第一篇:3、长方体和正方体-苏教版小学数学第十一册教案
3、长方体和正方体(2)-苏教版小学数学第十一册教案
3、长方体和正方体(2)
主备人:沈薇
复习内容:补充练习
教学目标:
1、通过复习,进一步理解并掌握长方体和正方体的特征,以及体积单位的概念及其相邻单位间的进率,进一步发展学生的空间观念。
2、使学生进一步认识长方体、正方体的表面积和体积的计算方法,能正确的计算长方体和正方体的表面积和体积,并能合理的解决问题。
教学重难点:
应用所学知识,灵活合理的解答实际问题。
教学过程:
填空1、40立方米=()立方分米
4立方分米5立方厘米=()立方分米
0.85升=()毫升
2100毫升=()立方厘米=()立方分米
0.3升=()毫升=()立方厘米
2、在括号里填上合适的体积或容积单位。
(1)一枝粉笔的体积约是8()
(2)一只热水瓶的容积约是2()
(3)一块砖的体积约是1500()
(4)一个运货集装箱的体积越是70()
3、一个长方体框架长8厘米,宽6厘米,高4厘米,做这个框架共要()厘米铁丝,是求长方体(),在表面贴上塑料板,共要()塑料板是求(),在里面能盛()升水是求(),这个盒子有()立方米是求()。
4、至少要()个小正方体才能拼成一个大正方体,如果小正方体的棱长是5厘米,那么大正方体的表面积是()平方厘米,体积是()立方厘米。
5、一个正方体的底面周长是16厘米,它的表面积是()平方厘米,体积是
()立方厘米。
6、将三个棱长是4厘米的正方体拼成一个长方体,这个长方体的体积是()立方厘米,表面积是()平方厘米。
7、把一个棱长10厘米的正方体,分成两个完全相同的长方体,这两个长方体的体积之和是()立方厘米,表面积之和是()平方厘米。
8、把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积至少增加()平方厘米,至多增加()平方厘米。
二、判断
1、体积单位比面积单位大,面积单位比长度单位大。()
2、正方体和长方体的体积都可以用底面积乘高来进行计算。()
3、表面积相等的两个长方体,它们的体积一定相等。()
4、长方体的6个面中,最多只能有4个面是正方形。()
5、棱长6厘米的正方体,它的表面积与体积相等。()
6、体积单位之间的进率是1000。()
三、选择
1、正方体的棱长扩大2倍,则表面积扩大()倍,体积扩大()倍。①2 ②4 ③6 ④82、一根长方体木料,长1.5米,宽和厚都是2分米,把它锯成4段,表面积最少增加()平方分米.
①8 ②16 ③24 ④323、一个长方体的长、宽、高分别是a米、b米和h米。如果高减少3米,它的体积减少了()
① 3ab立方米②ab(h-3)立方米③(abh-3×3×3)立方米
4、表面积相等的长方体和正方体的体积相比,()。
①正方体体积大 ②长方体体积大 ③相等
5、将一个正方体钢坯锻造成长方体,正方体和长方体()。
①体积相等,表面积不相等 ②体积和表面积都不相等. ③表面积相等,体积不相等.
6、一个菜窖能容纳6立方米白菜,这个菜窖的()是6立方米.①体积 ②容积 ③表面积
四、解决实际问题
1、要做一个正方形管口周长是28厘米,长2米的通气管子10根,至少需要铁皮多少平方米?
2、把一个长70厘米、宽50厘米、高50厘米的长方体木块削成一个体积最大的正方体,削去部分的体积是多少立方厘米?
3、砌一道长24米,宽20米,高3米的砖墙,如果用每块体积的18立方分米的砖来砌,一共要这样的砖多少块?
4、一个房间长5米,宽3米,高2.8米,现需油漆四壁和天花板,扣除门窗的面积4.5平方米,求油漆的总面积有多大?
5、明达双语小学建一个长方体游泳池,长60米,宽25米,深2米。请你算一算。
(1)游泳池的占地面积是多少平方米?
(2)在游泳池底面和内壁抹一层水泥,抹水泥面积是多少平方米?
(3)沿游泳池的内壁1.5米高处用白漆画一条水位线,水位线全长多少米?
6、礼堂内有四根长方形状的柱子,底面是正方形,边长6分米,高5米。要油漆这四根柱子,求油漆部分的面积是多少平方米?
7、一个长2米的长方体钢材截成三段,表面积比原来增加2.4平方分米,这根钢材原来的体积是多少立方分米?
8、一个长方体,如果长减少2厘米,就成为一个正方体,这时,正方体的表面积是96平方厘米,原来长方体的体积是多少平方厘米?
9、一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正
方体木块,每个小木块的表面积是多少?
10、在一个长32厘米、宽20厘米的长方形纸板的四周各剪去一个边长为4厘米的正方形,把它折成一个无盖的长方体形状的纸盒。这个纸盒的容积是多少?课前思考:
这些是小沈老师精心挑选的习题,我会从中挑选部分习题进行巩固。我想对这课内容的复习略作调整:
一、回忆提升:
上节课我们重要复习了长正方体的什么知识?在解决这些问题时我们是怎样思考的?(分析条件与问题,再将生活问题转化成数学问题再解决)解决时有什么好办法可以帮助我们?(画图分析)
二、巩固检测:
完成小沈老师设计的判断题与选择题
三、解决实际问题:
(一)基本练习:
1、把一个长70厘米、宽50厘米、高50厘米的长方体木块削成一个体积最大的正方体,削去部分的体积是多少立方厘米?
