2018年经数高数下模拟题2(合集五篇)

时间:2019-05-14 13:42:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018年经数高数下模拟题2》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018年经数高数下模拟题2》。

第一篇:2018年经数高数下模拟题2

高等数学下经数模拟题二

一、选择题30分

x2y2

1、曲线491绕y轴旋转而成的旋转曲面的方程为()

z02、函数f(x,y)x2y2在点(0,0)处()。(A)不连续

(B)可微

(C)连续,偏导数不存在(D)不连续,偏导数存在

3、设Ix(esinyztanx2)dv,则I()。2x2y2z2a24、设L是由yx,y0,x1所围成区域的正向边界,则L(x2y)dx(5x2y)dy()。

5、下列级数中条件收敛的级数是()

A.n1B.n1(1)C.n2n1n1

D.(1)2nn1nn1(1)nn1

6、x2y2z29,xz1的交线在XOY坐标面上的投影方程().7、由二重积分的几何意义知

2xy211x2y2dxdy()。

8、极限limtanxy=()。

x2yy09、二阶常系数线性齐次微分方程y"4y'4y0的通解为()。

10、设函数zf(x,y)在点(0,0)的某邻域内有定义,且。fx(0,0)3,fy(0,0)1,则有()

A.dz|(0,0)3dxdy, B.曲面zf(x,y)在(0,0,f(0,0))个法向量为(3,-1,1),zf(x,y)C.曲线在(0,0,f(0,0))点的一个切向量为(1,0,3),y0zf(x,y)D.曲线在(0,0,f(0,0))点的一个切向量为(3,0,1).y0

二、填空题15分

1、极限lim2xy4=()。

x0xyy0xeD22、设D是由圆心在原点、半径为1的圆周所围的区域,则()。

y2dxdy=

3、三元函数uln(x2y2z2)在点M(1,2,2)处的梯度向量graduM为()。

4、设L是由直线y2x,y2和x0所围成的三角形区域边界,则Lxyds=()。

2225、设为xya的柱面在z0到z5的部分,则

(x2y2)dS=()。

6、交换积分次序:10。dxf(x,y)dy=()

xx

1三、求解一阶线性非齐次微分方程y'ye的通解。(6分)

22xy

四、设zf(xy,e)其中f是可导函数,则

zz,。(6分)xyxyz

五、设方程xyze确定了函数zz(x,y),求全微分。(8分)

六、曲面xxy8xz50在点M2,3,1处的切平面及法线方程。(8分)2

(1)n1(x2)n

七、求幂级数的收敛域。(8分)

nn1

八、验证2xydxx2dy在整个xOy平面内为某一函数的全微分,并求一个这样的函数u(x,y)。(9分)

九、教材134,19(10分)

第二篇:高数(下)复习要点

高等数学(下)复习要点

(对经管及文科类学生不要求带“*”的内容)

第七章

1、空间曲线在坐标面的投影,P8,例5,P9,92、向量的模、方向角、方向余弦、单位化,P19,例7,P20,10.。

3、数量积、向量积。P27,84、平面方程、平面夹角,点到平面的距离。P35,3..5、空间直线及方程。P41,10

*

6、旋转曲面P43,例2.第八章

*

1、二元函数极限不存在的证明P54,例7.2、求二元函数的极限P58, 5(2),(4),P56,例93、偏导计算。P80,例9,P82,14(2),P88,2(4),P89,7,8*(4)

4、全微分。P74,2。4(2)。

*5熟悉可微,可导,连续和极限存在之间的关系。P74(B)16、几何应用。P94例3.7、方向导数与梯度P100例4.8、条件极值P111,7.第九章

1、二重积分计算。P124例3,P133 4(4),8(2),P134,13(1)

2、曲面面积。P141,3.*

3、三重积分。P151,4(2)。

4、曲线积分。P166,1(6),3(2)。

5、格林公式,,与路径无关的条件。P176,3(4),5(2)。*

6、曲面积分。P188,1(1),5(1)。

*

7、高斯公式。P194,1(4)。

第十章

1、收敛级数性质。

2、正项级数敛散性的判别。P211,2(8),3(6)。

3、交错级数敛散性的判别。P211,5(4)

4、幂级数的收敛半径和收敛域。P221,1(5),2(3)

*

5、求和函数。P222,3(1),(3)。

*

6、展开为幂级数。P236,2(6)

