安徽省黄山市2017-2018学年度八年级下期中数学试卷(解析版)

时间:2019-05-14 11:42:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《安徽省黄山市2017-2018学年度八年级下期中数学试卷(解析版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《安徽省黄山市2017-2018学年度八年级下期中数学试卷(解析版)》。

第一篇:安徽省黄山市2017-2018学年度八年级下期中数学试卷(解析版)

四中八年级2018年期中测试

一、选择题

1、下列各代数式中不论为何值均成立的是:()

A.B.C.D.2、下列各代数式中是最简二次根式的是:()

A.B.C.D.3、下列各代数式化简后是同类二次根式的是:()

A.4、化简 和 B.- 和

C.和 D.和的结果是:()

A.1

B.2x-3

C.3

D.3-2x

5、下面哪个特征是矩形、菱形、正方形所共有的()

A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角线相等且平分

6、如图: 在□是()

中,是

延长线上的一点,若,则的度数A.45º

B.55º

C.65º

D.75º

7、菱形32,则中,对角线AC,BD相交于点的长度是(),为边的中点,菱形的周长为

A.3

B.4

C.5

D.6

8、三个边长分别为2、4、6的正方形如图摆放,则阴影部分面积为:()

A.18

B.20

C.22

D.24

9、如图:□的周长为24,的周长为()

相交于点,交

于点,则

A.8

B.10 C.12

D.16

10、如图:将边长为6的正方形纸片边中点处,点落在点处,折痕为

折叠,使点,则线段

落在的长是()

A.2

B.二、填空题

11、代数式

12、若:

13、如图:在所有平行四边形

C.3

D.在实数范围有意义,则x的范围是______________,则

中,中,,,点

在上,以

为对角线的的最小值是_________________(18、化简:

19、如图:□ABCD中,积

20、已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.

求证:四边形ABCD为平行四边形.

÷

对角线,求的面

21、如图:点交(1)求证:

22、如图1,图2,图3,图4均为的正方形网格,每个小正方形的顶点称为格点。按要求画图: 的长度。(2)若正方形的边长为1,求是正方形

对角线

上一点,并且,过点

作于点。

每个小正方形的边长均为1,图中均有线段

24、由课本62页练习可知,三角形三条中线交于一点,并且该交点把每条中线分成部分。如图1:△ABC三边中线AD,BE,CF交于O点,OA=2OD,OB=2OE,OC=2OF 阅读:我们把两条中线互相垂直的三角形称为“中垂三角形”。例如图

2、图

3、图4中,是

特例探索:(1)如图2,当

如图3,当出来,并利用图4证明你发现的关系式。

拓展应用:如图5,□ABCD中,点,求

两的中线。

垂足为,像这样的三角形均为“中垂三角形”。设

时,时,_______,_______,________; ________;

归纳证明:(2)请你观察(1)中的计算结果,猜想

分别是的长。

三者之间的关系,用等式表示的中点,解析

一、选择题

1、试题解析: 【分析】

本题考查了分式有意义的条件和二次根式有意义的条件的知识点,解题关键点是熟练掌握任意一个数的偶次方或绝对值都是非负数.根据分式有意义的条件和二次根式有意义的条件对各选项进行逐一分析即可. 【解答】 解:A.当a≠0时,B.当a≥0时,C.当任意数时,D.当a≠0,有意义,故本选项错误;

有意义,故本选项错误;

有意义,故本选项正确; 有意义,故本选项错误.故选C.2、试题解析: 【分析】

本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.根据最简二次根式的定义,可得答案.【解答】 解:A.B.C.,被开方数含开得尽的因数,故A错误;,被开方数不含开的尽的因数或因式,被开方数不含分母,故B正确;,被开方数含有分母,故C错误;

D.故选B.,被开方数可进行分母有理化,故D错误.3、试题解析: 【分析】

本题考查的是同类二次根式有关知识,利用同类二次根式的定义进行判断即可.【解答】

解:A.不是同类二次根式,B.不是同类二次根式,C.不是同类二次根式,D.是同类二次根式.故选D.4、试题解析: 【分析】

本题主要考查了二次根式的非负性、二次根式的化简的知识点,解题关键点是熟练掌握这些计算法则.先利用二次根式的非负性得出x≤1,从得可知x-2≤-1,再进行化简,即可解答.【解答】 解:∵1-x≥0,∴x≤1,∴x-2≤-1,∴原式=-(x-2)-(1-x)=-x+2-1+x =1.故选A.5、试题解析: 【分析】

本题考查矩形、菱形、正方形的性质,熟记这些性质才能熟练做题.矩形、菱形、正方形都是特殊的平行四边形,共有的性质就是平行四边形的性质.【解答】

解:矩形、菱形、正方形共有的性质是对角线互相平分.故选C.6、试题解析: 【分析】

本题考查平行四边形的性质、邻补角定义等知识,解题的关键是熟练掌握平行四边形性质,属于基础题,中考常考题型.根据平行四边形对角相等,求出∠BCD,再根据邻补角的定义求出∠MCD即可.【解答】

解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠MCD=180°-∠DCB=180°-135°=45°.故选A.7、试题解析: 【分析】

本题考查了菱形的性质和三角形中位线的性质,解答本题的关键掌握菱形四条边都相等,对角线互相垂直且平分的性质.先根据菱形ABCD的周长为24,求出边长AB,然后根据H为AD边中点,可得OH=【解答】

解:∵菱形ABCD的周长为32,∴AB=32÷4=8,∵H为AD边中点,O为BD的中点,∴OH=AB=4.AB,即可求解.

故选B.8、试题解析:

【分析】

本题考查了正方形的性质和三角形的面积的知识点,解答本题的关键是掌握正方形的面积的求法,得出阴影部分的面积=三个正方形的面积-一个三角形的面积.根据图示可得,阴影部分的面积=三个正方形的面积-一个三角形的面积,列出算式计算,即可解答.【解答】 解:=4+16+36-36

=20.故选B.9、试题解析: 【分析】

此题考查了平行四边形的性质以及线段垂直平分线的性质的知识点,注意得到OE是线段BD的垂直平分线是关键

由平行四边形ABCD的周长为20cm,可求得AB+AD=10cm,OB=OD,又由EO⊥BD,可得OE是线段BD的垂直平分线,即可证得BE=DE,继而可得△ABE的周长=AB+AD. 【解答】

解:∵平行四边形ABCD的周长为24,∴OB=OD,AB+AD=12,∵EO⊥BD,∴BE=DE,∴△ABE的周长=AB+AE+BE=AB+AE+DE=AB+AD=12.故选C.10、试题解析: 【分析】

本题考查折叠的性质和勾股定理的知识点,找到相应的直角三角形利用勾股定理求解是解决本题的关键.