2、要做一个正方形管口周长是28厘米,长2米的通气管子10根,至少需要铁皮多少平方米?
3、砌一道长24米,宽20米,高3米的砖墙,如果用每块体积的18立方分米的砖来砌,一共要这样的砖多少块?
4、明达双语小学建一个长方体游泳池,长60米,宽25米,深2米。请你算一算。
(1)游泳池的占地面积是多少平方米?
(2)沿游泳池的内壁1.5米高处用白漆画一条水位线,水位线全长多少米?
(3)水位线以下的地方都要贴瓷砖,那么贴瓷砖的面积有多大?
(二)拓展提高:
1、一个长2米的长方体钢材截成三段,表面积比原来增加2.4平方分米,这根钢材原来的体积是多少立方分米?
2、一个长方体,如果长减少2厘米,就成为一个正方体,这时,正方体的表面积是96平方厘米,原来长方体的体积是多少平方厘米?
3、一个长方体,如果长增加2厘米,就成为一个正方体,这时表面积比原来增加56平方厘米,原来长方体的体积是多少平方厘米?
第二篇:小学数学长方体和正方体教案
三单元 长方体和正方体
一、教学内容。
1.长方体和正方体的认识 2.长方体和正方体的表面积 3.长方体和正方体的体积。
二、教学目标。
1、单元教学目标:
(1)通过观察和操作,认识长方体和正方体的特征以及它们的展开图。
(2)通过实例,了解体积(包括容积)的意义及度量单位(立方米、立方分米、立方厘米、升、毫升),会进行单位之间的换算,感受1立方米、1立方分米、1立方厘米以及1L、1ml的实际意义。(3)结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。(4)探索某些实物体积的测量方法。(新增)
2、教学重点:
(1)通过观察和操作,认识长方体和正方体的特征。(2)探索并掌握长方体和正方体的表面积和体积的计算方法。(3)能运用所学知识解决一些简单的实际问题。
3、教学难点:
(1)表面积和体积概念的建立。(2)体积和容积的区别。
(3)灵活运用所学知识解决实际问题。
第三篇:小学数学第十一册复习计划教案
小学数学第十一册复习计划
一、复习内容:
本学期总复习可以分为三个部分。第一部分是整理本书的知识框架。目的是巩固和加深对所学知识的理解,沟通各部分知识的内在联系。教学时,教师可以先安排一些时间,让学生按照“数与计算、空间与图形以及统计”三大部分自己回顾所学过的内容,对所学过的知识用自己喜欢的方式加以整理,整理后全班交流有特色的整理方式。
第二部分是整理学习过程中解决问题的方法以及学习体会。教师应组织学生总结学习过程中解决的一些问题,反思解决这些问题的方法,提高学生解决问题的能力。教师还应组织学生交流学习过程中的收获和不足。
第三部分是巩固练习。教师可以结合总复习的题目,根据学生的实际情况确定复习的重点,使复习具有针对性。
二、复习目标:
1、使学生进一步牢固理解并掌握圆周长和圆面积的计算公式,能够正确计算圆的周长和面积,能应用圆的周长和面积公式解决常见的实际问题;进一步理解轴对称的意义,会画对称轴。
2、使学生能够解答比较容易的分数、百分数应用题,提高综合运用所学知识解决比较简单的实际问题能力,能够根据应用题的具体情况,灵活地选用算术解法和方程解法,提高解题能力。
3、能有条理地表达图形的平移或旋转的变换过程,发展空间观念;
经历运用平移、旋转或作轴对称图形进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案;结合欣赏和设计美丽的图案,感受图形世界的神奇。
4、能根据需要选择复式条形统计图、复式折线统计图有效地表示数据;能读懂简单的复式统计图,根据统计结果做出简单的判断和预测,与同伴进行交流。
5、能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。
三、复习措施:
1、坚持以人为本的教学理念,确保学生的主体地位,通过组织讨论、合作学习等多形式的组织复习活动,让学生参与复习的全过程,巩固已学过的学习方法,不断提高自学能力,培养探索精神。
2、加强知识的纵横联系,以学生为主体,引导学生主动地进行复习和整理,重视在学生理解基本概念、法则、性质的基础上注意加强知识间的联系,使学生获得的概念、法则、性质系统化。对于易混淆的内容要加强比较,(如求比值与化简比)使学生明确它们之间的联系和区别。
3、强化应用题的基本训练,常见数量关系的积累和运用,使学生牢固掌握应用题的解题步骤和基本方法,不断提高学生的分析能力与解题能力。
4、强化能力培养。在复习数学基础知识的同时,注意学生各种能
力的培养。如,复习四则运算,在学生理解运算法则的基础上,经常性地进行训练,不断提高计算的正确率,培养学生合理、灵活运用计算方法的能力。又如,复习圆的周长和面积时,通过各种直观手段发展学生的空间观念,培养测量的画图的技能。
5、加强反馈,注意因村施教。复习时要注意抓重点,有针对性,加强反馈,及时根据学生的学习情况调节教学过程,使各种程度的学生得到有效发展。
6、适当补充设计练习题,强化训练,进一步发展他们思维的灵活性,提高综合应用知识解决实际问题的能力。
课时:7课时
课题 百分数应用题总复习 第 1课时
教学目标
1、通过复习使学生把稍复杂的分数、百分数应用题的有关知识系统化。
2、使学生牢固掌握分数、百分数应用题的基本数量关系和解题方法。
3、通过运用知识解题,提高解决实际问题的能力。教学重点
综合运用知识解答有关应用题 教学难点
把稍复杂的分数、百分数应用题的有关知识系统化。教法: 导练法、迁移法、例证法 学法:归纳发现 教学准备 小黑板 培优辅差
教学过程
一、激趣导入
谈谈学校的体育达标情况。出示;体育达标率为99.7% 从这个条件,你能知道什么?你还想到了什么? 揭题:分数、百分数应用题
二、自主学习
(一)求百分率
1、出示学校体育达标情况:优秀650人,良好400人,合格250人。
2、根据这些条件,你可以提出那些不同的有关分数、百分数的问题?
