第一篇:平行线及其判定与性质练习题
平行线及其判定
1、基础知识
(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。
(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.
(5)两条直线平行的条件(除平行线定义和平行公理推论外):
①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.
②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______. ③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:
2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)
3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)
4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.
5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)
6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.
(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:
证明:∵CD⊥DA,DA⊥AB,()∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,()从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)
7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC. 证明∵∠ABC=∠ADC,11ABCADC.2∴2()又∵BF、DE分别平分∠ABC与∠ADC,∴111ABC,2ADC.22()∵∠______=∠______.()∵∠1=∠3,()∴∠2=______.()∴______∥______.()
8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.
(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:
证明:∵∠1=∠2,()∴a∥______,(_________,_________)① ∵∠3+∠4=180°
∴c∥______,(_________,_________)② 由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)
9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1(B)2(C)3(D)4
10、下列说法中,正确的是().(A)不相交的两条直线是平行线.
(B)过一点有且只有一条直线与已知直线平行.
(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.
(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.
11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD= 度.
图6
12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___ 对平行线。
13、下列说法正确的是()(A)有且只有一条直线与已知直线垂直
(B)经过一点有且只有一条直线与已经直线垂直(C)连结两点的线段叫做这两点间的距离
(D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离
14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c
平行线的性质 1.基础知识
(1)平行线具有如下性质
①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______. ②性质2:两条平行线______,______相等.这个性质可简述为____________,______. ③性质3:____________,同旁内角______.这个性质可简述为____________,______.
(2)同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离. 2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,()∴∠2=______.(___________________)(2)∵DE∥AB,()∴∠3=______.(___________________)(3)∵DE∥AB(),∴∠1+______=180°.(____________________)4.已知:如图,∠1=∠2,∠3=110°,求∠4. 解题思路分析:欲求∠4,需先证明______//______.解:∵∠1=∠2,()∴______//______.(__________________)∴∠4=_____=_____°.(__________________)5.已知:如图,∠1+∠2=180°,求证:∠3=∠4. 证明思路分析:欲证∠3=∠4,只要证______//______.证明:∵∠1+∠2=180°,()∴______//______.(_________________)∴∠3=∠4.(_________,_________)6.已知:如图,∠A=∠C,求证:∠B=∠D.
证明思路分析:欲证∠B=∠D,只要证______//______.证明:∵∠A=∠C,()∴______//______.(_________,_________)∴∠B=∠D.(_________,_________)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.
证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,()∴∠2=______.(_________,_________)但∠1=∠B,()∴______=______.(等量代换)即CD是____ ________.8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数. 解题思路分析:欲求∠A,只要求∠ACD的大小. 解:∵CD∥AB,∠B=35°,()∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。∵CD∥AB,()∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数. 分析:可利用∠DCE作为中间量过渡. 解:∵AB∥CD,∠B=50°,()∴∠DCE=∠______=______°(_________,_________)又∵AD∥BC,()∴∠D=∠______=______°(_________,_________)想一想:如果以∠A作为中间量,如何求解? 解法2:∵AD∥BC,∠B=50°,()∴∠A+∠B=______.(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,()∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数. 解:过P点作PM∥AB交AC于点M. ∵AB∥CD,()∴∠BAC+∠______=180°()∵PM∥AB,∴∠1=∠______,()且PM∥______。(平行于同一直线的两直线也互相平行)∴∠3=∠______。(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,()111______,4______22()11BACACD9022()14∴∠APC=∠2+∠3=∠1+∠4=90°()总结:两直线平行时,同旁内角的角平分线______。
11.已知:如图,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.
12.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.
(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.
13.已知:如图,AB∥CD,试猜想∠A+∠AEC+∠C=?为什么?说明理由.
14.如下图,AB∥DE,那么∠BCD=().(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠1 15.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.
(15题)(16题)
16.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.
17.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.
18.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.
19.如图,AB∥CD,FG⊥CD于N,∠EMB=,则∠EFG等于().(A)180°-(B)90°+(C)180°+(D)270°-
20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.
21.以下五个条件中,能得到互相垂直关系的有(). ①对顶角的平分线 ②邻补角的平分线 ③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个(4)4个
22.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有().(A)6个(B)5个
(C)4个(D)3个
23.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有().