根据△AEF是直角三角形利用勾股定理求解即可.【解答】

解:由折叠可得DF=EF,设AF=x,则EF=6-x,∵∴,,再把,进行计算,即可解答.把a=0,b=2,c=-2代入故答案为64;,得=64,13、平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.

∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=,∴DE=2OD=3,故答案为3;

14、如图,连接AC、BD交于点E,∵四边形ABCD是菱形,∴AC⊥BD,AE=CE=AC,BE=DE=

BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AC=4,∴点C的坐标为(4,4),故答案为(4,4);

15、∵正方形AEFB和正方形ACHG的面积分别为9和16,∴AB=3,AC=4, ∴BC=

=5,∵A'A∥B'B,A'A∥BC,AB∥A'B',AC∥A'B,∴四边形A'ABB'和四边形A'ACB是平行四边形,∴A'A=B'B=BC=5,∴B'C=2B'B=10,∴正方形B'MNC的面积=B'C×B'M=10×10=100,故答案为100;

16、∵AB=∴即∴==12,故答案为12.,AC=5,AD⊥BC,,,三、解答题

17、正确答案: 解:原式==.18、正确答案: 解:原式==.19、正确答案:

解:∵四边形ABCD是平行四边形,AC=6,BD=8,∴AO=CO=∵AB=5,∴∴,AC=3,BO=DO=

BD=4,∴△AOB是直角三角形,∴试题解析:

=24.此题主要考查了勾股定理的逆定理、平行四边形的性质和三角形的面积的知识点,求出△AOB是直角三角形是解题关键.先利用平行四边形的性质得出AO=CO=3,BO=DO=4,再利用勾股定理逆定理判定△AOB是直角三角形,再利用20、正确答案: 证明:∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形. 试题解析:

首先证明△AEB≌△CFD可得AB=CD,再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.

此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.

21、正确答案:(1)证明:连接FD,列出算式,即可解答.∵四边形ABCD是正方形,∴AB=DC=BC=AD,∠A=∠ABC=∠C=∠ADC=90°,∵EF⊥BD,∴∠FED=∠FEB=90°,∴∠A=∠FED,在Rt△AFD与Rt△EFD中,,.(3)如图3,△ABC为所求以AB为腰的等腰直角三角形;(4)如图4,四边形ABCD为以AB为一边的正方形.试题解析:

本题考查了作图-应用与设计作图、勾股定理、三角形的作法、正方形的性质、等腰三角形的性质、直角三角形的性质的知识点,熟记勾股定理,等腰三角形的性质以及正方形的性质是解题的关键所在.(1)根据勾股定理,结合网格结构,作出两腰长为,底长为4的等腰三角形即可;

(2)根据勾股定理,结合网格结构,作出两腰长为5,底长为的等腰三角形即可;

(3)根据勾股定理逆定理,结合网格结构,作出两腰长为,斜边长为5的等腰三角形即可;

(4)根据勾股定理逆定理,结合网格结构,作出边长为的正方形.23、正确答案:

证明:(1)∵EH平分∠BEF,∴∠FEH=∠BEF,∵FH平分∠DFE,∴∠EFH=∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=

×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠GEF=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;

(2)由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证□MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证 GE=FH、∠GME=∠FQH,故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.试题解析:

此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH是矩形;

(2)利用菱形的判定方法首先得出要证□MNQP是菱形,只要证MN=NQ,再证∠MGE=∠QFH得出即可.24、正确答案: 解:(1)3,连接EF,ABP=α,AP=csinα,PB=ccosα,由(1)同理可得,PF=

PA=,PE=,,如图设∠∴(2)猜想:∴,∴∴;,(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,⊥EG,⊥AC,边形ABCD是平行四边形,∥BC,AD=BC=EAH=∠FCH,分别是AD,BC的中点,

∵BE∴BE∵四∴AD∴∠∵E,F,∴AE=AD,BF=AD=BC,∴AE=BF=CF=∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=3,AP=PF,在△AEH和△CFH中,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:∴∴AF=4.试题解析: 【分析】

本题考查了相似三角形的判定和性质、全等三角形的判定和性质、三角形中位线的性质、勾股定理、锐角三角函数的知识点,注意类比思想在本题中的应用.(1)由等腰直角三角形的性质得到AP=BP=∥AB,EF=AB=

AB=2,根据三角形中位线的性质,得到EF,,再由勾股定理得到结果;

(2)连接EF,设∠ABP=α,类比着(1)即可证得结论;

(3)连接AC交EF于H,设BE与AF的交点为P,由点E、G分别是AD,CD的中点,得到EG是△ACD的中位线于是证出BE⊥AC,由四边形ABCD是平行四边形,得到AD∥BC,AD=BC=,∠EAH=∠FCH根据E,F分别是AD,BC的中点,得到AE=BF=CF=

AD=,证出四边形ABFE是平行四边形,证得EH=FH,推出EH,AH分别是△AFE的中线,由(2)的结论得即可得到结果.【解答】

解:(1)∵AF⊥BE,∠ABE=45°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=45°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF=,∴AC=BC=,∴a=b=,如图2,连接EF,EF=×4=2,∴△PEF~△ABP,中,ABP=30°,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=,b=,故答案为,,;

(2)见答案;(3)见答案.

