第一篇:比的基本性质和化简比教学设计1
苏教版六年级数学上册《比的基本性质和化简比》教学设计
东至县大渡口镇杨套小学
李仁豹
教学内容: 课本第55~57页例9~10和“练一练”,练习九第5~8题
教学目标:
1、使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。
2、使学生在探究比的基本性质及应用的过程中,体会数学知识之间的内在联系,进一步提高类比迁移和归纳的能力,以及灵活运用知识解决问题的能力。
3、使学生进一步体会数学的特点,培养独立思考、主动与他人合作交流的意识和习惯,获得一些成功的体验,增强学好数学的信心。
教学重点: 比的基本性质
教学难点: 分数比和小数比的化简 教学准备:课件
教学过程:
一、复习旧知、迁移导学
1、填空。(课件出示)
3:5=()/()=()÷()
师:除法、分数和比之间有什么联系? 2.填空:(课件出示题)看你有什么发现?
2÷4=4÷()
()÷3=10÷6
3/()=9/6 师:你这样做根据的是什么?(商不变的性质和分数的基本性质)它的内容是什么?
3、揭示课题: 我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)
二、迁移旧知、构建新知
1、教学例9比的基本性质。(1)自学,学生先求比值再填等式
(2)体会:联系商不变的性质和分数的基本性质这两个性质想一想,在比中又有什么规律可循?(3)师生共同总结比的基本性质。演示课件“比的基本性质”:
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。这是比的基本性质。
(4)师:你觉得哪些词语比较重要? “0除外”你怎样理解的? 2.教学例10应用比的基本性质化简比。
我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。出示:把下面各比化成最简单的整数比 12:18(1)让学生试做第(1)题
师:你是怎么做的?6和12、18有着怎样的关系?
引导学生小结出整数比化简的方法:(课件演示)用比的前后项分别除以它们的最大公因数,使比的前后项是互质数。
53:
1.8:0.09 64(2)化简(2)师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。
(4)化简(3)1.8:0.09 师:想一想如何化简小数比呢? 让学生独立在书上化简,指名板演。师:那么应用比的基本性质把整数比、分数比、小数比化成最简单的整数比的方法是什么?(补充课题:和化简比)
三、巩固反馈、展示交流
1、师:完成练一练,出示题 学生同桌对学完成,指名回答。
集体交流:分数比怎样化成整数比?说一说你的化简过程。
2、做练习九第8题
先小组群学完成,在练习本上分别写出每组正方形边长的比和面积的比,并化简。
集体交流。提问:比较每组正方形边长的比和面积的比,你有什么发现?
引导学生发现:每组正方形面积的比和他们边长的比并不相同,把边长的比的前项、后项平方后的比,就是面积的比。
3、对号入座。(课件出示)(1)、1千米∶20千米=()A 1∶20 B 1000∶20 C 5∶1(2)、做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是()A 20∶21 B 21∶20 C 7∶10
四、课堂小结
师:通过今天的学习,你这节课学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?掌握不太好的是什么?
