小学“希望杯”全国数学邀请赛
四年级
第1试
1.计算:100-99+98-97+96-95+……+4-3+2-1=________。
2.如果○+□=6,□=○+○,那么□-○=_______。
3.从1开始的奇数:1,3,5,7,……其中第100个奇数是_____。
4.一个数除以9,商和余数相同,这个数最小是______。
5.从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。
6.由四张数字卡片:0,2,4,6可以组成_____个不同的三位数。
7.某校四年级一班参加兴趣小组的人数统计如图所示,其中,参加_____小组的人数最多。
8.如图,以A,B,C,D,E依次表示左手的大拇指,食指,中指,无名指,小拇指,若从大拇指开始数数,按ABCDEDCBABCDEDCBA……的顺序数,数到“112”时,是_____。
9.直线AB、CD相交,若∠1、∠2和∠3的关系如图所示。则∠3-∠1=______。
10.图中的“我爱希望杯”有_______种不同的读法。
11.计算机存储容量的基本单位是字节,用B表示,一般用KB、MB、GB作为存储容量的单位,它们之间的关系是
1KB=B,1MB=KB,1GB=MB。
小明新买了一个MP3播放器,存储容量为256MB,它相当于_____B。
12.往一个篮子里放鸡蛋,假定篮子里的鸡蛋数目每分钟增加1倍,这样放下去,10分钟时,篮子放满了。那么,____分钟时恰好放入半篮子鸡蛋。
13.下图是一块带有圆形空洞和方形空洞的小木板。下列物体中既能堵住圆形空洞,又能堵住方形空洞的是______。
14.过年了,小刚想将自己的光盘整理一下。若每盒5片,则有一盒少了1片;若每盒6片,则恰好少用一个盒子。小刚的光盘一共有______片。
15.小龙5次测验每次都得84分,小海前4次测验分别比小龙多出1分、2分、3分、4分,那么小海第五次测验至少应得_____分,才能确保5次测验平均成绩高于小龙至少3分。
16.两只食量相同的猴子抢一堆桃子吃,吃完后,一只猴子还差1个桃子吃饱,另一只还差5个吃饱。如果这堆桃子都给一只猴子吃,它仍不会吃饱,那么一只猴子一共需要_____个桃子才能吃饱。
17.小明的家在学校东400米处,小红的家在小明家的西200米处,那么小红的家距离学校_____米。
18.小华和爸爸分享“红、黑甜品”(红豆沙加芝麻糊)。方法是:小华先将两勺红豆沙倒进盛载芝麻糊的碗中,搅匀后再取回两勺放入原先盛载红豆沙的碗中,混成后,爸爸问小华:“如果混合前红豆沙与芝麻糊的体积一样,那么混合后红豆沙含芝麻糊的分量与芝麻糊含红豆沙的分量比较,哪一个多?”。小华的正确答案是
_____。
19.图中ABC是直角三角形,BDEF是正方形,AD=
4厘米,FC=
9厘米,则ABC的面积=_____平方厘米。
20.一块长120厘米、宽73厘米的长方形铁皮,最多可以分割成边长为12厘米的正方形_______个。
21.一个数除以8后再减3,得到的数比原来的数少66,原来的数是_____。
22.在一袋大米包装袋上标着净重,那么这袋大米净重最少是____公斤。
23.当哥哥的年龄是弟弟现在的年龄时,哥哥的年龄是弟弟年龄的3倍,当弟弟的年龄是哥哥现在的年龄时,他们两人的年龄和是48,弟弟现在___岁。
24.箱子里有红球13个,黄球10个,蓝球15个,从中摸出____个球,才能保证三种颜色的球都至少有4个。
小学“希望杯”全国数学邀请赛
四年级 第2试
1.1+2+……+8+9+10+9+8+……+2+1=_________。
2.计算口÷△,结果是:商为10,余数为5。那么△的最小值是____________.3.如果25×口÷3×15+5=2005,那么口_________.4.1,3,5,7,……是从1开始的奇数,其中第2005个奇数是________.5.某工人与老板签订了一份30天的劳务合同:工作一天可得报酬48元,休息一天则要从所得报酬中扣掉12元。该工人合同到期后并没有拿到报酬,则他最多工作了_________天。
6.三张数字卡片可以组成______个能被4整除的不同整数。
7.某种品牌的电脑降价20%后,每台售价为4592元,则该品牌电脑降价前每台售价______元。
8.已知两个自然数的积是35,差是2,则这两个自然数的和是_______。
9.图1是3×3的正方形网格,1与2相比,较大的是__________。
10.光明小学参加课外活动小组的人数统计如图2所示,则该校参加课外活动小组的共有
人。
11.下列图形经过折叠不能围成正方体的是________.12.小明、小华和小新三人的家在同一街道,小明家在小华家西300米处,小新家在小明家东400米处,则小华家和小新家相距______米。
13.2005年4月lO日是星期日,则2005年6月1日是星期______。
14.小明有一包弹球,其中25%是绿色的,10%是黄色的,余下的20%是蓝色的。如果蓝色的弹球是13个,那么这包弹球的个数是______。
15.甲、乙两车同时从A、B两地沿相同的方向行驶。甲车如果每小时行驶60千米,则5小时可追上前方的乙车;如果每小时行驶70千米,则3小时可追上前方的乙车。由上可知,乙车每小时行驶_____千米(假设乙车的行驶速度保持不变)。
二、解答题
16.将100个小球放入依次排列的36个盒子中。如果任意相邻的5个盒子中的小球总数均为14,且第1个盒中有2个小球。求第36个盒子中小球的个数。
17.将图3所示的三角形ABC分成面积相等的四个部分,请给出三种不同的分法。
要求:在下面所给的三个图中作答。
18.一个活动性较强的细菌每经过10秒就分裂为一个活动性较强的与一个活动性较弱的细菌,而一个活动性较弱的细菌每经过20秒就分裂为两个活动性较弱的细菌。问:一个活动性较强的细菌,经过60秒可繁殖多少个细菌?