3、同桌合作,讨论完成。
三、交流反馈
(1)一个数是另一个数的几(百)分之几?
例如:优秀率?650÷(650+400+250)=50%(2)一个数比另一个数多(少)几(百)分之几? 例如:优秀比良好人数多几分之几?(650-400)÷400=5/8
四、精讲点拨
求单位“1”或求分率所对应的量
1、把问题当成条件,根据条件编分数、百分数应用题
优秀650人,良好400人,合格250人,总人数1300人,优秀率50%,优秀比良好人数多5/8。
2、小组合作完成
3、反馈,并解答,想想有没有另外方法可以解答。
4、观察这些应用题,找找相同点与不同点
①有共同的数量关系 单位“1”×分率=分率对应的量 ②单位“1”已知或未知
5、你认为在解这类应用题是要注意什么?
6、师小结:找准单位“1”的量,根据已知与未知判断方法。列出题中数量间的相等关系。
五、当堂训练
独立完成教材85页第1、3题 学生独立解答,教师巡视。
六、课堂总结
谈谈通过这节课的复习,说说你的想法 教学反思:
课题 百分数应用题总复习第2课时 教学目标
1、使学生认识百分数应用题的数量关系式,理解百分数应用题的解题思路和解题方法。在理解题意、分析数量关系的基础上正确解答百分数应用题。
2、通过划线段图、类比和归纳等数学活动,体验数学问题的探索性,感受数学思考过程的条理性。
教学重点:理解百分数应用题的解题思路,结构特征和解题方法。教学难点:继续巩固百分数应用题。教法: 导练法、迁移法。学法:自主练习,小组交流 教学准备 小黑板 培优辅差:
教学过程:
一、复习百分数应用题的数量关系 判断单位“1”,说出数量关系 ⑴男生占全班人数的4/5 ⑵今天比去年增产二成五
⑶节约了15% ⑷期中考试的优秀率为52% ⑸打八折出售
二、基本题复习
分析解答下面各题,比较它们之间有什么相同点和不同点 ⑴建造一栋楼房,计划投资100万元,实际用了90万元,节约了百分之几?
⑵建造一栋楼房,用了90万元,比计划节约了10%,计划投资多少万元?
⑶建造一栋楼房,计划投资100万元,实际节约了10%,节约了多少万元?
⑷建造一栋楼房,计划投资100万元,实际超用了10%,实际投资了多少万元?
分组讨论这一组题目的解法,在弄清解题思路和正确列式的基础上进行比较:它们之间有什么相同点和不同点?
这组题他们的单位“1”是相同的,数量关系式也是相同的,而数量之间的关系有所不同,解答方法也不尽相同,有乘法也有用方程解。
三、变式练习:
根据题意列出算式和方程:
水果店运来苹果120千克,运来梨多少千克?
1、运来梨比苹果多25%
2、运来的比苹果少25%
3、运来的苹果是梨的25%
4、运来梨是苹果的25%
5、运来苹果比梨少25%
6、运来的苹果比梨多25%
7、运来梨比苹果的25%少2/5千克
在学生分析解答的基础上,教师总结:这些题目是百分数应用题中比较典型的,也是最基本的,解答时必须要准确判断单位“1”,弄清要求数量与单位“1”之间的关系和数量对应的百分率,确定解题方法。
四、复习运用
1.独立完成教材85页第4、5、题 学生独立解答,教师巡视,集体订正。2.拓展练习:
甲乙两粮库,甲库比乙库多存粮20%,如果从甲粮库中调出40吨,则两粮库的存粮数相等(放入乙粮库),甲乙两粮库原来存粮各多少吨?
在分析解答“如果从甲粮库中调出40吨,则两粮库的存粮数相等”的基础上加入“放入乙粮库”再分析。
五、课堂小结:
今天我们复习了什么内容?你有哪些收获? 教学反思
课题 比的复习 第 3 课时 教学目标
1、巩固比的意义,比的读法和写法,比的各部分名称
2、掌握求比值的方法,并能正确求出比的比值。
3、培养学生抽象、概括能力。
教学重点:已抽象出比的概念,使学生感受到需要刻画两个量之间的数量关系应该用比,理解比与除法、分数的关系会引入比的必要性以及比在生活中的广泛存在。
教学难点:学生已经掌握了比的意义。应密切联系学生已有的生活经验和学习经验。巩固求比值的方法,化简比的意义。
教法:复习引入
学法:独立思考,合作交流 教学准备:小黑板 培优辅差:
教学过程:
一、问题引入
什么是比的意义?(指名说)
二、当堂训练
1、六
(二)班有男生()人,女生()人。问:根据这两个数学信息你能说出哪些比?