五、布置作业(出示)
1、把下面各比化成最简单的整数比 20:15=
2、基础练习。
教科书第56页练习9第5---7题。
2、拓展题。
甲数是乙数的
板书设计:比的基本性质和化简比
3:5=()/()=()÷()
4;5
16:20
50:40
40:50
():()=():()=():()
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。这是比的基本性质。
应用比的基本性质,可以把一些比化成最简单的整数比。
34,乙数是丙数的,求这三个数的比。10914 :
=
6.4:1.6=
69【教学反思】
本节课教学重点是探索并理解、掌握比的基本性质及应用比的基本性质化简比。在探索比的基本性质时,我是从复习商不变的性质及分数的基本性质入手,启发学生类推出比的基本性质,这样学生很快地理解并概括出了比的基本性质。得出性质后,又让学生抓住句中的关键词进一步理解此意。对于化简比的教学,我先让学生明确最简单的整数比应是比的前项和后项的两个数是互质关系,或最大公因数是1,这样学生对于下面的化简有了明确的目标。对于教材提供的整数比、分数比和小数比的化简。我采用了不同的教学方法:对于整数比化简,让学生想办法将前后项数字缩小即可。同时除以它们的最大公因数可以一次化简,但对于数字较大时,也可以多次化简。对于分数比让学生想办法把它变成整数,再按整数比的化简方法进行。同样分数比先想办法变成整数,这样就突破了这一教学难点。在例题之后我还补充了另外三类:化简分数与整数、分数与小数、小数与整数的比,这样既能拓宽学生的知识面,更好地解决问题,同时对于化简的方法能更深入地掌握。教学效果比较满意。
第二篇:比的基本性质和化简比
比的基本性质和化简比
课题
比的基本性质
课型
新授课
设计说明
比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的性质和分数的基本性质的基础上进行教学的。本课时在教学设计上有以下几个特点:
1.自主探究,猜测验证。
在教学比的基本性质的环节上,充分体现以学生为主的原则,鼓励学生按照自己的思维规律,大胆猜想并通过举例、论证等方法进行验证,使学生经历“大胆猜想——小心验证——得出结论”的全过程,充分体验到成功的快乐。
2.巧妙点拔,层层深入。
在应用比的基本性质化简比时,尽量让学生自主学习,步步深入,充分发挥教师在关键处的点拨作用,使学生理解化简比的意义,掌握化简比的方法,同时能正确区分化简比和求比值的不同之处。
学习目标
1.理解并掌握比的基本性质,能运用比的基本性质化简比。
2.感悟知识之间的内在联系,培养迁移、类推的能力,培养思维的灵活性。
3.经历发现、总结比的基本性质的过程,培养与他人合作的意识和创新精神。
学习重点
理解比的基本性质,掌握化简比的方法。
学习难点
利用比的基本性质化简化,并能熟练地化简整数、分数、小数比
学前准备
教具准备:PPT课件
课时安排
1课时
教学环节
导案
学案
达标检测
一、复习导入(7分钟)
1.复习。
什么叫比?比的各部分名称是什么?
2.引导学生回忆比与分数、除法的关系。
3.商不变的性质是什么?你能举例说明吗?
4.分数的基本性质是什么?你能举例说明吗?
5.导入新课,板书课题。
1.思考老师提出的问题并回答。
2.回顾比与分数、除法的关系并汇报a÷b=
=a∶b(b≠0)
3.举例说明商不变的性质。
4.举例说明分数的基本性质。
5.明确本节课的学习内容。
二、探究新知(20分钟)
1.探究比的基本性质。
(1)引导学生根据商不变的性质、分数的基本性质来猜测比的基本性质。
(2)验证猜测的性质是否成立。
①指导学生,利用比和除法的关系,举例、合作验证。
②集体评价学生汇报的验证过程和结果。
(3)教师根据学生的回答,总结比的基本性质。
(4)探讨:为什么0除外?
2.探究化简比的方法。
(1)PPT课件出示教材50页例1。
引导学生自学,明确要求。
(2)组织学生根据例1(1)列出比,并自主化简比,教师巡视指导。
1.(1)纷纷尝试猜测比的基本性质,大多数学生都模仿分数或除法的性质进行描述,并在小组内交流讨论。