*

7、傅里叶级数。P250,4

第三篇:高数下公式总结

高等数学下册公式总结

1、N维空间中两点之间的距离公式:p(x1,x2,...,xn),Q(y1,y2,...,yn)的距离

PQ(x1y1)2(x2y2)2...(xnyn)2

2、多元函数zf(x,y)求偏导时,对谁求偏导,就意味着其它的变量都暂时

看作常量。比如,就可以了。z表示对x求偏导,计算时把y 当作常量,只对x求导 x2z2z3、二阶混合偏导数在偏导数连续的条件下与求导次序无关,即。xyyx4、多元函数zf(x,y)的全微分公式: dzzzdxdy。xy5、复合函数zf(u,v),u(t),v(t),其导数公式:

dzzduzdv。dtudtvdtFXdy,Fy分别表示对x,y

6、隐函数F(x,y)=0的求导公式:,其中FxdXFy求偏导数。

方程组的情形:{F(x,y,u,v)0的各个偏导数是: G(x,y,u,v)0FFxvGGuvxv,xxFFuvGGuvFFuxGGuux,yFFuvGGuvFFyvGGyvFFuvGGuv,v。yFFuvGGuvFFyuGGuy7、曲线的参数方程是:x(t),y(t),z(t),则该曲线过点

M(x0,y0,z0)的法平面方程是:

(t0)(xx0)(t0)(yy0)(t0)(zz0)0

切线方程是:(xx0)(yy0)(zz0)。(t0)(t0)(t0)

8、曲面方程F(x,y,z)=0在点M(x0,y0,z0)处的 法线方程是:(xx0)(yy0)(zz0),FxFyFz(xx0)Fy(yy0)Fz(zz0)0。切平面方程是:Fx9、求多元函数z=f(x , y)极值步骤:

第一步:求出函数对x , y 的偏导数,并求出各个偏导数为零时的对应的x,y的值 第二步:求出fxx(x0,y0)A,fxy(x0,y0)B,fyy(x0,y0)C

第三步:判断AC-B2的符号,若AC-B2大于零,则存在极值,且当A小于零是极大值,当A大于零是极小值;若AC-B2小于零则无极值;若AC-B2等于零则无法判断

10、二重积分的性质:(1)(2)(3)kf(x,y)dkf(x,y)d

DD[f(x,y)g(x,y)]df(x,y)dg(x,y)d

DDDDD1D2f(x,y)df(x,y)df(x,y)d

(4)若f(x,y)g(x,y),则(5)

f(x,y)dg(x,y)d

DDds,其中s为积分区域D的面积

D(6)mf(x,y)M,则ms(7)积分中值定理:

f(x,y)dMs

Df(x,y)dsf(,),其中(,)是区域D中的点

DdP2(y)

11、双重积分总可以化简为二次积分(先对y,后对x的积分或先对x,后对y的积分形式)bP2(x)f(x,y)ddxDaP1(x)f(x,y)dydycP1(y)f(x,y)dx,有的积分可以随意选择积分次序,但是做题的复杂性会出现不同,这时选择积分次序就比较重要,主要依据通过积分区域和被积函数来确定

12、双重积分转化为二次积分进行运算时,对谁积分,就把另外的变量都看成常量,可以按照求一元函数定积分的方法进行求解,包括凑微分、换元、分步等方法

13、曲线、曲面积分:

(1)对弧长的曲线积分的计算方法:设函数f(x,y)在曲线弧L上有定义且连续,L的参数方程为x(t)y(t),(t),则

Lf(x,y)dsf[(t),(t)]2(t)2(t)dt

(2)格林公式:(DQP)dxdyPdxQdy xyLL

14、向量的加法与数乘运算:a(x1,y1,z1),b(x2,y2,z2),则有ka(kx1,ky1,kz1),xyzab(x1x2,y1y2,z1z2),若ab,则111

x2y2z2

15、向量的模、数量积、向量积:若a(x1,y1,z1),b(x2,y2,z2),则向量a的模长222ax1y1z1;数量积(向量之间可以交换顺序,其结果是一个数值)ab=

bax1x2y1y2z1z2=baabcosa,b,其中a,b表示向量b,a的夹角,且若ab,则有ab=0;向量积(向量之间不可以交换顺序,其结果仍是一个向量)ijkabx1y1z1(y1z2y2z1)i(x2z1x1z2)j(x1y2x2y1)k,其中i,j,k是x轴、x2y2z2y轴、z轴的方向向量