2、男生是女生的4/5
3、一条公路,已修60% 4、4天看书80页
问:请你说出看的页数和天数的比,求出比值,说出这个比值所表示的意义 5、6头猪共重372千克 6、20分钟走了4800米
7、小结:比和分数、除法之间的联系
三、当堂训练
1.独立完成教材85页第7、8、9题 学生独立解答,教师巡视,集体订正
四、课堂小结
你这节课复习的愉快吗?能谈谈你的收获吗? 教学反思
课题 统计 第 4课时 学习目标
1、使学生认识条形统计图,知道条形统计图的意义和用途,了解制作条形统计图的一般步骤,学会制作条形统计图。
2、培养学生的观察、分析和动手操作能力。
3、渗透统计的思想,激发学生研究数学问题的兴趣。
教学重点:学会绘制条形统计图。教学难点:学生有基础 教法:复习导入
学法:独立思考,练习反馈。
教学准备:画有条形统计图、折线统计图、扇形统计图的投影片各一张,学校各年级学生人数统计
培优辅差: 教学过程:
一、激趣导入
我们学过简单的数据整理,在统计工作中除了对数据进行分类整理用统计表来表示以外,有时还可以用统计图来表示。用统计图表示有关数量之间的关系比统计表更加形象、具体,使人一目了然,印象深刻。常用的统计图有条形统计图、折线统计图和扇形统计图(投影出示三种统计图)。今天我们先学习条形统计图。(板书课题:条形统计图)
二、自主学习
1、介绍条形统计图的特点。
这是一张单式条形统计图,这张图包含哪些内容?
指出:条形统计图是用一个长度表示一定的数量,根据数量的多少,画出长短不同的直条,从图中很容易看出各种数量的多少。
2、教学条形统计图的制作方法。
(1)根据统计表所反映的内容先写上统计图的名称,位置在图纸上
方正当中。在标量的右下边,注明制图日期。
(2)根据图纸的大小,画出两条互相垂直的射线。在水平射线上适当分配条形的位置,确定直条的宽度和间隔;
(3)在与水平射线垂直的射线上根据数的大小的具体情况,确定单位长度表示多少数量。
(4)按照数据的大小画出长短不同的直条。
三、精讲点拨
1、引导学生看图分析:
(1)哪一年的降水量最多?是多少毫米?(2)哪一年的降水量最少?是多少毫米?(3)最多年降水量大约是最少年降水量的几倍?
2、看看统计图与统计表回答:用哪一种方式表示的数量关系更直观些?
四、当堂训练
独立完成教材85页第12、23、24题 学生独立解答,教师巡视,集体订正
五、全课小结
今天我们学习了制作条形统计图的方法,现在我们来总结一下制作条形统计图的一般步骤。
教学反思:
课题 圆的知识整理 第 5课时
学习目标
1、学生将在这个单元的复习中,结合生活实际,通过圆的知识的整理,进一步认识同一个圆中半径和直径的关系。
2、能熟练的用圆规画圆;能熟练的掌握圆的周长和面积的计算。
3、通过整理,提高学生解决问题的能力
教学重点:学生已经学了圆的知识,在平时的作业中,学生对概念的理解和计算反映出了很多问题。复习中要加强训练。
教学难点:学生复习和整理自己所学的知识。教法: 讨论 整理 学法:练习反馈 教学准备:小黑板 培优辅差
教学过程
一、知识的整理
1、你学到了有关圆的哪些知识?
2、知识的整理
画圆需知道哪些条件?圆是轴对称图形吗?有几条对称轴?什么是圆的对称轴?
圆心、半经、直经、周长与圆的关系
半径、直径、周长与圆的面积的关系
二、巩固练习
1、口答下列各题
1×3.14 2 × 3.14 3 × 3.14 4×3.14 4 × 3.14 5 × 3.14 6×3.14 7 × 3.14 8 × 3.14 9×3.14 15× 3.14 25× 3.14
三、自主练习
课本87页13-17题
学生独立解答,教师巡视,集体订正
四、课堂总结:
1、组合图形的面积和阴影部分的面积怎样计算?
2、计算的过程中应注意什么 ? 教学反思:
课题 测试与评讲 第 6、7 课时 教学内容 配套练习期末检测 教学目标
进一步巩固已学的知识,了解学生掌握知识的情况,便于查漏补缺。
教学过程
一、分析试卷
二、重难点再次分析。卷。
教学反思
学生听完后自由提问,然后校对试
第四篇:五年级下册数学长方体和正方体教案
第三单元:长方体和正方体
第1课时 长方体
教学内容: 长方体的认识
教学目标:
1.初步认识立体图形、认识长方体的特征。
2.通过观察、想象、动手操作等活动进一步发展空间观念。3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。教学重点:
掌握长方体的特征。教学难点:
通过观察、想象、动手操作等活动进一步发展空间观念 教学过程
一、复习导入 1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)
2.投影出示教材第18页的主题图。提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?
3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。
二、新课讲授
1.认识长方体的面、棱、顶点。
(1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有平平的面)板书:面
(2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。板书:棱
(3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。板书:顶点
(4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。2.研究长方体的特征。(1)面的认识。
①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前
后,上
下,左
右。
②引导学生观察长方体的6个面各是什么形状的?
