第一篇:MM定理证明过程-MM定理证明过程
无税收条件下的MM定理 1.1 假设条件
假设1:无摩擦市场假设
不考虑税收;
公司发行证券无交易成本和交易费用,投资者不必为买卖证券支付任何费用; 无关联交易存在;
不管举债多少,公司和个人均无破产风险;
产品市场是有效的:市场参与者是绝对理性和自私的;市场机制是完全且完备的;不存在自然垄断、外部性、信息不对称、公共物品等市场失灵状况;不存在帕累托改善;等等;
资本市场强有效:即任何人利用企业内部信息都无法套利,没有无风险套利机会; 投资者可以以企业借贷资金利率相同的利率借入或贷出任意数量的资金。
假设2:一致预期假设
所有的投资者都是绝对理性的,均能得到有关宏观、行业、企业的所有信息,并且对其进行完全理性的前瞻性分析,因此大家对证券价格预期都是相同的,且投资者对组合的预期收益率和风险都按照马克维兹的投资组合理论衡量。
1.2 MM定理第一命题及其推论
MM定理第一命题:
有财务杠杆企业的市场价值和无财务杠杆企业的市场价值相等。
第一命题的含义:
即公司的市场价值(即债权的市场价值+股权的市场价值,不含政府的税收价值)与公司的资本结构无关,而只与其盈利水平有关。这说明未来具有完全相同的盈利能力的公司市场价值相同,但由于其负债程度不同等因素,故它们的净资产可能有很大差异。
MM定理第一命题证明过程:证明方法是无套利均衡分析法。
基础假定:我们假定有两家公司—公司A和公司B,它们的资产性质完全相同但资本结构完全不同。A公司没有负债(这是一种极端假设,但作为比较基准更能说明问题);B公司的负债额度是D,假设该负债具有永久性质,因为可持续盈利的公司总可以用新发行的债券来偿还老债券(这与宏观经济学中的庞兹计划完全不同,那是没有收入来源且信息不对称下导致的终生借债消费计划无效)。细节假设:
B公司当前债务利率为r(固定值);
A、B两公司当前的股本分别是SA和SB(固定值);
A、B两公司当前权益资本预期收益率(即市场的资本化率,也就是其股票的预期收益率)分别是rA和rB(固定数值,因为仅指当前的预期收益率);
A、B两公司任何年份的息税前利润(EBIT)相同,数额都为EBIT(随机变量,每年的数值都是它的一个数据点); A、B两公司当前的市场价值分别记为PVA和PVB(固定值);
A、B两公司当前股票的市场价格与其真实价值完全一致,分别为MPA和MPB(固定值);
A、B两公司当前的股东权益分别记作SEA和SEB(固定值)。
注:假定中固定值较多是因为静态考察公司当前价值。
考虑一个套利策略:卖出A公司1%的股票;同时买入B公司1%的股票和1%的债券(上述比例可任意假定,但必须均为同一值)。这种套利策略产生的即时现金流和未来每年的现金流见表1。
表1 上述套利策略的现金流
头寸
即时现金流
未来每年现金流
卖出1%A股票
0.01* PVA
-0.01*EBIT
买入1%B股票
-0.01*SB*MPB
0.01*(EBIT-D*r)买入1%B债券
-0.01*D
-0.01* D*r 净现金流
NC
0
首先,任何公司的资产都等于账面的负债加权益,A公司无负债,因此有
PVASEA;PVBDSEB
其次,任何公司的股票价格都等于其股东权益与股本的比值:
MPAPVA/SA;MPB(PVBD)/SB①
再次,市场不应该存在无风险套利机会,故NC=0,也就是
0.01*PVA0.01*SB*MPB0.01*D0 MPB(PVAD)/SB②
由①②推得:PVAPVB③,命题证毕。
MM定理第一命题推论一:
债转股后如果盈利未变,那么企业的股票价格也不变。
证明:假设B公司的债务权益比为k,则:
kD/SEB
1k(SEBD)/SEBPVB/SEBPVA/SEBSA/SB④
将③④代入①得:
MPAPVA/SAPVB/(SB(1k))(DSEB)/(SB(1k))SEB(1k)/(SB(1k))MPB
证毕。
MM定理第一命题推论二:
股东期望收益率会随财务杠杆的上升而上升。
含义:正常情况下B公司在债转股之后会降低其股票的预期收益率,或者说A公司的股票预期收益率小于B公司的股票的预期收益率。
证明:B公司的资产负债率(RDA)和股东权益比率(REA)分别为:
RDABD/PVBD/(DSEB)k/(1k)REABSEB/PVBSEB/(DSE)1/(1k)
由于公司所有税前收益均优先用于分派股息,而且市场有效性保证了股票的价格反映股票价值。则由股票收益现值模型可得A、B两公司的股票预期收益率rA和rB分别满足:
MPAj1EBIT/SA(1rA)jEBITSA*rA
MPBj1(EBITR*D)/SB(1rB)jEBITR*DSB*rB
同时EBIT>r*PVB,因为这表示即使公司全部举债经营,公司产生的税息前收益也足够支付利息,也就是说股票的收益率大于债券的收益率,由于系统风险和预期收益相匹配的结果导致这个不等式必然成立。故可推导出:
rBEBITr*DSEBEBITr*DPVBDEBITPVBEBITPVAEBITSA*MPArA,证毕。
MM定理第一命题推论三:
股东每股盈利也会随着财务杠杆的上升而上升。
含义:正常情况下,债券转为股票之后,公司股东的每股盈利也会下降。证明:A、B两公司每股盈利分别为:
EAEBITSA;EB(EBITR*D)SB⑤
将④代入⑤的第二式得: EB(EBITR*D)SB(1k)(EBITR*D)SAEAk*EBIT(1k)*R*DSA⑥
由于EBIT>r*PVB,再将前面RDAB定义式代入,可以推得:
k*EBIT(1k)*R*D(1k)(k1kEBITR*D)(1k)*D(EBITPVBr)0⑦
由⑥⑦得:EBEA,证毕。
注:数学基础非常少的人有可能会觉得上述三个推论感性理解上有相互矛盾的地方,故须深入思考现实过程。
1.3
MM定理第二命题:
公司加权平均资本成本(WACC)与公司的资本结构无关。
证明:由于公司A仅有股权融资,故WACCArA
WACCBrBSEBPVBrDPVBEBITPVBEBITPVArA①,证毕。MM定理第二命题及其推论
MM定理第二命题推论:
有负债的公司的权益资本成本等于同一风险等级的无负债公司的权益资本成本加上风险补偿,风险补偿的比例因子是负债权益比k。
(是不是和CAPM、多因子模型、套利定价和单证券定价模型有点像啊,呵呵)
证明:由①(重新编号)得:
rBPVBSEBrAr*DSEBrADSEB(rAr)rAk(rAr),证毕。有税收条件下的MM定理 2.1 假设条件
考虑税收,其他假设与前面相同。有税收条件下的MM定理仅一个定理,有四个推论。
2.2
MM定理第一命题:
在考虑税收的情况下,有财务杠杆的企业的市场价值等于无财务杠杆的企业的市场价值加上“税盾”的市场价值。MM定理第一命题及其推论
证明:假定A、B两公司的所得税税率都是T(固定税率制,累进税率制等也一样的),那么两公司的税后收益(EAT)分别为:
EATA(1T)*EBIT
EATB(1T)*(EBITr*D)r*D(1T)*EBITT*r*DEATA,证毕。
其中T*r*D即税盾效应,与A公司税后盈利相比,这是B公司多出来的部分,这是由于B公司的财务杠杆起作用了:公司价值是股权市价加债权市价,A公司每年产生的现金流EBIT都要交所得税,而B公司中EBIT仅有一部分交所得税,故省出一部分价值计入到公司的债权价值中。或者也可以理解为没有负债的公司举债时,政府需要把原来征的税的一部分退给公司的债主,或者说举债成本里T*r是政府买单的(机会成本的角度讲),而公司举债的成本仅是(1T)*r,这是从金融的角度或者说机会成本的角度讲的,就如经济利润和会计利润的差别一样,而证券定价的基准正是从金融的角度给出才能准确。