同理可得:∵EF∥AB,∴

在Rt△ABPAB=4,∠∴AP=2,PB=

第二篇:安徽省黄山市粮食局

安徽省黄山市粮食局

黄粮办函[2010]5号

关于报送2010年

粮食工作目标考核自查报告的通知

各区县粮食局:

根据《黄山市粮食工作目标考核暂行办法》,市局将对各区县2010年粮食工作目标完成情况进行考核。请各区县局对照《考核暂行办法》和《2010年全市粮食目标任务考核细则》(黄粮办〔2010〕59号),认真自查全年粮食工作完成情况,实事求是自评计分,写出书面自查报告,表彰加分项目的,需附上加分依据,于2010年元月10日前报市局办公室。

附:《2010年全市粮食目标任务考核测评表》

黄山市粮食局

2010年12月14日

2010全市粮食目标任务考核测评表

责任单位:

第三篇:八年级数学试卷

八年级数学试卷

考试时间:120分钟 试卷满分:120分 编辑人:丁济亮

一、选择题(每小题3分,共30分)

21、若分式有意义,则x的取值范围是„„„„„„„„„„„„„„()x

1A.x≠1B.x>1C.x=1D.x<12、若x=5是分式方程

A.12m的根,则m的值为„„„„„„„„„„()x3x1B.2C.3D.

43、已知双曲线ym1的图象与直线yx没有交点,那么m的取值范围是()x

A.m>1B.m<1C.m>0D.m<0

004、如图,∠C=90,AB=12,BC=3,CD=4,当AD=()时,∠ABD=90。„„()

A.10B.13C.8D.1

1A

E

B第4题 第7题

5、实验证明,人体内某种细胞的形状可以近似地看作球,它的直径约为0.00000156m,则这个数用科学计数法表示为„„„„„„„„„„„„„„„„„„„„()

A.0.156106、对于函数y6B.0.156105C.1.5610 6 D.1.5610 63,下列判断错误的是„„„„„„„„„„„„„„„„()x

A.图象经过点(-3,1)B.图象在第二、四象限

C.图象所在的每个象限,y随x增大而增大D.不论x为何值时,总有y<0

07、如图,已知Rt△ABC中,∠C=90,AC=6,BC=8,点D在BC上,将△ABC沿着AD折叠至

△AED的位置,使点E落在AB上,则AD的长为„„„„„„„„„„„„()

A.6B.7C.8D.358、在同一直角坐标系中,函数

yk(k≠0)与

ykxk(k≠0)的图象大致是()

A. B. C. D.

9、植树节期间,武汉二中广雅中学初二年级甲、乙两班学生参加植树造林活动,已知甲班

每天比乙班多植5棵,甲班植树80棵用的时间与乙班植70棵树用的时间相等,若设甲班每天植树x棵,则依题意列出方程是„„„„„„„„„„„„„„„()A.

8070

x5x

B.

8070xx

5C.

8070

x5x

D.

8070 xx510、在面积为122的平行四边形ABCD中,AB=CD=4,AD=BC=6,过点A作AE垂直于直线

BC于点E,作AF垂直于直线CD于点F,则CE+CF的值为„„„„„„„()A.1052B.1052C.1052或1052D.1052或2

2二、填空题(每小题3分,共18分)

1

11、_______________

2

x2

112、分式的值为0,则x的值为________________

xx113、已知一直角三角形的两边长为3、4,则这个三角形的第三边的长度为___________

14、观察下面一组数:5,7,11,19,35,67,„„则这组数中的第8个数是_________

33315、已知一定质量的二氧化碳的密度ρ(kg/m)与体积V(m)成反比例关系,且当V=3.3m

3时,ρ=3kg/m;若要求二氧化碳的密度不超过1.5kg/m,则体积V的变化范围是_______

16、如图,双曲线y

k

经过Rt△OAB的斜边上的点M,与直角边AB交于点N,已知OM=2AM,x

△OMN的面积为5,则

k=___________

三、解答题(共72分)

x3

31

17、(本题6分)解方程: x22x

3x21

18、(本题6分)先化简1,再选一个恰当的x值代入并求值。

x2x

219、(本题6分)如图,台风过后,某希望小学的旗杆在离地某处折断,旗杆顶部落在离旗

杆底部8m处,已知旗杆总长16m,你能求出旗杆在离底什么位置折断吗?请说明理由。

20、(本题7分)公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”,小明利用此定律,要制作一个杠杆撬动一块大石头,已知阻力和阻力臂不变,分别为1200N和0.5m。(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5m时,撬动石头至少要多大的力?(2)若想使动力F不超过(1)题中所用力的一半,则动力臂至少要加长多少?

21、(本题7分)如图正方形网格中,每个小方格的边长为1,请完成:(1)从A点出发画线段AB、AC、BC,使AB=,AC=22,BC=,且使B、C两点也在格点上;

(2)请求出图中你所画的△ABC的面积。

0022、(本题8分)如图△ABC中,∠ABC=45,D为BC上一点,∠ADC=60,且有CD=2BD,AE

⊥BC于点E,CF⊥AD于点F,AE、CF相交于点M。

(1)求证:DF=MF;

(2)若BC=3,求线段EM的长。F

B CD E23、(本题10分)为了预防春季流感,尤其是对H7N9禽流感的防控,学校计划利用周末将

教室及公共环境进行“药熏消毒”,现有甲、乙两人准备承接该工作,若甲、乙合做

6小时可以完成全部工作;若甲单独做4小时后,剩下的乙单独做还需9小时完成。(1)求甲、乙两人单独完成该工作各需多少小时?

(2)若学校需付给甲每小时工钱30元,付给乙每小时工钱40元,要使完成该工作时支付

工钱不超过480元,乙最多工作多少小时?