19.王老师每天早上晨练,他第一天跑步1000米,散步1600米,共用25分钟;第二天跑步2000米,散步800米,共用20分钟。假设王老师跑步的速度和散步的速度均保持不变。
求:(1)王老师跑步的速度;
(2)王老师散步800米所用的时间。
小学“希望杯”全国数学邀请赛
四年级
第1试
1.1+2×3÷(4+5)×6=______.2.(2+4+6+……+2006)-(1+3+5+7+……2005)=______.3.9000-9=______×9
4.观察下列算式:
2+4=6=2×3,2+4+6=12=3×4
2+4+6+8=20=4×5
……
然后计算:2+4+6+……+100=______。
5.小马虎计算1到2006这2006个连续整数的平均数。在求这2006个数的和时,他少算了其中的一个数,但他仍按2006个数计算平均数,结果求出的数比应求得的数小1。小马虎求和时漏掉的数是______。
6.将各位数字的和是10的不同的三位数按从大到小的顺序排列,第10个数是______。
7.一个两位数,加上它的个位数字的9倍,恰好等于100。这个两位数的各位数字的和是______。
8.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1行第1列开始,按照编号从小到大的顺序排成一个方阵。小明的编号是28,他排在第3行第4列,则运动员共有______人。
9.一城镇共有5000户居民,每户居民的小孩都不超过两个。其中一部分家庭每户有一个小孩,余下家庭的一半每户有两个小孩,则此城镇共有______个小孩。
10.一箱番茄连箱共重48千克,其中的番茄和萝卜各卖掉一半后,剩下的番茄和萝卜连箱带筐共重38千克。则一只箱子和一个筐共重______千克。
11.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。这次测验共有______道题。
12.为了过冬,小白兔和小黑兔都储藏了一些胡萝卜。已知小白兔储藏的胡萝卜数量是小黑兔储藏数量的3倍。它们各吃了5个胡萝卜后,小白兔剩下的胡萝卜数量是小黑兔剩下数量的4倍。那么它们剩下的胡萝卜共有______个。
13.如图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形。这9个小长方形的周长之和是______厘米。
14.如图,直角的顶点在直线l上,则图中所有小于平角的较之和是______度。
15.如图,六个相同的长方形围成了大小两个正方形,已知小正方形的面积是36平方厘米,则每个小长方形的面积是______平方厘米。
16.下图是小华五次数学测验成绩的统计图。小华五次测验的平均分是______分。
17.根据图a和图b,可以判断图c中的天平______端将下沉。(填“左”或“右”)
18.某个早晨,容器中有200个细菌,白天有光照,容器中的细菌将减少65个,夜间无光照,容器中的细菌将增加40个。则在第______个白天,容器中的细菌全部死亡。
19.成语“愚公移山”比喻做事有毅力,不怕困难。假设愚公家门口的大山有80万吨重,愚公有两个儿子,他的两个儿子又分别有两个儿子,依此类推。愚公和它的子
孙每人一生能搬运100吨石头。如果愚公是第1代,那么到了第______代,这座大山可以搬完。(已知10个2连乘之积等于1024)
20.甲乙两个港口相距400千米,一艘轮船从甲港顺流而下,20小时可到达乙港。已知顺水船速是逆水船速的2倍。有一次,这艘船在由甲港驶向乙港途中遇到突发
事件,反向航行一段距离后,再掉头驶向乙港,结果晚到9个小时。轮船的这次航行比正常情况多行驶______了千米。
21.王老师九月下旬的某天早晨出发到外地出差(下旬指该月的后10天),前后共5天,第五天晚上回到家,这5天的日期数之和恰好是90(日期数指a月b日中的b,如3月19日的日期数是19),王老师是在______回到家的。(填几月几日)
22.某校入学考试,报考的学生中有被录取,被录取者的平均分比录取分数线高6分,没被录取的学生的平均分比录取分数线低24分,所有考生的平均成绩是60分,那么录取分数线是______分。
23.周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。已知林荫道周长是480米,他们从同一地点同时背向而行。在他们第10次相遇后,王老师再走______米就回到出发点。
24.北京时间比莫斯科时间早5个小时,如当北京时间是9:00时,莫斯科时间是当日的4:00。有一天,小张乘飞机从北京飞往莫斯科,飞机于北京时间15:00起飞,共飞行了8个小时,则飞机到达目的地时,是斯科时间______。(按24时计时法填几时几分)
小学“希望杯”全国数学邀请赛
四年级
第2试
一、填空题。
(每小题4分,共60分。)1.25×32÷14+36÷21×25=________。
2.如果5×(2+△×△)-4=2006,那么△=________。
3.如果数A减去数B的3倍,差是51;数A加上数B的2倍,和是111,那么数A=________,数B=________。
4.如图,圆A表示1到50这50个自然数中能被3整除的数,圆B表示这50个数中能被5整除的数,则阴影部分表示的数是________。
5.有40个连续的自然数,其中最大的数是最小的数的4倍,那么最大的数与最小的数之和是________。
6.牧羊人赶一群羊过10条河,每过一条河时都有一半的羊掉人河中,每次他都捞上3只,最后清查还剩6只。这群羊在过河前共有________只。
7.一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到________个桃子。
8.三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条。黑猫钓上________条鱼。
9.从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有________个。
10.如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。8个这样的铁环依此连在一起长________厘米。