(1)∠C′EF=32°(2)∠AEC=148°
(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个
24.如图,AB∥CD,BC∥ED,则∠B+∠D=______.
25.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________.26.如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______.(24题)
(25题)
(26题)27.已知:如图,AC∥BD,折线AMB夹在两条平行线间.
图1 图2(1)判断∠M,∠A,∠B的关系;
(2)请你尝试改变问题中的某些条件,探索相应的结论。建议:①折线中折线段数量增加到n条(n=3,4……)②可如图1,图2,或M点在平行线外侧.
28.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD. 证明:
26.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.
27.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.
28.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.
29.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.
30.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.
31.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.
第二篇:平行线的判定和性质练习题
平行线的判定定理和性质定理
[一]、平行线的判定
一、填空
1.如图1,若A=3,则∥;若2=E,则∥; 若+= 180°,则∥.c d A a E a 52 23 b B b C A B图4 图3 图1 图2
2.若a⊥c,b⊥c,则ab.
3.如图2,写出一个能判定直线l1∥l2的条件:.
4.在四边形ABCD中,∠A +∠B = 180°,则∥().
5.如图3,若∠1 +∠2 = 180°,则∥。
6.如图4,∠
1、∠
2、∠
3、∠
4、∠5中,同位角有;内错角有;同旁内角有.
7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()
A D Dl1 14 5 3l2 C B C
图7 图5 图6
8.如图6,尽可能多地写出直线l1∥l2的条件:.
9.如图7,尽可能地写出能判定AB∥CD的条件来:.
10.如图8,推理填空:
(1)∵∠A =∠(已知),A
∴AC∥ED();
(2)∵∠2 =∠(已知),2∴AC∥ED();(3)∵∠A +∠= 180°(已知),B D C
∴AB∥FD(); 图8(4)∵∠2 +∠= 180°(已知),∴AC∥ED();
二、解答下列各题
11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF. DF
B图9(第1页,共3页)
第三篇:平行线的性质和判定练习题
1.如图:已知:AD⊥BC于D,EF⊥BC于F,∠1=∠3,求证 :AD平分∠BAC。
2.已知:如图5, DE∥BC,CD是∠ACB的平分线,∠B=700,∠ACB=500.求∠BDC的度数.A
E D
B C图
53.如图,台球运动中,如果母球P击中边点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹.那么母球P经过的路线BC与PA一定平行.请说明理由.
4.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)
5.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE
6.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。
7.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。
8.已知:如图,,且.求证:EC∥DF.9.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由. AE F2
3B D C
图10
10.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.
E
MB A 1PN C D 2Q F图11
11.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。
求证:GH∥MN。
12.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。
13.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。
第四篇:七年级平行线的判定与性质练习题
平行线的判定与性质练习2013.3一、选择题
1.下列命题中,不正确的是____[]
A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
C.两条直线被第三条直线所截,那么这两条直线平行
D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行
2.如图,可以得到DE∥BC的条件是
______[]
(2题)(3题)(5题)
A.∠ACB=∠BACB.∠ABC+∠BAE=180°C.∠ACB+∠BAD=180°D.∠ACB=∠BAD
3.如图,直线a、b被直线c所截,现给出下列四个条件:
(1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[]
A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)
4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[]
A.第一次向右拐40°,第二次向左拐40°B.第一次向右拐50°,第二次向左拐130°
C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°
5.如图,如果∠1=∠2,那么下面结论正确的是_________.[]
A.AD∥BCB.AB∥CDC.∠3=∠4D.∠A=∠C
6.如图,a∥b,a、b被c所截,得到∠1=∠2的依据是()
A.两直线平行,同位角相等B.两直线平行,内错角相等
C.同位角相等,两直线平行D.内错角相等,两直线平行
(6题)(8题)(9题)
7.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()
A.互相垂直B.互相平行C.相交D.无法确定
8.如图,AB∥CD,那么()
A.∠1=∠4B.∠1=∠3C.∠2=∠3D.∠1=∠
59.如图,在平行四边形ABCD中,下列各式不一定正确的是()
A.∠1+∠2=180°B.∠2+∠3=180°
C.∠3+∠4=180°D.∠2+∠4=180°
10.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()
A.30°B.60°C.90°D.120°
(10题)(11题)
二、填空题
11.如图,由下列条件可判定哪两条直线平行,并说明根据.