显然A、B两公司的税前价值仍然一样,相当于不考虑税收。我们用带撇号的字母表示考虑税收的变量,则有税收情况下A、B两公司的市场价值分别为:
PVAPVA(1T)
/EBIT(1T)r*PVB)叫做税盾的市场价值。其中D(1EBITPVBPVB(1T)(1/r*D)DPVAD(1/(1T)r*PVBEBIT)PVA①
/
MM定理第一命题推论一:
在考虑税收情况下,股东的期望收益率仍然会随着财务杠杆的上升而上升。即在考虑税收的情况下,不考虑税收时MM定理的命题一的推论二仍然成立。
证明:考虑税收,A公司股票预期收益率为:
rA/EBIT(1T)SA*MPA/EBIT(1T)PVA/EBIT(1T)(1T)PVArA②
由不考虑税收推论二证明的最后一个公式和①(重新编号)得B公司股票的预期收益率为:
(EBITrD)(1T)rDSB*MP/BrB/(EBITrD)(1T)rDPVD/B(EBITrD)(1T)rDPVA/EBITrDrD(1T)*rD*PVBEBIT1TrDPVA(1)EBIT再由②得:rBrA//rDPVA(1T)(1rDEBIT)③,由于EBIT>rD(盈利足够付利息,保//证不破产),故rBrA,证毕。
MM定理第一命题推论二:
考虑税收情况下,股东的每股收益也仍然会随着财务杠杆的上升而上升,即在考虑税收情况下,不考虑税收MM定理命题一推论三仍然成立。
证明:A、B两公司每股盈利分别为:
EA/(1T)EBITSA;EB/(1T)(EBITrD)rDSB④
将第一部分第一命题推论一下面的④代入④得:
EB/(1k)(1T)(EBITrD)rDSAEA/TrDk(1T)(EBITrD)rDSAEA/
因EBIT>rD,故上不等式成立,证毕。
MM定理第一命题推论三:
在考虑税收情况下,WACC与公司资本结构有关。(证略)
根据CAPM模型,有税收后的贝塔系数/和无税收情况下的贝塔系数的关系为(1(1T)/DSE)(证明从略),由此得出股权预期收益,然后再根据公司计算出WACC,显然WACC是受资本结构影响的。
MM定理第一命题推论四:
在考虑税收情况下,有负债的公司的权益资本成本仍然大于同一风险等级的无负债公司的权益资本成本,风险补偿的形式也更复杂(证明如③)。
注:一个延伸,PV/PV(1(1Tc)(1Ts)1Td)D,Tc表示企业所得税率,Ts表示股票收入的税率,Td表示利息收入的税率,个人可试着证明一下子。MM定理的缺陷
主要是假设不合理导致的缺陷
假设没有破产风险不符合实际。考虑税收的话,按照MM定理所有都是债权融资则公司价值最大化,但考虑到实际的破产风险,杠杆增加降低了融资成本WACC,但增加了公司的破产风险,故存在最优的资本结构使得公司达到价值最大化。 MM定理忽略了交易成本和信息不对称性等,显然不符合事实。 以上仅是两个例子,其他的大家可以想想。
撰写人:小秋
第二篇:MM定理证明过程-MM定理证明过程
无税收条件下的MM定理
1.1 假设条件
假设1:无摩擦市场假设
不考虑税收;
公司发行证券无交易成本和交易费用,投资者不必为买卖证券支付任何费用; 无关联交易存在;
不管举债多少,公司和个人均无破产风险;
产品市场是有效的:市场参与者是绝对理性和自私的;市场机制是完全且完备的;不存在自然垄断、外部性、信息不对称、公共物品等市场失灵状况;不存在帕累托改善;等等;
资本市场强有效:即任何人利用企业内部信息都无法套利,没有无风险套利机会; 投资者可以以企业借贷资金利率相同的利率借入或贷出任意数量的资金。
假设2:一致预期假设