(2)在教师的指导下,以小组为单位,设想一个比,利用比和除法的关系验证猜测。汇报验证过程,集体进行评价。
(3)根据验证过程,尝试表述比的基本性质。
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
(4)小组合作交流,为什么0除外。(因为除以0没有意义)
2.(1)认真阅读例题。讨论化简比的意义,明确应该利用比的基本性质简化比。
(2)根据例1(1)题意列出比,并尝试自主化简比。
(3)汇报化简整数比的过程。
3.判断。
(1)8∶10=(8+10)∶(10+10)
=18∶20(×)
(2)12∶16=(12÷6)∶(16÷4)
=2∶4(×)
(3)0.8∶1=(0.8×10)∶(1×10)
=8∶10(√)
(4)比的前项乘以3,要使比值不变,比的后项应除以3。(×)
4.化简比。
35∶45=(7)∶(9)
360∶450=(4)∶(5)
0.3∶0.15=(2)∶(1)
18∶=(27)∶(1)
6∶0.36=(50)∶(3)
=(3)∶(16)
(3)指名学生汇报板演,师生评价。
(4)出示例1(2),组织学生讨论如何化简分数比和小数比。
(5)组织学生小组讨论。总结化简比的方法。
3.探究化简比和求比值的区别。组织学生讨论化简比和求比值的区别。
(4)讨论、交流并尝试化简,完成讨论、交流化简比的过程和方法。
(5)小组内讨论、总结化简比的方法并汇报。
3.小组内讨论化简比和求比值的区别并汇报,明确:化简比的结果仍然是一个比,前后项是互质数,可以写成比的形式,也可以写成分数的形式。
比值是前项除以后项的商,是一个具体的数,可以用分数、小数和整数来表示。
三、训练深化(9分钟)
1.巩固训练:完成教材第53页第4、5题。(巩固对比的基本性质的理解)
2.拓展提高:完成教材53页第6题。(化简比)
1.在练习本上独立完成,同桌互检,进行评价。
2.学生独立完成,并明确化简比前要统一单位。
5.解决问题。
商店购进苹果的箱数是梨的1.6倍,写出商店购进苹果的箱数和购进梨的箱数的比,并化简。
1.6∶1=16∶10=8∶5
答:购进苹果的箱数和购进梨的箱数的比为8∶5。
四、总结收获(4分钟)
1.老师总结本课学习内容。
2.布置作业。
学生谈本节课的收获。
教学过程中老师的疑问:
五、教学板书
比的基本性质
15∶10=(15÷5)∶(10÷5)=3∶2
内容:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
用途:化简比。(把比化简成最简单的整数比)
整数比化简方法:除以最大公约数。
分数比化简方法:先化成整数比,或用求比值的方法化简。
小数比化简方法:先化成整数比,再化简。
六、教学反思
我是在学生已经理解比的意义的基础上教学本课的,本课内容是对学生已学知识的延伸和拓展。教学过程中,我引导学生观察思考,自主探索,渐渐由旧知归纳出新知,培养学生的知识迁移能力和归纳能力,初步渗透转化的数学思想。
教师点评和总结:
第三篇:《比的基本性质和化简比》反思(推荐)
我们组针对《比的基本性质和化简比》一课进行打磨研修,充分利用信息技术优化教学环节,教学效果优异,实践可知信息技术支持导入、讲授、评价等环节优化的,可以是同一节课中不同环节的技术应用,也可以是不同课中相应环节的技术应用。
(1)技术支持的导入设计,注重知识间的联系。在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。ppt演示,学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。
例如:
预设 比 分数 除法 5:7 =()=()2.提问:你还记得分数的基本性质吗?除法的商不变的性质吗?
预设:分数的基本性质:分子和分母同时乘或除以一个相同的数(0除外),分数大小不变。
商不变的规律:被除数和除数同时乘或除以一个相同的数(0除外),商不变。
3.质疑:大胆猜想,比会有怎样的性质呢?
(2)信息技术支持的新授环节优化 信息技术支持,多媒体展示红旗
例如:7.思考:这面国旗长240cm,宽160cm,如果我想制作几面不同规格的小国旗,运用比的性质,小国旗的长、宽可以是多少?