(1)∠1=∠2,________________________.(2)∠A=∠3,________________________.(3)∠ABC+∠C=180°,________________________.
12.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.
13.同垂直于一条直线的两条直线________.
14.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________.
(14题)(15题)
15.如图,AB∥EF,BC∥DE,则∠E+∠B的度数为________.
三、解答题
16.已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD.17.已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.
18.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.
19.已知:如图,FA⊥AC,EB⊥AC,垂足分别为A、B,且∠BED+∠D=180°. 求证:AF∥CD.
20.如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
21.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.
23.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
24.如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=•∠5,•延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.
25.(开放题)已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.
答案:CBDABABDDB7.(1)AD∥BC内错角相等,两直线平行(2)AD∥BC同位角相等,两直线平行(3)AB∥DC同旁内角互补,两直线平行8.平行9.平行10.平行∵∠EHD=180°-∠2=180°-120°=60°,∠1=60°,∴∠1=∠EHD,∴AB∥CD(同位角相等,两直线平行).8.证明:∵∠AMB=∠DMN,又∠ENF=∠AMB,∴∠DMN=∠ENF,∴BD∥CE.∴∠BDE+∠DEC=180°.
又∠BDE=∠BCN,∴∠BCN+∠CED=180°,∴BC∥DE,∴∠CAF=∠AFD.
点拨:本题重点是考查两直线平行的判定与性质.21.解:∠C=150°.
理由:如答图,过点B作BE∥AD,则∠ABE=∠A=120°(两直线平行,内错角相等).∴∠CBE=∠ABC-∠ABE=150°-120°=30°.
∵BE∥AD,CF∥AD,∴BE∥CF(平行于同一条直线的两直线平行).
∴∠C+∠CBE=180°(两直线平行,同旁内角互补).
∴∠C=180°-∠CBE=180°-30°=150°.
22.解:(1)如答图5-3-2,过点C作CF∥AB,则∠1=180°-∠B=180°-135°=45°(两直线平行,同旁内角互补).
∵CF∥AB,DE∥AB,∴CF∥DE(平行于同一条直线的两直线平行).
∴∠2=∠180°-∠D=180°-145°=35°(两直线平行,同旁内角互补).∴∠BCD=∠1+∠2=45°+35°=80°.
(2)∠B+∠C+∠D=360°.
理由:如答图5-3-2过点C作CF∥AB,得∠B+∠1=180°(两直线平行,补).
∵CF∥AB,DE∥AB,∴CF∥DE(平行于同一条直线的两直线平行).
∴∠D+∠2=180°(两直线平行,同旁内角互补).
∴∠B+∠1+∠2+∠D=360°.
即∠B+∠BCD+∠D=360°.
点拨:辅助线CF是联系AB与DE的纽带.
23.(1)B(2)C
24.解:∠AMG=∠3.
理由:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).
∵∠3=∠4,∴CD∥EF(内错角相等,两直线平行).
∴AB∥EF(平行于同一条直线的两直线平行).
∴∠AMG=∠5(两直线平行,同位角相等).
又∠5=∠3,∴∠AMG=∠3.
点拨:因为∠3=∠5,所以欲证∠AMG=∠3,只要证AM∥EF即可.
25.解:∠A=∠C,∠B=∠D.
理由:∵AD∥BC,AB∥CD,∴∠A+∠B=180°(两直线平行,同旁内角互补).
∠C+∠B=180°.∴∠A=∠C. 同理∠B=∠D.•同旁内角互
第五篇:平行线的性质和判定证明练习题
1.已知如图,∠BMD=∠BAC, ∠1=∠2,EF⊥BC,求证:AD⊥BC
2.已知如图,AC⊥BC,CD⊥AB,FG⊥AB, ∠1=∠2,求证:
3.已知如图,∠1=∠2,∠C=∠F,求证∠A=∠D
DE⊥AC
4.已知如图, AD⊥BC, EF⊥BC,∠1=∠2,求证:DG∥BA
5.已知如图,AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED
6.已知如图,DB∥FG∥EC, ∠ABD=60°,∠ACE=36°,AP是∠BAC的平分线,求∠PAG的度数