16、常数项无穷级数unu1u2u3...un...,令snu1u2u3...un称为无n1穷级数的部分和,若limsns,则称改级数收敛,否则称其为发散的。其中关于无穷级数x的一个必要非充分地定理是:若un收敛,则必有limun0

n1x

17、三种特殊的无穷级数:(1)调和级数1是发散的,无须证明就可以直接引用 n1nn(2)几何级数aq,当q1时收敛,当q1时发散

n1(3)p级数1,当p1时收敛,当p1时发散 pn1nn118、正项级数un的判敛方法:

(1)比较判敛法:若存在两个正项级数un,vn,且有vnun,若un收敛,则vn收

n1n1敛;若vn发散,则un发散

(2)比较判敛法的极限形式:若limunl,(l0),则un和vn具有相同的敛散性

xvnun1l,若l1,则原级数收敛,若l1,则原级

xun(3)比值判敛法:对于un,limn1数发散

19、交错级数(1)n1n1un的判敛方法:同时满足unun1及limun0,则级数收敛,否

x则原级数发散

20、绝对收敛和条件收敛:对于un,若un收敛,则称其绝对收敛;若un发散,n1n

1n1



但是un收敛,则称其条件收敛

n1

21、函数项无穷级数形如:un(x)u1(x)u2(x)u3(x)...un(x)...,通常讨论的是

n1幂级数形如:anxa0a1xa2xa3x...anx...,n0n23n(1)收敛半径及收敛区间:liman11,则收敛半径R,收敛区间则为(R,R),但

xan是要注意的是,收敛区间的端点是否收敛需要用常数项级数判敛方法验证

(2n1)xnn-1x(2)几种常见函数的幂级数展开式:e,sinx,(-1)n0n!n1(2n1)!x11x2nnx,(1)nxn,cosx(1)n01xn0(2n)!1xn0n22、常微分方程的类型及解题方法:

(1)可分离变量的微分方程:yf(x,y),总是可以分离变量化简为式,然后等式两边同时积分,即可求出所需的解

(2)齐次方程:yf(x,y),不同的是,等式右端的式子总是可以化简为f()的形式,令

dydx的形f(y)f(x)yxyu,则原方程化简为可分离变量方程形式uxuf(u)来求解 x(3)一阶线性微分方程:形如yp(x)yf(x)的方程,求解时首先求出该方程对应的齐次方程yp(x)y0的解ycQ(x),然后使用常熟变易法,令cu(x),把原方程的解yu(x)Q(x)带入原方程,求出u(x),再带入yu(x)Q(x)中,即求出所需的解

(4)全微分方程:形如p(x,y)dxQ(x,y)dy0的方程,只要满足

xyp(x,y)Q(x,y),yx则称其为全微分方程,其解为u0p(x,y)dxQ(x,y)dy

0(5)二阶微分方程的可降阶的三种微分方程:

第一种:yf(x)的形式,只需对方程连续两次积分就可以求出方程的解

第二种:yf(x,y)的形式,首先令yz,则原方程降阶为可分离变量的一阶微分方程zf(x,z)的形式,继续求解即可

第三种:yf(y,y)的形式,同样令yz,由于yzdzdzdydzy,所以dxdydxdy原方程转化为一阶微分方程

dzzf(y,z)的形式,继续求解即可 dy(6)二阶常系数齐次微分方程:ypyqy0,求解时首先求出该方程对应的特征方

r1x程r2prq0的解r1,r2,若实根rc2er2x;若实根r1r2,则解1r2,则解为yc1e为y(c1c2x)e1;若为虚根abi,则解为yeax(c1cosbxc2sinbx)

rx(8)二阶常系数非齐次微分方程:ypyqyPm(x)e,求解时先按(7)的方法求其rx对应的齐次微分方程的通解y1,然后设出原方程的特解y=xQm(x)erx,其中Qm(x)是和P含有相应的未知系数,而k根据特征方程的解r1,r2与r的关系取值,m(x)同次的多项式,若r与特征根不相等,则k取0;若r和一个特征根相等,则k取1;若r和特征根都相等,则k取2,将特解代入原方程求出相应的未知系数,最终原方程的解即通解加上特解,即

kyy1y

第四篇:高数下知识点总结

总结是社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料。下面是小编为大家带来的高数下知识点总结,希望能够帮到大家!