24、(本题6分)四边形ABCD为正方形(四边相等,四角为直角),点P为直线DC上一点,连接AP作等腰Rt△APQ,AP⊥AQ(其中A、P、Q按逆时针排列),直线CQ交直线AD于M点。

(1)如图①,点P在DC边上时,线段DM和CP之间是否存在某种确定的数量关系?写出你的结论并证明;

(2)如图②,点P在DC的延长线上时,其他条件不变,(1)中的结论是否仍然成立:证明

你的结论;

(3)如图③,点P在CD的延长线上时,其他条件不变,(1)中的结论是否仍然成立?请你

完成图③,并直接写出你的结论,不需要证明。Q

P

D

P C

P

图③ 图① 图②

25、(本题12分)如图,P(1,n)为反比例函数y

m

(x>0)图象上一点,过P点的直x

线ykx3k与x轴负半轴交于A点,与y轴正半轴交于点C,且S△AOP=3。(1)求一次函数与反比例函数的解析式;

(2)作PB⊥x轴于B点,过P点的直线l分别与x轴正半轴、y轴正半轴交于M、N两点,是否存在这样的直线l,使得△MON与△ABP全等?若存在,请求出直线l的解析式;若不存在,请说明理由;

(3)如图,直线yx2分别与x轴、y轴交于C、D两点,Q为反比例函数y

m

(x>0)x

图象上一动点,过Q点作QG⊥x轴于G点,QH⊥y轴于H点,与直线CD分别交于E、F两点,连接OE、OF,当Q点移动时,∠EOF的值是否变化?若改变,求出其变化范围;若不变,试求其度数。

第四篇:2017-2018学年七年级(上)期中数学试卷(解析版)

2016-2017学年七年级(上)期中数学试卷

一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一个选项符合题意)

1.与图中实物图相类似的立体图形按从左至右的顺序依次是()

A.圆柱、圆锥、正方体、长方体 B.圆柱、球、正方体、长方体 C.棱柱、球、正方体、棱柱 D.棱柱、圆锥、棱柱、长方体 2.如果a与﹣3互为相反数,那么a等于()A.3 B.﹣3 C. D.

3.有理数a,b,c在数轴上的位置如图所示,下面结论正确的是()

A.c>a B.>0 C.|a|<|b| D.a﹣c<0 4.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()

A.Φ45.02 B.Φ44.9 C.Φ44.98 D.Φ45.01

5.冬季某天我国三个城市的最高气温分别是﹣11℃,3℃,﹣3℃,它们任意两城市中最大的温差是()A.11℃ B.13℃ C.14℃ D.6℃

第1页(共27页)

6.下列说法中,正确的是()A.B.﹣不是整式 的系数是﹣3,次数是3 C.3是单项式

D.多项式2xy﹣xy是五次二项式 7.如果规定符号“⊗”的意义为a⊗b=A.6 B.﹣6 C. D.2m32n

2,则2⊗(﹣3)的值是()

8.若2xy与﹣5xy是同类项,则|m﹣n|的值是()A.0 B.1 C.7 D.﹣1 9.现有14米长的木材,要做成一个如图所示的窗户,若窗户横档的长度为a米,则窗户中能射进阳光的部分的面积(窗框面积忽略不计)是()

A.a(7﹣a)米 B.a(7﹣a)米 C.a(14﹣a)米 D.a(7﹣3a)米

10.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如下图所示,请判断搭成此展台共需这样的正方体()2

222

A.5个 B.4个 C.6个 D.3个

11.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①

第2页(共27页)

②③④某一位置,所组成的图形不能围成正方体的位置是()

A.① B.② C.③ D.④

12.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()

A.3 B.6 C.4 D.2

二、填空题(共6小题,每题3分,共18分)

13.笔尖在纸上快速滑动写出英文字母C,这说明了 . 14.如果|a﹣1|+(b+2)=0,则(a+b)

22016的值是 .

15.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回 元(用含a的代数式表示).

16.据民政部网站消息,截至2014年底,我国60岁以上老年人口已经达到2.12亿,其中2.12亿用科学记数法表示为 .

17.已知代数式x﹣4x﹣2的值为3,则代数式2x﹣8x﹣5的值为 . 18.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第8个图案用多少根火柴棒 .

第3页(共27页)

三.解答题(共8小题,满分66分.)

19.计算:解答应写出文字说明、证明过程或演算步骤)(1)12﹣(﹣18)+(﹣12)﹣15(2)(﹣3)×(﹣9)﹣8×(﹣5)(3)(﹣)×1÷(﹣1)(4)﹣1+(﹣2)×(﹣)﹣(﹣3)

43220.

请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)

(2)999×118+999×(﹣)﹣999×18.

21.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:(1)求所挡的二次三项式;

(2)若x=﹣1,求所挡的二次三项式的值.

22.如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm;如图②中,从正面看有3个正方形,表面积为18cm;如图③,从正面看有6个正方形,表面积为36cm;…

第4页(共27页)

222

+3(x﹣1)=x﹣5x+1

(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?

23.某地电话拨号上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.05元/分; 第二种是包月制,69元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通讯费0.02元/分.(1)若小明家今年三月份上网的时间为x小时,请你分别写出两种收费方式下小明家应该支付的费用;

(2)若小明估计自家一个月内上网的时间为20小时,你认为采用哪种方式较为合算?

24.刚上中学的小颖,星期天到爸爸单位参观,发现一位叔叔在检验一批同一包装的产品时,对抽取的5件产品分别称重,记录如下:﹣1,﹣2,+3,+1,+2(单位为千克)

(1)如果产品说明书注明每件产品标准质量是a千克,则根据你所学知识,叔叔记录的“+2”表示什么意思?

(2)如果每件产品标准质量是a千克,则这5件产品称重的总质量是多少?市场上该产品售价是每千克n元,则抽取的这5件产品总价多少?(均用代数式表示)

(3)小颖通过叔叔了解到该产品标准质量a=100千克,市场上这种产品售价是n=15元每千克,则抽取的这5件产品总价多少元?

第5页(共27页)

25.在下列横线上用含有a,b的代数式表示相应图形的面积.

① ; ② ; ③ ; ④ .

(2)通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表示: ;

(3)利用(2)的结论计算99+2×99×1+1的值.

26.陈老师和学生做一个猜数游戏,他让学生按照以下步骤进行计算: ①任想一个两位数a,把a乘以2,再加上9,把所得的和再乘以2; ②把a乘以2,再加上30,把所得的和除以2;

③把①所得的结果减去②所得的结果,这个差即为最后的结果. 陈老师说:只要你告诉我最后的结果,我就能猜出你最初想的两位数a. 学生周晓晓计算的结果是96,陈老师立即猜出周晓晓最初想的两位数是31. 请:

(1)用含a的式子表示游戏的过程;

(2)学生小明计算的结果是120,你能猜出他最初想的两位数是多少吗?(3)请用自己的语言解释陈老师猜数的方法.