板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。
③引导学生进一步验证长方体相对的面的特征。板书:相对的面完全相同。
④请学生完整叙述长方体面的特征。(2)棱的认识。教师出示长方体框架教具,引导学生注意观察:
①长方体有几条棱?②这些棱可分为几组?③哪些棱的长度相等?通过以上三个问题,分组讨论,实际测量。根据学生汇报后并板书:相对的棱长度相等。教师:请大家把长方体棱的特征完整地总结一下。
(3)顶点的认识。课件演示:先闪动三条棱再分别闪动三条棱相交的点。师:请你们按照一定的顺序数一数,长方体有几个顶点? 板书:8个顶点。
指名让学生把长方体的特征完整地总结一下。3.认识长方体的直观图。
(1)请学生拿出长方体学具,放在桌面上观察,最多能看到它的几个面?(三个面)
(2)怎样把长方体画在纸上或黑板上。4.认识长方体的长、宽、高。
(1)讨论:要知道长方体12条棱的长度,只要量哪几条棱就可以了?
(2)归纳:我们把相交于同一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,长方体的位置固定以后,我们把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。
(3)拓展:老师将长方体横放、竖放,让学生分别说出长方体的长、宽、高。
三、课堂作业
1.完成教材第19页“做一做”。
2.完成教材第21页练习五的第1、2、3、6、7题。
(1)第1题:此题是让学生观察长方体纸巾盒,说出各个面的形状,哪些面形状是相同的?各个面的长和宽各是多少?同桌合作。(2)第2题:求长方体的棱长和。
(3)第4题:让学生通过观察,发现长方体棱之间的关系,如:各组棱互相平行;与其中一条棱垂直的几条棱相互平行等。(4)第6题、第7题学生独立完成。
四、课堂小结
今天我们认识了长方体,知道了长方体的相关知识,谁愿意来说一说,这节课你有什么收获?
五、课后作业
完成练习册中本课时练习。
板书设计:
长方体
相交于一个顶点的三条棱的长度叫做长方体的长、宽、高。长方体的六个面都是长方形,特殊情况下两个相对的面是正方形。相对的面完全相同。相对的棱长度相等。
第2课时正方体
教学内容: 正方体的认识 教学目标:
1.通过观察、操作等活动,认识正方体、掌握正方体的特征。2.通过观察比较弄清长方体与正方体的联系与区别。
3.通过学习活动培养学生的操作能力,发展学生的创新意识和空间概念。教学重点:
认识正方体的特征。教学难点:
理清长方体和正方体的关系。教学过程
一、复习导入
1.回忆长方体的特征,请学生用语言进行描述。2.操作:同桌交流,分别说出长方体的棱在哪儿?几条棱可以分别分成几组?相交于同一个顶点的三条棱叫做什么?
教师:今天这节课,我们继续学习一种特殊的立体图形。(板书课题:正方体)
二、新课讲授
探索正方体的特征。1.想一想。正方体具有什么特征呢?我们在研究时应该从哪方面去思考?(也应该从面、棱、顶点这三个方面去考虑)2.合作学习。
学生根据手中的正方体学具,小组合作探究。3.集体交流。
(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。(2)组:正方体有12条棱,正方体的12条棱的长度相等。
(3)组:正方体有8个顶点。请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。教师问:怎样判断一个图形是不是正方体? 4.教学正方体和长方体的联系与区别:
老师出示一个正方体教具。请学生讨论:它是不是一个长方体? 学生充分讨论,集体交换意见。
学生甲组:这个物体的六个面都是正方形,它不是长方体。
学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们也认为它不是长方体。
学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,不是长方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。
教师根据学生的发言进行总结:正方体是特殊的长方体,长方体中包含着正方体,用集合圈表示为:
教师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。
三、课堂作业
1.教材第20页的“做一做”。2.教材第21~22练习五的第4、5、8、9题。
四、课堂小结
今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)
五、课后作业
完成练习册中本课时练习。
板书设计
正方体
有6个面,都是正方形,每个面的面积相等。有12条棱,每条棱长度相等。有8个顶点。
2.长方体和正方体的表面积 第1课时长方体和正方体的表面积(1)
教学内容: 长方体和正方体的表面积概念,长方体和正方体表面积的计算(教材第24页例
1、例2,以及第25~26页练习六第1、2、3、4、6、7题)。
教学目标:
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。3.培养学生分析能力,发展学生的空间概念。教学重点:
掌握长方体和正方体表面积的计算方法。教学难点:
会用求长方体和正方体表面积的方法解决生活中的简单问题
一、复习导入】
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授
1.教学长方体和正方体表面积的概念。(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。(3)尝试独立解答。(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)方法三:(上面的面积+前面的面积+左面的面积)×2(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1.完成教材第23页“做一做”。2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
五、课后作业
板书设计
长方体和正方体的表面积(1)长方体的表面积=(长×宽+长×高+宽×高)×2 正方体的表面积=边长×边长×6
第2课时 长方体和正方体的表面积(2)
教学内容: 求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。
教学目标:
1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。
2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲 教学重点: 能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。教学难点: 求一些不是完整六个面的长方体、正方体的表面积。
一、复习导入 师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板? 2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
二、新课讲授
1.教材25页第5题
(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?(2)学生读题,看图,理解题意。
(3)“上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)(4)学生尝试独立解答。(5)集体交流反馈。
方法一:10×12×2+6×12×2=240+144=384(cm2)方法二:(10×12+6×12)×2=(120+72)×2=384(cm2)答:这张商标纸的面积至少需要384平方厘米。2.教材26页第8题
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)(2)学生读题,看图,理解题意。(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。3×3×5=9×5=45(dm2)
答:制作这个鱼缸时至少需要玻璃45平方分米。
三、课堂作业
完成教材第26页练习六第9、10题。
四、课堂小结
提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?