初中数学知识点全总结(一)

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① ②

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:或;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n , 当n为正偶数时:(-a)n =an 或(a-b)n=(b-a)n.14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

初中数学知识点全总结(二)

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

通过本章学习,应使学生达到以下学习目标:

1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

初中数学知识点全总结(三)

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤:整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 ……(检验方程的解).4.列一元一次方程解应用题:

(1)读题分析法:………… 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:

(1)行程问题: 距离=速度·时间;

(2)工程问题: 工作量=工效·工时;

(3)比率问题: 部分=全体·比率;

(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题: 售价=定价·折·,利润=售价-成本,;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥= πR2h.本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

初中数学知识点全总结(四)

一、知识框架

本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.二、本章书涉及的数学思想:

1.分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。

2.方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

3.图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。

4.化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。

七年级数学(下)知识点

人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。

初中数学知识点全总结(五)

1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

4.平行线:在同一平面内,不相交的两条直线叫做平行线。

5.同位角、内错角、同旁内角:

同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

6.命题:判断一件事情的语句叫命题。

7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

9.定理与性质

对顶角的性质:对顶角相等。

10垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

12.平行线的性质:

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

13.平行线的判定:

判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。

初中数学知识点全总结(六)

1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)

2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。

初中数学知识点全总结(七)

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

7.多边形的内角:多边形相邻两边组成的角叫做它的内角。

8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

12.公式与性质

三角形的内角和:三角形的内角和为180°

三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

多边形内角和公式:n边形的内角和等于(n-2)·180°

多边形的外角和:多边形的内角和为360°。

多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

(2)n边形共有条对角线。

三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。

初中数学知识点全总结(八)

1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法.重点:二元一次方程组的解法,列二元一次方程组解决实际问题.难点:二元一次方程组解决实际问题

初中数学知识点全总结(九)

1.用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。

7.定理与性质

不等式的性质:

不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。

初中数学知识点全总结(十)

1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。

4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。

6.样本容量:样本中个体的数目称为样本容量。

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

8.频率:频数与数据总数的比为频率。

9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

第五篇:高数证明1+1=2

1+1为什么等于2?这个问题看似简单却又奇妙无比。在现代的精密科学中,特别在数学和数理逻辑中,广泛地运用着公理法。什么叫公理法呢?从某一科学的许多原理中,分出一部分最基本的概念和命题,对这些基本概念不下定义,而这一学科的所有其它概念都必须直接或间接由它们下定义;对这些基本命题(也叫公理)也不给予论证,而这一学科中的所有其它命题却必须直接或间接由它们中推出。这样构成的理论体系就叫公理体系,构成这种公理体系的方法就叫公理法。1+1=2就是数学当中的公理,在数学中是不需要证明的。又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的。至于“1+1为什么等于2?”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理。不过用反证法还是可以证明的:假设1+1不等于2,则数学就是一锅粥,凡是用到数学的地方都是一锅粥,人类社会就乱了套了,所以1+1必须等于2。1+1=2看似简单,却对于人类认识世界有非同寻常的意义。人类认识世界的过程就像一个小孩滚雪球的过程:第一步,小孩先要用双手捧一捧雪,这一捧雪就相当于人类对世界的感性认识。第二步,小孩把手里的雪捏紧,成为一个小雪球,这个小雪球就相当于人类对感性认识进行加工,形成了概念。于是就有了1。第三步,小孩把雪球放在地上,发现雪球可以粘地上的雪,这就相当于人类的理性认识。雪可以粘雪,相当于1+1=2。第四步,小孩把粘了雪的雪球在雪地上滚一下,发现雪球粘雪后越来越大,这就相当于人类认识世界的高级阶段,可以进入良性循环了。相当于2+1=3。1,2,3可以排成一个最简单的数列,但是可以演绎至无穷。有了1只是有了概念,有了1+1=2才有了数学,有了2+1=3才开始了数学的无穷变化。物理学与1+1=2的关系 人类认识世界的过程是一个由感性到理性,有已知到未知的过程。在数学当中已知1、2、3,则可以至于无穷,什么是物理学当中的1、2、3呢?我认为:质量、长度、时间等基本物理概念相当于1,它们是组成物理学宏伟大厦的砖和瓦;牛顿运动定律相当于2,它使我们有了真正的物理学和科学的物理分析方法;力学的相对性原理相当于3,使牛顿运动定律可以广泛应用。在经典物理学中一切都是确定无疑的,有了已知条件,我们就可以推出未知。等到相对论的出现,一切都变了。现在相对论已经深入人心,即便是那些反对相对论的人,也基本上是认可相对论的结论的,什么时间可变、长度可变、质量可变、时空弯曲„„经典物理学认为光速对于不同的观测者是不同的(虽然牛顿是个唯心主义者)。相对论则认为光速对于不同的观测者是不变的(虽然我们是唯物主义者)。我们丢掉了经典物理学所有不变的东西,换来的是相对论唯一不变的东西----光速。我觉得就象是用许多西瓜换来了一个芝麻一样,而且这个芝麻是很抽象的,它在真空中,速度最快,让你根本捉不到、摸不到。我认为牛顿三条运动定律是真理,是完美的,是不容置疑的。质疑牛顿运动定律的人开口闭口说不存在绝对静止的物体,也不存在绝对不受外力的物体,却忘了上学时用的物理教材,开头都有绪论,绪论中都说:一切物质都在永恒不息地运动着,自然界一切现象就是物质运动的表现。运动是物质的存在形式、物质的固有属性„„还提到:抽象方法是根据问题的内容和性质,抓住主要因素,撇开次要的、局部的和偶然的因素,建立一个与实际情况差距不大的理想模型来研究。例如,“质点”和“刚体”都是物体的理想模型。把物体看作质点时,质量和点是主要因素,物体的形状和大小时可以忽略不计的次要因素。把物体看作刚体——形状和大小保持不变的物体时,物体的形状、大小和质量分布时主要因素,物体的变形是可以忽略不计的次要因素。在物理学研究中,这种理想模型是十分必要的。研究机械