第6页(共27页)

2016-2017学年河北省保定市竞秀区七年级(上)期中数学试卷

参考答案与试题解析

一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一个选项符合题意)

1.与图中实物图相类似的立体图形按从左至右的顺序依次是()

A.圆柱、圆锥、正方体、长方体 B.圆柱、球、正方体、长方体 C.棱柱、球、正方体、棱柱 D.棱柱、圆锥、棱柱、长方体 【考点】认识立体图形.

【分析】根据常见实物与几何体的关系解答即可.

【解答】解:与图中实物图相类似的立体图形按从左至右的顺序依次是圆柱、球、正方体、长方体. 故选B.

【点评】本题考查了认识立体图形,熟练掌握实物与立体图形之间的联系是解题的关键.

2.如果a与﹣3互为相反数,那么a等于()A.3 B.﹣3 C. D.【考点】相反数.

第7页(共27页)

【分析】根据相反数的性质进行解答.

【解答】解:由题意,得:a+(﹣3)=0,解得a=3. 故选A.

【点评】主要考查相反数的性质:互为相反数的两个数相加等于0.

3.有理数a,b,c在数轴上的位置如图所示,下面结论正确的是()

A.c>a B.>0 C.|a|<|b| D.a﹣c<0 【考点】绝对值;数轴.

【分析】根据各个数在数轴上的位置,得到相应的大小关系,比较各个选项,得到结论正确的选项即可.

【解答】解:A、由数轴可得c<a,故A错误; B、观察数轴可得<0,故错误; C、观察数轴可得|a|<|b|,故正确; D、观察数轴可得a﹣c>0,故错误; 故选C.

【点评】考查有理数的大小比较;把相关数标到数轴上,根据右边的数总比左边的数进行比较,是常用的解题方法.

4.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()

第8页(共27页)

A.Φ45.02 B.Φ44.9 C.Φ44.98 D.Φ45.01 【考点】正数和负数.

【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.

【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤5.03. ∵44.9不在该范围之内,∴不合格的是B. 故选:B.

【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.

5.冬季某天我国三个城市的最高气温分别是﹣11℃,3℃,﹣3℃,它们任意两城市中最大的温差是()A.11℃ B.13℃ C.14℃ D.6℃ 【考点】有理数的减法.

【分析】首先确定最高气温为3℃,最低气温﹣11℃,再计算3﹣(﹣11). 【解答】解:由题意得:3﹣(﹣11)=3+11=14,故选:C.

【点评】此题主要考查了有理数的减法,关键是掌握有理数减法法则:减

第9页(共27页)

去一个数,等于加上这个数的相反数.

6.下列说法中,正确的是()A.B.﹣不是整式 的系数是﹣3,次数是3 C.3是单项式

D.多项式2xy﹣xy是五次二项式 【考点】整式;单项式;多项式.

【分析】利用单项式、多项式及整式的定义判定即可. 【解答】解:A、是整式,错误; B、﹣的系数是﹣,次数是3,错误; 2C、3是单项式,正确;

D、多项式2xy﹣xy是三次二项式,错误; 故选C 【点评】本题主要考查了单项式、多项式及整式,解题的关键是熟记单项式、多项式及整式的定义.

7.如果规定符号“⊗”的意义为a⊗b=A.6 B.﹣6 C. D.【考点】有理数的混合运算. 【专题】新定义.

【分析】按照规定的运算方法改为有理数的混合运算计算即可.

第10页(共27页)

2,则2⊗(﹣3)的值是()

【解答】解:2⊗(﹣3)=故选:A.

=6.

【点评】此题考查有理数的混合运算,掌握规定的运算方法,利用有理数混合运算的计算方法计算即可.

8.若2xy与﹣5xy是同类项,则|m﹣n|的值是()A.0 B.1 C.7 D.﹣1 【考点】同类项.

【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.

【解答】解:∵2xy与﹣5xy是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1. 故选:B.

【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.

9.现有14米长的木材,要做成一个如图所示的窗户,若窗户横档的长度为a米,则窗户中能射进阳光的部分的面积(窗框面积忽略不计)是()

A.a(7﹣a)米 B.a(7﹣a)米 C.a(14﹣a)米 D.a(7﹣3a)

第11页(共27页)

222m

32n2m32n

【考点】列代数式.

【分析】若窗户横档的长度为a米,则竖档的长度为(14﹣3a)米,根据长方形的面积公式可得:窗户中能射进阳光的部分的面积=窗户横档的长度×竖档的长度,代入数值即可求解.

【解答】解:若窗户横档的长度为a米,则竖档的长度为(14﹣3a)=(7﹣a)米,所以窗户中能射进阳光的部分的面积=a(7﹣a)米. 故选B.

【点评】此题考查了列代数式,解决问题的关键是读懂题意,掌握图形周长的意义以及长方形的面积公式.

10.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如下图所示,请判断搭成此展台共需这样的正方体()

2A.5个 B.4个 C.6个 D.3个 【考点】由三视图判断几何体.

【分析】根据题目中的三视图可以得到这个展台有几个正方体组成,从而可以解答本题.

【解答】解:由三视图可知,第12页(共27页)

这个展台前面第一排一个正方体,后面三个,左面竖直两个,右面一个,故选B.

【点评】本题考查由三视图判断几何体,解题的关键是明确题意,找出所求问题需要的条件.

11.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()

A.① B.② C.③ D.④ 【考点】展开图折叠成几何体.

【分析】由平面图形的折叠及正方体的表面展开图的特点解题. 【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.

【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.

12.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()

第13页(共27页)

A.3 B.6 C.4 D.2 【考点】代数式求值. 【专题】图表型.

【分析】由48为偶数,将x=48代入x计算得到结果为24,再代入x计算得到结果为12,依此类推得到结果为6,将x=6代入x计算得到结果为3,将x=3代入x+5计算得到结果为8,依次计算得到结果为4,将x=4代入x计算得到结果为2,归纳总结得到一般性规律,即可确定抽2017次输出的结果.

【解答】解:根据运算程序得到:除去前两个结果24,12,剩下的以6,3,8,4,2,1循环,∵(2017﹣2)÷6=335…5,则第2017次输出的结果为2,故选:D.

【点评】此题考查了代数式求值,弄清题中的规律是解本题的关键.

二、填空题(共6小题,每题3分,共18分)

13.笔尖在纸上快速滑动写出英文字母C,这说明了 点动成线 . 【考点】点、线、面、体.