五、课后作业
完成练习册中本课时练习。
板书设计
长方体和正方体的表面积(2)一个长方体的饼干盒,长10cm、宽6cm、高12cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米? 方法一:10×12×2+6×12×2 =240+144 =384(cm2)方法二:(10×12+6×12)×2 =(120+72)×2
=384(cm2)答:这张商标纸的面积至少需要384平方厘米。
一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米? 3×3×5 =9×5
=45(dm2)答:制作这个鱼缸时至少需要玻璃45平方分米。
3.长方体和正方体的体积 第1课时体积和体积单位
教学内容: 体积和体积单位(教材第27、28页的内容)。
教学目标:
1.使学生理解体积的概念,了解常用的体积单位,形成表象。2.培养学生比较、观察的能力。
3.通过学生的动手实践,加强学生空间概念的发展。教学重点: 常用体积单位。教学难点: 常用体积单位。
一、复习导入
口答:1米、1分米、1厘米是什么计量单位?
1平方米、1平米分米、1平方厘米又是什么计量单位?
二、新课讲授
1.认识体积的概念。
(1)故事导入 :多媒体课件演示乌鸦喝水的故事。看完后,老师提问:乌鸦是怎么喝到水的?为什么把石头放进瓶子里,瓶子里的水就升上来了。引导学生说出石头占了水的空间,所以水就升上来了。
(2)实验证明老师:石头真的占了水的空间吗?我们再来做个实验验证一下。取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒入第二个杯子,让学生观察会出现什么情况。学生通过观察会发现:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了一部分空间,所以装不下了。
(3)观察比较
观察:电视机,影碟和手机,哪个所占的空间大?教师:不同的物体所占空间的大小不同。
(4)体积概念的引入
教师:物体所占空间的大小叫做物体的体积。提问:体积与表面积的概念相同吗?为什么? 2.体积单位的认识。(1)出示两个长方体。提问:怎样比较这两个长方体体积的大小呢?(要比较这两个长方体体积的大小就要用统一的体积单位来测量)
(2)根据常用的长度单位和面积单位,想一想常用的体积单位有哪些? 教师:计量体积要用体积单位,常用的体积单位有立方厘米、立方分米、立方米,可以分别写成cm3,dm3和m3。(3)认识体积单位。
老师:请你猜一猜1cm3,1dm3,1m3是多大的正方体。
学生讨论后回答:棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。教师请学生看教材,证实同学们的回答是正确的。
(4)再次感受体积单位实际的大小。
①一粒蚕豆的大小是1cm3,请同学们估出身边体积是1cm3的物体。②一个粉笔盒的大小是1dm3,请同学们用手捧出1dm3大小的物体。
③用3根1m长的木条做成一个互成直角的架子,把它放在墙角,看看1m3有多大,估计一下,大约能容纳几个同学? 教师:立方厘米,立方分米,立方米是常用的体积单位,要计算一个物体的体积,就要看这个物体中含有多少个体积单位,请同学们用4个1cm3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?(4cm3)为什么?(因为它是由4个体积是1cm3的小正方体摆成的)
(5)练习:完成课本第28页“做一做”第1、2题。
三、课堂作业
教材第32页练习七1~5题。
四、课堂小结
教师:同学们,今天我们认识了体积和体积单位。它们在我们的生活中应用非常广泛。通过今天的学习,大家又有什么收获呢?
五、课后作业
完成练习册中本课时练习。
板书设计
1.体积和体积单位
物体所占空间的大小叫做物体的体积。常用的体积单位有立方厘米,立方分米,立方米。可分别写成cm,dm,m。
33第2课时长方体和正方体的体积
教学内容: 长方体、正方体的体积计算
教学目标:
1.通过讲授,引导学生找出规律,总结出体积的公式。2.指导学生运用公式正确计算长方体、正方体的体积。3.培养学生积极思考、探索新知的思维品质。教学重点: 长方体、正方体体积计算。教学难点: 长方体、正方体体积计算
一、复习导入
1.什么叫体积?计量物体的体积常用的单位有哪些? 2.怎样计算一个物体的体积呢?
二、新课讲授
1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入第29页表格。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。板书:长方体的体积=长×宽×高
讲述:如果用字母V表示长方体的体积公式可以写成:V=abh(3)质疑:求长方体的体积公式需要知道什么条件? 2.探究正方体的体积公式。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=a.a.a=a(a表示棱长)(a3读作a的立方,表示3个a相乘)3.运用长方体的体积公式解决问题。(1)出示教材第30页的例1。(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。(4)指名说出长方体的体积公式。3(5)指名学生上台板演过程,其他同学判断。(6)老师订正书写。V=abh=7×4×3=84(cm)(7)看图,学生独立在练习本上完成。(8)指名板演,集体订正。
三、课堂作业
完成课本第31页“做一做”第1、2题。
四、课堂小结
1.这节课,你有什么收获?
2.在计算长方体和正方体的体积时,要注意哪些问题?