运动的规律时,就是从质点运动的规律入手,再研究刚体运动的规律而逐步深入的。有人在故意混淆视听,有人在人云亦云,但听的人自己要想一想,牛顿用抽象的方法来分析问题,是符合马克思主义分析问题抓主要矛盾的指导思想的,否定了牛顿运动定律,我们拿什么来分析相对静止状态、匀速直线运动、自由落体运动„„? 看来相对论不但搞乱了我们的基本概念,还搞乱了我们的分析方法,这才是最危险的,长此以往,物理学将不再是物理学,而是一锅粥,一锅发霉的粥!我认为物理学发展的正确思路是先要从质量、长度、时间、能量、速度等基本物理概念的理解上着手,在物理学界开展一场正名运动,然后讨论牛顿运动定律是否错了,错的话错在哪里,最后相对论的对错也就不言自明了,也容易接受了。

下载2018年经数高数下模拟题2(合集五篇)word格式文档
下载2018年经数高数下模拟题2(合集五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高数下期末考试复习大纲

    高数下期末考试复习大纲 第8章 1.掌握空间向量的基本概念及运算,会求单位向量、向量的方向角及方向余弦 2.会求空间直线的向量方程与参数方程,空间曲线在某点处的切线方程与法......

    高数论文

    高数求极限方法小结 高等数学是近代数学的基础,是现代科学技术中应用最广泛的一门学科。在从初等数学这种静态的数量关系的分析到高等数学这种对动态数量关系的研究这一发......

    高数感悟

    学高数感悟 又是一年开学季,我的大一成了过去式,回想大一学习高数的历程,真是感触颇多。 大一刚开始学习高数时,就发现与高中截然不同了,大学老师一节课讲的内容很多,速度也很快,我......

    高数竞赛(本站推荐)

    高数 说明:请用A4纸大小的本来做下面的题目(阴影部分要学完积分之后才能做)第一章 函数与极限 一、本章主要知识点概述 1、本章重点是函数、极限和连续性概念;函数是高等数学研......

    高数复习提纲

    第一章1、极限(夹逼准则) 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、......

    高数论文[★]

    微积分在信安专业的应用 信安1602班 严 倩 长期以来,微积分都是大学理工专业的基础性学科之一,也是学生普遍感觉难学的内容之一.究其原因,既有微积分自身属于抽象知识的因素,......

    高数学习心得

    《国富论》读书笔记 许骁汉 16社工1班 2016335721004 简介:《国富论》是一本影响力极其巨大的书,不管是在历史学,经济学甚至社会学都留下过浓墨重彩的一笔,所以我也慕名而来观......

    高数心得[精选合集]

    学习高数的心得体会 有人戏称高数是一棵高树,很多人就挂在了上面。但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。 很多人害怕高数,高数学习起来确实是不太轻......