【分析】线是由无数点组成,字是由线组成的,所以点动成线; 【解答】解:笔尖在纸上快速滑动写出英文字母C,这说明了点动成线;

第14页(共27页)

故答案为:点动成线

【点评】本题考查点,面,线,体的构成,关键是根据点动成线,线动成面,面动成体解答.

14.如果|a﹣1|+(b+2)=0,则(a+b)

22016的值是 1 .

【考点】非负数的性质:偶次方;非负数的性质:绝对值.

【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.

【解答】解:由题意得,a﹣1=0,b+2=0,解得,a=1,b=﹣2,则(a+b)2016=1,故答案为:1.

【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.

15.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回(50﹣3a)元(用含a的代数式表示). 【考点】列代数式.

【分析】利用单价×质量=应付的钱;用50元减去应付的钱等于剩余的钱即为应找回的钱.

【解答】解:∵购买这种售价是每千克a元的水果3千克需3a元,∴根据题意,应找回(50﹣3a)元.

第15页(共27页)

故答案为:(50﹣3a).

【点评】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.

16.据民政部网站消息,截至2014年底,我国60岁以上老年人口已经达到2.12亿,其中2.12亿用科学记数法表示为 2.12×10 . 【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【解答】解:2.12亿=212000000=2.12×10,故答案为:2.12×10.

【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

17.已知代数式x﹣4x﹣2的值为3,则代数式2x﹣8x﹣5的值为 5 . 【考点】代数式求值. 【专题】计算题.

【分析】根据题意求出x﹣4x的值,原式前两项提取2变形后,将x﹣4x的值代入计算即可求出值.

第16页(共27页)

22n8

8n

8【解答】解:∵x﹣4x﹣2=3,即x﹣4x=5,∴原式=2(x﹣4x)﹣5=10﹣5=5. 故答案为:5.

【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.

18.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第8个图案用多少根火柴棒 33 .

【考点】规律型:图形的变化类.

【分析】注意认真观察图形,根据图形很容易发现规律,找到通项公式后代入即可求解.

【解答】解:第一个图需要5根.第二个图需要9根.比第一个图多4根. 依此类推,第n个图中需要5+4(n﹣1)=4n+1. 当n=8时,4n+1=4×8+1=33,故答案为:33.

【点评】此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是每个图案都比上一个图案多一个五边形,但只增加4根火柴.

第17页(共27页)

222

三.解答题(共8小题,满分66分.)

19.(12分)(2016秋•新市区校级期中)计算:解答应写出文字说明、证明过程或演算步骤)

(1)12﹣(﹣18)+(﹣12)﹣15(2)(﹣3)×(﹣9)﹣8×(﹣5)(3)(﹣)×1÷(﹣1)(4)﹣14+(﹣2)3×(﹣)﹣(﹣

32)【考点】有理数的混合运算.

【分析】(1)根据加法交换律和结合律计算;(2)先算乘法,再算减法;

(3)将除法变为乘法,再约分计算即可求解;

(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算 【解答】解:(1)12﹣(﹣18)+(﹣12)﹣15 =(12﹣12)+(18﹣15)=0+3 =3;

(2)(﹣3)×(﹣9)﹣8×(﹣5)=27+40 =67;

(3)(﹣)×1÷(﹣1)=(﹣)××(﹣)

第18页(共27页)

=;

(4)﹣1+(﹣2)×(﹣)﹣(﹣3)=﹣1+(﹣8)×(﹣)﹣(﹣9)=﹣1+4+9 =12.

【点评】此题考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.规律方法:有理数混合运算的四种运算技巧 1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. 2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. 3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算. 4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.

220.

请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)

(2)999×118+999×(﹣)﹣999×18. 【考点】有理数的混合运算.

第19页(共27页)

【分析】(1)将式子变形为(1000﹣1)×(﹣15),再根据乘法分配律计算即可求解;

(2)根据乘法分配律计算即可求解. 【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15 =﹣15000+15 =﹣14985;

(2)999×118+999×(﹣)﹣999×18 =999×(118﹣﹣18)=999×100 =99900 【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.

21.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:(1)求所挡的二次三项式;

(2)若x=﹣1,求所挡的二次三项式的值. 【考点】整式的加减.

第20页(共27页)

+3(x﹣1)=x﹣5x+1

2【专题】计算题;整式.

【分析】(1)根据题意确定出所挡的二次三项式即可;(2)把x的值代入计算即可求出值.

【解答】解:(1)所挡的二次三项式为x﹣5x+1﹣3(x﹣1)=x﹣5x+1﹣3x+3=x﹣8x+4;

(2)当x=﹣1时,原式=1+8+4=13.

【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.

22.如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm;如图②中,从正面看有3个正方形,表面积为18cm;如图③,从正面看有6个正方形,表面积为36cm;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少? 2

【考点】规律型:图形的变化类;几何体的表面积.

【分析】(1)由题意知,第4个图共有1+3+6+10=20个,从正面看有10个正方形,第5个图共有1+3+6+10+15=35个,从正面看有15个正方形,即可推出第6个图形的正方体和正面看到的正方形个数;

(2)由题意知,从正面看有(1+2+3+4+…+n)个正方形,即可得出其表面积.

第21页(共27页)

【解答】解:(1)由题意可知,第6个图中,从正面看有1+2+3+4+5+6=21个正方形,表面积为:21×6=126cm;

(2)由题意知,从正面看到的正方形个数有(1+2+3+4+…+n)=表面积为:×6=3n(n+1)cm.

个,【点评】本题主要考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.

23.某地电话拨号上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.05元/分; 第二种是包月制,69元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通讯费0.02元/分.(1)若小明家今年三月份上网的时间为x小时,请你分别写出两种收费方式下小明家应该支付的费用;

(2)若小明估计自家一个月内上网的时间为20小时,你认为采用哪种方式较为合算?

【考点】列代数式;代数式求值.