五、课后作业
完成练习册中本课时练习。
板书设计
2.长方体和正方体的体积 长方体的体积=长×宽×高
V=abh
正方体体积=棱长×棱长×棱长
V=a.a.a=a
3第3课时体积单位间的进率
教学内容: 体积单位间的进率 教学目标:
1.通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的改写。
2.使学生学会用名数的改写解决一些简单的实际问题。
3.培养学生根据具体情况灵活应用不同的单位进行计算的能力。教学重点: 掌握名数的改写方法。教学难点: 用名数的改写解决一些简单的实际问题。
一、复习导入
1.口答:说一说常用的体积单位有哪些? 2.填一填。
1千米=()米
1米=()分米=()厘米 1平方米=()平方分米 1平方分米=()平方厘米
二、新课讲授
1.学习体积单位间的进率。
(1)老师板书教材第34页例2:一个棱长为1dm的正方体,它的体积是1dm3。想一想,它的体积是多少立方厘米。(2)学生读题,理解题意。
(3)老师出示棱长为1dm的正方体模型。
提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)(4)计算。请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米? 学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3)1dm3=1000cm3(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)
(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。老师板书:1立方米=1000立方分米(7)观察板书内容。想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。2.体积单位,面积单位,长度单位的比较。
(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。
(3)体积单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。
3.学习体积单位名数的改写。
(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)(2)学习教材第35页的例3。
板书:3.8m3是多少立方分米?2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。指名让学生说一说是怎样做的。
板书:3.8m=(3800)dm2400cm3=(2.4)dm3(3)学习教材第35页的例4。
学生理解题意明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少?
学生独立思考,然后解答,指名板演。
V=abh=50×30×40=60000(cm)=60(dm)=0.06(m)4.巩固:完成课本第35页的“做一做”第1题。学生完成后,要求他们口述解答的过程。
3.5dm=(3500)cm3700dm=(0.7)m
三、课堂作业
完成课本第36~37页练习八的第1~9题。
1.第1题此题是巩固单位间进率的习题。练习时先让学生独立完成,反馈时,让学生说说思考的过程。
2.第2题这是一道实际应用的问题。包装盒是否能够装得下玻璃器皿,关键要看包装盒的高是多少,因为从已知条件中我们已经知道包装盒的长、宽都比玻璃器皿的长、宽要长。只要包装盒的高大于18cm,就能够装得下。练习时,让学生独立计算出包装盒的高,提醒学生注意统一计量单位后,全班反馈。3.第3-9题由学生独立完成。
四、课堂小结
今天我们学习了体积单位间的进率,在这节课里,你有哪些收获呢?
五、课后作业
完成练习册中本课时练习。板书设计
体积单位间的进率 1立方分米=1000立方厘米 1立方米=1000立方分米
333
第4课时容积和容积单位(1)
教学内容: 容积和容积单位 教学目标:
1.使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。
2.掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。3.感受1毫升的实际意义,和应用所学知识解决生活中的简单问题。教学重点: 容积单位换算 教学难点: 容积单位换算
一、复习导入
1.什么叫物体的体积?
2.常用的体积单位有________、_________、_________,相邻两个体积单位之间的进率是_________。
3.一个长方体的纸盒,长2dm、宽1.8dm、高1dm,它的体积是多少立方分米? 学生在练习本上完成,然后小组交流检查。
二、新课讲授
1.教学容积的概念。
(1)教师把长方体的纸盒打开,问:盒内是空的可以装什么?学生交流后汇报。教师:我们把这个纸盒所能容纳物体的体积叫做它的容积。如:金鱼缸里面可以放满水,水的体积就是鱼缸的容积。(2)学生举例说一说什么是容积? 教师引出课题并板书:容积
(3)比较物体的体积和容积的异同。
请学生想一想,体积和容积有什么相同点,有什么不同点。学生独立思考,小组内交流,全班反馈。
相同点:体积和容积都是物体的体积,计算方法一样。不同点:①体积要从容器外面量出它的长、宽、高;而容积要从容器的里面量长、宽、高。
②所有的物体都有体积,但只有里面是空的,能够装东西的物体,才能计算它的容积。
(4)容积的计算方法。
教师:容积的计算方法与体积的计算方法相同,但要从里面量出长、宽、高。这是为什么呢?
教师出示一个木盒。演示为什么容积应该从里面量出长、宽、高。2.教学容积单位。
(1)教师:计量物体的容积,需要用到容积的单位。(完成课题板书)
(2)学生自学教材第38页内容。组织学生汇报学习的内容,教师板书:升、毫升
(3)出示量杯和量筒,倒入1升的水进行演示,让学生得出 1升=1000毫升(1L=1000mL)
(4)容积单位与体积单位的关系。试验:把水倒入量杯1mL处,然后再把1mL的水倒入1cm3的正方体容器里面,刚好倒满
提问:这个实验说明什么?1mL=1cm。(板书)