11.下图是3×3点阵,同一行(列)相邻两个点的距离均为1。以点阵中的三个点为顶点构成三角形,其中面积为1的形状不同的三角形有________种。
12.如图,用标号为1,2,3,4,5的五种大小不同的正方形拼成一个大长方形,大长方形的长和宽分别是18,14,则标号为5的正方形的面积是________。
13.小强和小明一同到便利店购物,下图是他们两人购物的单据,由此计算出盐每袋________元,醋每袋________元。
14.如图所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是________。
15.现在世界各国普遍采用的公历是在1582年修订的格列高里历,它规定:公元年数被4除得尽的是闰年,但如被100除得尽而被400除不尽的则不是闰年。按此规定,从1582年至今共有________个闰年。
二、解答题。
(每小题10分,共40分)要求:写出推算过程。16.如图所示,在三个圆圈中各填人一个自然数,使每条线段两端的两个数之和均为奇数。请问这样的填法存在吗?如不存在,请说明理由;如存在,请写出一种填法。
17.甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。甲每小时行32千米,乙每小时行48千米。甲、乙各有一个对讲机,当他们之间的距离小于20千米时,两人可用对讲机联络。问:
(1)两人出发后多久可以开始用对讲机联络?
(2)他们用对讲机联络后,经过多长时间相遇?
(3)他们可用对讲机联络多长时间?
18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拨到8:00。然后,小明离家前往天文馆。小明到达天
文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中,看到闹钟显示的时间是11:20。请问,这时小明
应该把闹钟调到什么时间才是准确的?
19.2005年,小张有一次出差的几天的日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)
18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拨到8:00。然后,小明离家前往天文馆。小明到达天
文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中,看到闹钟显示的时间是11:20。请问,这时小明
应该把闹钟调到什么时间才是准确的?
19.2005年,小张有一次出差的几天的日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)
18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拨到8:00。然后,小明离家前往天文馆。小明到达天
文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中,看到闹钟显示的时间是11:20。请问,这时小明
应该把闹钟调到什么时间才是准确的?
19.2005年,小张有一次出差的几天的日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)
18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拨到8:00。然后,小明离家前往天文馆。小明到达天
文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中,看到闹钟显示的时间是11:20。请问,这时小明
应该把闹钟调到什么时间才是准确的?
19.2005年,小张有一次出差的几天的日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)
18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拨到8:00。然后,小明离家前往天文馆。小明到达天
文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中,看到闹钟显示的时间是11:20。请问,这时小明
应该把闹钟调到什么时间才是准确的?
19.2005年,小张有一次出差的几天的日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)
18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拨到8:00。然后,小明离家前往天文馆。小明到达天
文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中,看到闹钟显示的时间是11:20。请问,这时小明
应该把闹钟调到什么时间才是准确的?
19.2005年,小张有一次出差的几天的日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)
18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拨到8:00。然后,小明离家前往天文馆。小明到达天
文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中,看到闹钟显示的时间是11:20。请问,这时小明
应该把闹钟调到什么时间才是准确的?
19.2005年,小张有一次出差的几天的日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)
18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拨到8:00。然后,小明离家前往天文馆。小明到达天
文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中,看到闹钟显示的时间是11:20。请问,这时小明
应该把闹钟调到什么时间才是准确的?
19.2005年,小张有一次出差的几天的日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)