”对应的课标是:根据地图和其他资料说出某国家的种族和人口(或民族、宗教、语言)等人文地理要素的特点。 “发展中的工农业......

    8.1中东 教案 2 (人教新课标七年级下册)

    第八章 第一节 中东(B案) 长期的热点地区 三洲五海之地 丰富的石油资源 教学目标 1.运用地图和图表,使学生了解中东地区的战略性地理位置、丰富的石油资源和在世界中的地位,以......

    七年级语文下册 丑小鸭教案 人教新课标版

    丑小鸭 一、教学目标: 1.速读课文,整体感知课文内容,体会字里行间流露的思想感情. 2.学习应用丰富的想象,幻想,夸张来塑造形象的写法。 3.理解只要不懈追求,努力进取,即使深处......