提问:大家想一想1升是多少立方分米?相互讨论,得出:1L=1dm3。(板书)3.新知应用。出示例5,指一名学生读题。(1)分析理解题意:求这个油箱可以装多少汽油就是求这个油箱的什么?必须知道什么条件?应该怎样算?(2)学生独立完成,然后指名汇报,全班集体订正。5×4×2=40(dm)40dm=40L 答:这个油箱可装汽油40L。
三、课堂作业
完成教材第40-41页练习九的第1-6题。
四、课堂小结
通过今天的学习,你有哪些收获?学生交流学习所得。
五、课后作业
完成练习册中本课时练习。
板书设计
容积和容积单位(1)
1L=1000mL1L=1dm
1mL=1cm
例5:5×4×2=40(dm)
40dm=40L
答:这个油箱可以装汽油40L。
3第5课时 容积和容积单位(2)
教学内容: 求不规则物体的体积(课本第39页的例6)教学目标:
1.使学生进一步熟练掌握求长方体和正方体容积的计算方法。2.能根据实际情况,应用排水法求不规则物体的体积。
3.通过学习,让学生体会数学与生活的紧密联系,培养学生在实践中的应变能力。
教学重点: 运用具体方法求不规则物体的体积。教学难点: 运用具体方法求不规则物体的体积
一、复习导入 1.填空
6.7m3=()dm3=()cm3 2L=()mL3 450mL=()L 0.82L=()mL=()dm3 提问:单位换算你是怎样想的? 2.判断
(1)容积的计算方法与体积的计算方法是完全相同的。
(2)容积的计算方法与体积的计算方法是完全相同的,但要从里面量出长、宽、高。
(3)一个量杯能装水10mL,我们就说量杯的容积是10mL。
(4)一个量杯最多能装水100mL,我们就说量杯的容积是100mL。(5)一个纸盒体积是60cm3,它的容积也是60cm3。
通过判断的练习,要让学生理解容积与体积的区别与联系。
二、新课讲授
出示课本第39页教学例题6。(1)出示一块橡皮泥。
提问:你能求出它的体积吗?(把它捏成一个长方体或正方体,用尺子量出它的长、宽、高,就可以算出它的体积)
(2)出示一个雪花梨。
提问:你能求出这个雪花梨的体积吗? 学生展开讨论交流并汇报。
最优方法:把它扔到水里求体积。
(3)给每个小组一个量杯,一个雪花梨,一桶水,请大家动手实验,把实验的步骤记录下来,让学生分工合作。
(4)汇报试验过程,请一个组一边汇报过程,一边演示,先往量杯里倒入一定量的水,估计倒入的水要能浸没雪花梨,看一下刻度,并记下。接着把雪花梨放入量杯,要让其完全浸没再看一下刻度,并记下。最后把两次刻度相减就是雪花梨的体积。
即:450-200=250(mL)=250(cm3)(5)提问:为什么上升那部分水的体积就是雪花梨的体积?学生展开讨论后并回答。
(6)用排水法求不规则物体的体积要注意什么?要记录哪些数据?(要注意把物体完全浸入到水中,要记录没有浸入之前的刻度和完全浸入之后的刻度)(7)想一想,可以利用上面的方法测量乒乓球、冰块的体积吗?为什么?也是可以的,但必须把它们完全浸入水中。
三、课堂作业
完成课本第41页练习九第7~13题。
第7题:教师引导学生理解题意,要根据已知条件算出水深是13cm时水和土豆合在一起形成的长方体的体积,放入土豆后高是13cm,根据“底面积×高”的公式,可以求出放入土豆后的体积,再从中减去5L水,就得出土豆的体积。第13题:一个大圆球加一个小圆球排出的水是12mL,一个大圆球加四个小圆球排出的水是24mL,这样可知3个小圆球共排出的水是24-12=12(mL),由此可得出3个小圆球的体积是12cm3,则1个小圆球的体积为4cm3,所以大圆球的体积为12-4=8(cm3)
第16题:这是个思考题,教师引导学生弄清图意,让学生在四人小组内进行交流、讨论,全班反馈时,可让学生说说思维过程。
四、课堂小结 今天这节课,同学们都能用学到的知识解决生活中常见的问题,希望大家在今后的计算中要多加小心。
五、课后作业
完成练习册中本课时练习。
板书设计 容积和容积单位(2)不规则物体的体积 ↓排水法
把物体扔到水里,两次的体积差则是不规则物体的体积。
第五篇:小学数学五年级《长方体和正方体》练习题
小学数学五年级《长方体和正方体》练习题
一、填空。((26分,每空2分)
1、在括号里填上适当的数。
2.1平方米=()平方分米 2.04立方米=()立方分米 0.08立方米=()升=()毫升 3.8升=()升()毫升
2、长方体、正方体都有()个面、()条棱和()个顶点。
3、一个长方体相交于一个顶点的三条棱分别长5厘米、3厘米、4厘米,这个长方体的所有棱长之和是()厘米。体积是()
4、长方体和正方体的体积都可用字母公式()来表示。
5、一个正方体的底面积是2平方厘米,它的表面积是()平方厘米。
6、用三个长5厘米、宽3厘米、高2厘米的长方体木块拼成一个表面积最大的长方体,这个大长方体的表面积是()平方厘米。
二、填表。(18分)
三、判断题。(对的在括号里打,错的打)(10分)
1、一个长方体木箱,竖着放和横着放时所占的空间不一样大。()
2、一个厚度为2毫米的铁皮箱的体积和容积完全相等。()
3、正方体的棱长扩大2倍,它的表面积就扩大8倍。()
4、体积相等的两个正方体,它的表面积也一定相等。()
5、一个棱长为1米的无盖正方体铁箱,它的表面积是5平方米。()
五、计算下列各题。(16分)
6.8+ 6.8×6.8 – 1.5× 6.8(3.6+ 12.03÷ 0.3)× 2.5 1.25× 0.25×8× 0.4 96.356 ×(5.9 + 5.1-10)六、一种汽车上的油箱,里面长8分米,宽5分米,高3.5分米。做这个油箱需要多少平方分米的铁皮?这个油箱可以装多少升汽油?(8分)
八、用一根长36厘米的铁丝做成一个最大的正方体框架,在框架外面全部糊上白纸,需要白纸多少平方厘米?(7分)
九、把一个棱长6分米的正方体钢块,锻造成横截面积为4平方分米的长方体钢锭,这根钢锭长多少米?(7分)
附加题:(10分)
一个底面是正方形的长方体,所有棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?
1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是少平方厘米?
想一想:你还能用别的方法来计算它的体积吗?
练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?
练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。
2、有一个长方体形状的零件。中间挖去一个正方体的孔(如下图)。你能算出它的体积和表面积吗?(单位:厘米)