请同学们先独立思考,再小组交流。三.汇报交流,评价质疑 1.认识最简单的整数比
(1)谁来说说国旗的长、宽是多少?为什么? 预设:长和宽的比值不变,160∶240=16∶24=14∶21=2∶3………(2)理解最简单的整数比: 师:像2:3比的的前项和后项都是整数,且只有公因数1就是最简单的整数
比。
(3)学生列举几个“最简单的整数比”的例子
在本课教学中,能把课堂还给学生,采用“猜想——验证——得出结论”的方法让学生经历学习的过程,利用多媒体演示,并直观合理的把新知转化为旧知,让学生借助已有的知识经验去解决新的问题,收到了较好的效果。
(3)信息技术支持的评价优化。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时利用多媒体设计评价表,直观演示、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养了学生的创新能力和探索精神,信息技术支持设计的学生收获表便是最好体现。
第四篇:化简比教学设计
《比的化简》教学设计
教学内容分析:《比的化简》是(北师大版)六年级上册第52--53页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。
学生分析: 在这之前,学生早已学过“商不变的性质”和“分数的基本性质”,最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。
教学目标: ?知识目标:在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。? 能力目标:
1、在观察、比较中理解什么是化简比,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
2、促进知识迁移,培养学生的概括能力。
?情感目标:体验知识的相通性以及数学与生活的联系。
教学重难点:正确运用商不变的性质或分数的基本性质来化简比。
教学关键:理解“化简比”。
一、导入新课
(一)复习旧知:师:今天老师带来了两位老朋友,看大家还是否认识?出示: ①比较分数的大小:4/6 ○ 12/18 ○ 60/90 ②比较商的大小:0.5÷0.7 ○ 5÷7 ○ 50÷70 提问:你是用什么方法解决以上问题?(①分数:运用分数的基本性质约分成最简分数②运用商不变性质)
(二)故事:9月10日(教师节),我去拜访了我的老师,老师很高兴,拿出了许多果品给我吃,其中有我最喜欢的,猜猜看,是什么?(蜂蜜水)? 用40毫升蜂蜜、360毫升水调制了一大杯。请你用比的知识说说蜂蜜水的成份。
蜂蜜与水的比 板书40:360(复习比的知识:前项、后项、比号;)
?老师自己也调制了一杯:用了10毫升蜂蜜、90毫升水,用比表示10:90
?又来了两名学生,老师可高兴啦。用了2小杯蜂蜜、18小杯水,调制了一大杯蜂蜜水。该怎么用比来表示?板书2:18
在品尝的同时,我心里想:是我的蜂蜜水甜,还是后来的蜂蜜水甜呢?同学们,你们能帮老师解决吗?(学生猜)
(三)体会化简比的必要性。
师:你们遇到了什么问题?能找到什么依据吗?
? 想想办法,小组讨论交流。
?全班交流:你的想法与依据。随学生回答板书。
40:360 = 40÷360 = 1/9
10:90=10÷10:90÷10=1/9
2:18 = 2 / 18 = 1/9
比的比值都是九分之一,也就是说,三个杯子中的蜂蜜与水的比其实都是1:9,所以三杯蜂蜜水一样甜。(式子后板书:1:9)
40:360= 40÷360 = 1/9 =1:9
10:90=10÷10:90÷10=1/9 =1:9
2:18 = 2/18 = 1/9 = 1:9
小结:看起来,分数可以约分,比也可以化简。
二、探索新知
(一)1、理解化简比,揭示课题。
? 观察、比较:原来的比与后来得出的比有什么联系与区别?(比不一样,比值相等)?根据学生发言,师板书: 最简单的整数比
通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1(是互质数),这样的整数比就是最简整数比。
?你能列举几个“最简整数比”吗?
揭示课题:比的化简
2、你是怎么理解化简比的?(随学生回答在化简比的过程上板书“化简”)
刚才化简比时,用到了以前学的什么知识?(回忆分数基本性质和商不变性质)
小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。
(通过观察、比较,以“最简单的整数比”为突破口,引导学生理解“化简比”。并初步感知化简比的方法,进一步感受比、除法、分数之间的关系,体验到知识的联系性。让学生谈谈自己对化简比的理解,一方面照顾到学生的个性发展,一方面促进学生知识的内化。)