【分析】(1)首先统一时间单位,(第一种)计时制:每分钟(0.05+0.02)元×时间=花费;(第二种)包月制:69元+每分钟0.02元×时间=花费;(2)把x=20代入(1)中的代数式计算出花费,进行比较即可. 【解答】解:(1)采用计时制应付的费用为:0.05x×60+0.02x×60=4.2x元,采用包月制应付的费用为:69+0.02x×60=(69+1.2x)元

第22页(共27页)

(2)若一个月内上网的时间为20小时,则计时制应付的费用为4.2×20=84(元)包月制应付的费用69+1.2×20=93(元)∵84<93,∴采用计时制合算.

【点评】此题主要考查了列代数式,并比较哪种花费便宜的问题,关键是弄清题意列出式子.

24.刚上中学的小颖,星期天到爸爸单位参观,发现一位叔叔在检验一批同一包装的产品时,对抽取的5件产品分别称重,记录如下:﹣1,﹣2,+3,+1,+2(单位为千克)

(1)如果产品说明书注明每件产品标准质量是a千克,则根据你所学知识,叔叔记录的“+2”表示什么意思?

(2)如果每件产品标准质量是a千克,则这5件产品称重的总质量是多少?市场上该产品售价是每千克n元,则抽取的这5件产品总价多少?(均用代数式表示)

(3)小颖通过叔叔了解到该产品标准质量a=100千克,市场上这种产品售价是n=15元每千克,则抽取的这5件产品总价多少元? 【考点】列代数式;正数和负数;代数式求值. 【分析】(1)根据正负数的意义解答即可;

(2)求得5件产品的标准质量和,再加上超出或不足的质量即可,进一步利用单价×数量算出这5件产品总价;

第23页(共27页)

(3)把数值代入(2)中的代数式求得答案即可. 【解答】解:(1)“+2”表示超过标准质量2千克

(2)这5件产品称重的总质量是5a﹣1﹣2+3+1+2=5a+3(千克),抽取的这5件产品总价(5a+3)n元;(3)当a=100千克,n=15元时,抽取的这5件产品总价(5×100+3)×15=7545元.

【点评】此题考查列代数式,代数式求值,理解正负数的意义,掌握基本数量关系是解决问题的关键.

25.(1)在下列横线上用含有a,b的代数式表示相应图形的面积.

① a ; ② 2ab ; ③ b ; ④(a+b).(2)通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表示: a+2ab+b=(a+b);(3)利用(2)的结论计算99+2×99×1+1的值. 【考点】列代数式;代数式求值. 【专题】探究型.

【分析】(1)根据图形可以求得各个图形的面积;

(2)通过观察可以得到前三个图形的面积与第四个图形面积之间的关系,从而可以用式子进行表示;

第24页(共27页)

2222

(3)根据问题(2)发现的结论可以得到99+2×99×1+1的值. 【解答】解:(1)由图可得,图①的面积是:a;图②的面积是:ab+ab=2ab;图③的面积是:b;图④的面积是:(a+b)(a+b)=(a+b); 故答案为:①a;②2ab;③b;④(a+b);

(2)通过拼图,前三个图形的面积与第四个图形面积之间的关系是前三个图形的面积之和等于第四个图形的面积,用数学式子表示是:a+2ab+b=(a+b);

(3)99+2×99×1+1 =(99+1)=100 =10000.

【点评】本题考查列代数式和代数式求值,解题的关键是明确题意,列出正确的代数式,会求代数式的值.

26.陈老师和学生做一个猜数游戏,他让学生按照以下步骤进行计算: ①任想一个两位数a,把a乘以2,再加上9,把所得的和再乘以2; ②把a乘以2,再加上30,把所得的和除以2;

③把①所得的结果减去②所得的结果,这个差即为最后的结果. 陈老师说:只要你告诉我最后的结果,我就能猜出你最初想的两位数a. 学生周晓晓计算的结果是96,陈老师立即猜出周晓晓最初想的两位数是31. 请:

第25页(共27页)

2222

(1)用含a的式子表示游戏的过程;

(2)学生小明计算的结果是120,你能猜出他最初想的两位数是多少吗?(3)请用自己的语言解释陈老师猜数的方法.

【考点】一元一次方程的应用;列代数式;整式的加减. 【分析】(1)根据①②步骤列出代数式,做差后即可得出结论;(2)结合(1)可知3a+3=120,解之即可得出结论;(3)根据最后结果为3a+3,写出求a的过程即可.

【解答】解:(1)由题意可知,第①步运算的结果为:2(2a+9)=4a+18; 第②步运算的结果为:(2a+30)=a+15; 第③步运算的为:(4a+18)﹣(a+15)=3a+3.(2)∵最后结果为120,∴3a+3=120,解得:a=39.

答:小明最初想的两位数是39.

(3)陈老师猜数的方法是:将学生所得的最后结果减去3,再除以3. 【点评】本题考查了一元一次方程的应用以及列代数,根据数量关系列出代数式(或一元一次方程)是解题的关键.

第26页(共27页)

第27页(共27页)

第五篇:八年级下(数学组)期中考试数学试卷分析

八年级下(数学组)期中考试数学试卷分析

八年级下(数学组)期中考试数学试卷分析

一:知识考点分布

内容

选择题

填空题

解答题

百分比

二次根式

1,2,3 11

16,20 25%

一元二次方程

4,61 12

17,21 25%

勾股定理

7,10,14,15,18,22 22%

四边形

5,8,9,13,14

18,19,22 28%

二:试卷的重点难点与考纲对比分析

二次根式的概念的考查是重点。难点是最简二次根式考查,利用二次根式的性质进行有关四则运算是中考考点把握很准。一元二次方程考察了根的判别式和列一元二次方程解决实际问题这样的重要知识,但是根与系数的关系,课标没做要求(如试卷第12题5分)应该删除。另外考卷中的22题(10分),明显考查分母有理化,这各知识点教材没提,考纲也早就删除了,应该删除。勾股定理这一章,重点是定理和逆定理的应用,涉及到有计算,有化简,更多的是活学活用。如试卷中的第7,第15,第18,22都涉及到该知识的应用,计算能力的考查,可能会作为今后考试的重点考察的一个方面,需要提醒学生特别注意。平行四边形这一章本次考试只考察前两节,可分值占到了30分左右,应该说考察的比较重视,平行四边形的性质和判定是中考的重点,试卷中的14题19题,22题考察的都非常到位,尤其是22题最后一问,能勾够看出优秀学生的优秀品质。