3、化简比的方法。
(1)独立尝试:(指名一人板书)。
①出示: 化简比:24:42
②自己试一试完成。
▲全班交流。说说你的思路。(方法根据)(运用分数的基本性质,来约分、化简)
③巩固: 15:21
结果有两种形式:4:7和4/7,后者是分数表现形式,应读作4比7,不要读作七分之四。如果读作七分之四,就变成是求比值!(2)小组活动:
① 出示
化简比:0.7:0.8
2/5 :1/4
②这两组比与前面的最大区别是什么?(前后项是小数比和分数比)
0.7:0.8
2/5 :1/4
=0.7÷0.8
= 2/5 ÷ 1/4
=7÷8
= 2/5 ×4
=7:8
= 8/5
=8:5
③小组讨论:如何把这两组比化简?并试一试,全班交流。
巩固:0.12:0.4
2/3:1/2
小结方法:(翻开书,与书上比较异同:化简方法和比的写法)
三、训练巩固及延伸:
※1.化简下面各比。让学生独立完成,指名板书并说说化简过程。
12:36
0.24:0.6
3/4:1/2
1:2/3 2.填空:
比
最简单的整数比 比值
100∶25 5/6:1/2 4.2∶1.4 1:3/4
讨论:化简比和求比值的区别是什么?(区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.)或(区别:求比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数,小数或整数。)3.判断正误,有错就改:
①比的前项和后项分别乘或除以相同的数(0除外),比值不变.()②比可以用分数的形式表现,读作几分之几.()③8:2化成最简单的整数比是4.()
④运用比的基本性质,把比转化成最简单的整数比的过程,就是比的化简.()
4.扩展练习
① 大小圆的半径分别是3厘米和2厘米,试求它们的直径之比,周长之比和面积之比分别是多少?(直径比3:2 周长比3:2
面积比9:4)②杨树的棵数是柳树棵数的20%,求杨树的棵数和柳树棵数的比是多少?(20%:1=1:5)
四、小结:
这节课我们学习了比的化简,在一节课的学习中,你懂得了哪些知识?印象深刻的是什么?哪些有必要提醒大家注意的呢?
板书设计:比的化简
比
化简
最简单的整数比
蜂蜜与水的比
一样甜
40:360= 40 ÷ 360 = 1/9 =1:9(商不变性质)
10:90= 10÷10:90÷10= 1/9=1:9(比的基本性质)
2:18 = 2/18 = 1/9 = 1:9(分数的基本性质)
第五篇:《化简比》教学设计
《化简比》教学设计
所属学科:小学数学
适应对象:小学六年级
一、教学背景
应用比的基本性质比简比,虽然学习过程比较简单,但实际上学生在比简分数比、小数比等时非常容易出错。为了帮助学生克服这一知识难点,借助微课程,不仅可以提高学生的学习兴趣,也能让学生根据自己需要进行个性化学习,满足了不同学习水平学生的学习,有助于达到更好的学习效果。
二、教学目标
1.让学生掌握化简比的方法并会化简比。并通过比较,让学生能够正确区分化简比与求比值的不同。
3.感受数学的独特魅力,增强学习数学的欲望,提高数学学习的兴趣。
三、教学过程
(一)问题导入
1.前面我们学习了比的意义与基本性质,现在我们就利用比的基本性质来学习化简比。
2.化简下列各比:14:21 : 1.25:0.4 【设计意图】开门见山、明晰问题,让学生先自主尝试解决问题。
(二)方法探究
首先,通过对整数比的化简,给学生一个运用性质解决具体问题的范例,为前后项是分数、小数的比的化简作了“跳一跳,可摘到果子”式必要铺垫。接着,借助本微课引入另外两种化简比的方法。最后,对化简比与求比值的区别进行教学。
A.理解化简比的三种方法
1.整数比:用比的前项、后项分别除以他们的最大公因数,直到前、后项的公因数只有1为止。
2.分数比:根据比的基本性质,把比的前、后项分别乘分母的最小公倍数,把分数比转化成整理比,进而化简。
3.小数比:根据小数点位置移动引起小数大小变化的规律,把小数比转化成整数比,再化简。
B.区分化简比与求比值的不同
1.用比的基本性质化简比,用比的前项除以后项求比值。2.化简比的结果是个比(若是整数比,可以用分数形式表达),求比值的结果是个数(可以用分数、小数或整数表示)。
【设计意图】在教学中,化简方法由易到难,并通过转化、类推等数学思想与方法,更加有利于学生对化简方法的理解与掌握。
(三)练习反馈:让学生自己举例练习
【设计意图】引导学生运用所学知识解决实际问题,将课堂延伸到课外,培养学生的应用意识。
(四)整理回顾
将化简化的三种方法运用简单的思维导图进行集中呈现。【设计意图】将三种方法整理重现一遍,有利于学生形成较为完整的思维过程。