三:试卷的总体评价及反思

试卷的总体感受是一张高质量的试题,能够考查到学生各方面的能力,知识点的把握也很准确,与课标吻合,适合我校学生能力层次水平,第20题要用到分母有理化,平时在这个技巧性题目中训练的较少,课标和教材上都没有题这个方法,勉强把它归纳到二次根式的加减乘除的混合运算中。今后的教学中,这类擦边半球的题目,教学中也可适时渗透一点,不至于让学生碰到这样的题目感到陌生。特别反思的是22题,在期中考中,学生还在对基本知识,基本方法掌握还不够灵活的情况下,考察面积法来解决问题,也仅仅是部分优秀的学生才答上来。特别优秀的学生反而花很成时间,浪费在这个题目上,也不一定做出来。因为这个题目整张试卷中没有任何小题目可以搭这个台阶,学生需要灵光一现的思考方式,好似神来之笔带来惊喜。做出来的同学很兴奋,很得意。没做出来的同学,听后很失落,如此奇葩的一问,让他们追悔莫及。这就要求我们老师在平时的教学中,要渗透一些面积法解决问题的典型例题,要引导学生求异思维,没有思路,或走进死胡同时,要学会掉头,学会暂时的放放,确保会做的题全部拿到分后,在考虑该题的解法突破。另外对于似曾相识的题目,要防止定势思维,这是学习数学最可怕的失分点,所以教学时老师选题要求题目不在多,在乎精。让变式教学在平时的教学中多多呈现。注重考后学生的及时总结,及时反思,及时补缺补差。告诉没考好的学生,没考好也是一件好事,他是我们下一次进步的最佳契机,是帮我们对知识体系的构建的检查,学习习惯的差异进行比较,考试策略的实施效果的一次全方位检验。从解答题的知识点考查来看,每个题目考察的比较单一,没有综合性的考查,比如至少一个大题能够融合这四章所涉及的知识点。

四:解决问题的具体措施

(1)优生的培养加强专题的是渗透。

(2)错题的收集整理,进行指导,落实,检查到位。

(3)后进生的补缺补差需要抓反复,反复抓,多鼓励,少批评,多辅导,少要求,多实效,少说教。

(4)考试的心态,策略,技巧的总结和反思进行必要的交流。

(5)让优生进行学习和听课习惯方法的指导,听听进步的后进生的心声,给予最大程度的鼓励和帮扶。

通过以上数据分析,各班的三率都在不断变化,显示各班都在进行“比,学,赶,帮,超”各位老师都很勤奋,学生都很努力。相信我们四位老师一定会精诚合作,齐头并进。目前我们组工作的现状及存在的问题分析,各位老师工作现状,上午上过新课,整个下午都在批改改作业,钻研业务的时间只有留在放学后的家里,若有公开课或业务活动,这么多作业就要再寻时间,所以学生减负,老师才能减负。希望我们组在确保学生成绩的同时,照顾还自己,别太累着,工作着,充实着,快乐着!备课组的工作在“严实精细”仍需下很大功夫。

今后我们会加强备课组合作和落实,由于我们组其她三位老师都没有带过毕业班,没有相关的经验,而我虽然有些经验,但也不足以让她们完全借鉴,我们都在摸索中前进,鼓励她们有多大劲,出多大力,让优秀的人更加优秀,没有更多的条条框框,因为教学工作的要求的越细,越不利于教师的成长。互相学习,取别人之长,补自己之短,共同提高。

我承诺:在中考到来时,我会带领数学组越来越好。平时稳扎稳打,按部就班,看重分数,不太过分强调分数。注重学生的学习过程,看淡考试的结果,不断调整自己的教学计划,让教与学更加科学,更加高效。

下载安徽省黄山市2017-2018学年度八年级下期中数学试卷(解析版)word格式文档
下载安徽省黄山市2017-2018学年度八年级下期中数学试卷(解析版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2014~2015学年度第一学期期中质量检查八年级数学试卷(精)

    2014~2015学年度第一学期期中质量检查八年级数学试卷 (考试时间:100分钟 总分:120分 一、选择题:(每小题3分,共30分 1、下列说法:(1能够完全重合的图形,叫做全等形;(2全等三......

    八年级下册期中数学试卷分析Microsoft Word 文档

    八年级下册数学期中试卷分析 博爱县许良中学刘晓霞 2013-2014学年度第二学期期中考试已经结束,通过查漏补缺,总结经验,寻找不足,为进一步改进今后的教学,大面积的提高数学教学质......

    安徽省合肥市四十五中2017-2018学年八年级下期中物理试题(无答案)(范文大全)

    合肥四十五中2017/2018学年度第二学期期中考试 八年级物理试题卷 注意事项: 1.本卷共四大题23小题,满分100分;试卷共分试题卷和答题卷两部分,请在答题卷上答题,试题卷上答题......

    2011学年八年级下期中测试政治

    2011---2012学年下期期中测验一、单项选择题(在下列各题的四个选项中,只有一个是最符合题意的,请将正确答案填在下列表格内。每小题1分,共16分。) 1.在我国,____________是国家的......

    八年级(下)语文期中测试卷

    八年级(下)语文期中测试卷 (2014.4) 温馨提示: 1.全卷共四大题,25小题,满分为120分,其中卷面书写5分。考试时间为120分钟。 2.各题的答案必须用黑色字迹钢笔或签字笔写在答题卷的相应位......

    八年级下思想品德期中试卷

    八年级下学期期中测试 思 想 品 德 (总分:100分 时间:120分钟) 一、单项选择(每题2共40分) 1、 下列人员不属于中国公民的是 ( ) A具有中国国籍,正在监狱服刑但被剥夺了政治权利的......

    八年级英语下期中复习

    10年后,我想我将是个记者。我将居住在上海,因为我去年去过上海并爱上了它。我认为它的确是个美丽的城市。作为一名记者,我认为我将会遇到很多有趣的人。我认为我将会和我最好的......

    八年级(下)期中语文试卷

    八年级(下)期中语文试卷 (友情提示:本卷满分100分,其中包含卷面5分,120分钟完 老师寄语:有付出必有回报。半学期的刻苦努力,你会惊奇地发现你有多棒:学习自信,见解独特,想象丰富……请......