所有的投资者都是绝对理性的,均能得到有关宏观、行业、企业的所有信息,并且对其进行完全理性的前瞻性分析,因此大家对证券价格预期都是相同的,且投资者对组合的预期收益率和风险都按照马克维兹的投资组合理论衡量。
1.2 MM定理第一命题及其推论
MM定理第一命题:
有财务杠杆企业的市场价值和无财务杠杆企业的市场价值相等。
第一命题的含义:
即公司的市场价值(即债权的市场价值+股权的市场价值,不含政府的税收价值)与公司的资本结构无关,而只与其盈利水平有关。这说明未来具有完全相同的盈利能力的公司市场价值相同,但由于其负债程度不同等因素,故它们的净资产可能有很大差异。
MM定理第一命题证明过程:证明方法是无套利均衡分析法。
基础假定:我们假定有两家公司—公司A和公司B,它们的资产性质完全相同但资本结构完全不同。A公司没有负债(这是一种极端假设,但作为比较基准更能说明问题);B公司的负债额度是D,假设该负债具有永久性质,因为可持续盈利的公司总可以用新发行的债券来偿还老债券(这与宏观经济学中的庞兹计划完全不同,那是没有收入来源且信息不对称下导致的终生借债消费计划无效)。
细节假设:
B公司当前债务利率为r(固定值); A、B两公司当前的股本分别是SA和SB(固定值);
A、B两公司当前权益资本预期收益率(即市场的资本化率,也就是其股票的预期收益率)分别是rA和rB(固定数值,因为仅指当前的预期收益率);
A、B两公司任何年份的息税前利润(EBIT)相同,数额都为EBIT(随机变量,每年的数值都是它的一个数据点); A、B两公司当前的市场价值分别记为PVA和PVB(固定值);
A、B两公司当前股票的市场价格与其真实价值完全一致,分别为MPA和MPB(固定值);
A、B两公司当前的股东权益分别记作SEA和SEB(固定值)。
注:假定中固定值较多是因为静态考察公司当前价值。
考虑一个套利策略:卖出A公司1%的股票;同时买入B公司1%的股票和1%的债券(上述比例可任意假定,但必须均为同一值)。这种套利策略产生的即时现金流和未来每年的现金流见表1。
表1 上述套利策略的现金流
头寸
即时现金流
未来每年现金流
卖出1%A股票
0.01* PVA
-0.01*EBIT
买入1%B股票
-0.01*SB*MPB
0.01*(EBIT-D*r)买入1%B债券
-0.01*D
-0.01* D*r 净现金流
NC
0
首先,任何公司的资产都等于账面的负债加权益,A公司无负债,因此有
PVASEA;PVBDSEB
其次,任何公司的股票价格都等于其股东权益与股本的比值:
MPAPVA/SA;MPB(PVBD)/SB①
再次,市场不应该存在无风险套利机会,故NC=0,也就是
0.01*PVA0.01*SB*MPB0.01*D0 MPB(PVAD)/SB②
由①②推得:PVAPVB③,命题证毕。
MM定理第一命题推论一:
债转股后如果盈利未变,那么企业的股票价格也不变。
证明:假设B公司的债务权益比为k,则:
kD/SEB
1k(SEBD)/SEBPVB/SEBPVA/SEBSA/SB④
将③④代入①得:
MPAPVA/SAPVB/(SB(1k))(DSEB)/(SB(1k))SEB(1k)/(SB(1k))MPB
证毕。
MM定理第一命题推论二:
股东期望收益率会随财务杠杆的上升而上升。
含义:正常情况下B公司在债转股之后会降低其股票的预期收益率,或者说A公司的股票预期收益率小于B公司的股票的预期收益率。
证明:B公司的资产负债率(RDA)和股东权益比率(REA)分别为:
RDABD/PVBD/(DSEB)k/(1k)REABSEB/PVBSEB/(DSE)1/(1k)
由于公司所有税前收益均优先用于分派股息,而且市场有效性保证了股票的价格反映股票价值。则由股票收益现值模型可得A、B两公司的股票预期收益率rA和rB分别满足:
MPAEBIT/SAEBIT jSA*rAj1(1rA)(EBITR*D)/SBEBITR*D j(1rB)SB*rBj1MPB同时EBIT>r*PVB,因为这表示即使公司全部举债经营,公司产生的税息前收益也足够支付利息,也就是说股票的收益率大于债券的收益率,由于系统风险和预期收益相匹配的结果导致这个不等式必然成立。故可推导出:
rBEBITr*DEBITr*DEBITEBITEBITrA,证毕。
SEBPVBDPVBPVASA*MPAMM定理第一命题推论三:
股东每股盈利也会随着财务杠杆的上升而上升。
含义:正常情况下,债券转为股票之后,公司股东的每股盈利也会下降。证明:A、B两公司每股盈利分别为:
EAEBIT(EBITR*D);EB⑤ SASB将④代入⑤的第二式得: EB(EBITR*D)(1k)(EBITR*D)k*EBIT(1k)*R*D⑥ EASBSASA由于EBIT>r*PVB,再将前面RDAB定义式代入,可以推得:
kEBITk*EBIT(1k)*R*D(1k)(EBITR*D)(1k)*D(r)0⑦
1kPVB由⑥⑦得:EBEA,证毕。
注:数学基础非常少的人有可能会觉得上述三个推论感性理解上有相互矛盾的地方,故须深入思考现实过程。
1.3
MM定理第二命题:
公司加权平均资本成本(WACC)与公司的资本结构无关。
证明:由于公司A仅有股权融资,故WACCArA MM定理第二命题及其推论
WACCBrBSEBDEBITEBITrrA①,证毕。PVBPVBPVBPVAMM定理第二命题推论:
有负债的公司的权益资本成本等于同一风险等级的无负债公司的权益资本成本加上风险补偿,风险补偿的比例因子是负债权益比k。
(是不是和CAPM、多因子模型、套利定价和单证券定价模型有点像啊,呵呵)
证明:由①(重新编号)得:
rB2 PVBr*DDrArA(rAr)rAk(rAr),证毕。SEBSEBSEB有税收条件下的MM定理 2.1
假设条件
考虑税收,其他假设与前面相同。有税收条件下的MM定理仅一个定理,有四个推论。
2.2 MM定理第一命题及其推论
MM定理第一命题:
在考虑税收的情况下,有财务杠杆的企业的市场价值等于无财务杠杆的企业的市场价值加上“税盾”的市场价值。
证明:假定A、B两公司的所得税税率都是T(固定税率制,累进税率制等也一样的),那么两公司的税后收益(EAT)分别为:
EATA(1T)*EBIT
EATB(1T)*(EBITr*D)r*D(1T)*EBITT*r*DEATA,证毕。
其中T*r*D即税盾效应,与A公司税后盈利相比,这是B公司多出来的部分,这是由于B公司的财务杠杆起作用了:公司价值是股权市价加债权市价,A公司每年产生的现金流EBIT都要交所得税,而B公司中EBIT仅有一部分交所得税,故省出一部分价值计入到公司的债权价值中。或者也可以理解为没有负债的公司举债时,政府需要把原来征的税的一部分退给公司的债主,或者说举债成本里T*r是政府买单的(机会成本的角度讲),而公司举债的成本仅是(1T)*r,这是从金融的角度或者说机会成本的角度讲的,就如经济利润和会计利润的差别一样,而证券定价的基准正是从金融的角度给出才能准确。
显然A、B两公司的税前价值仍然一样,相当于不考虑税收。我们用带撇号的字母表示考虑税收的变量,则有税收情况下A、B两公司的市场价值分别为:
PVA/PVA(1T)
(1T)r*PVBr*D)DPVA/D(1)PVA/① EBITEBIT(1T)r*PVB)叫做税盾的市场价值。其中D(1EBITPVB/PVB(1T)(1
MM定理第一命题推论一:
在考虑税收情况下,股东的期望收益率仍然会随着财务杠杆的上升而上升。即在考虑税收的情况下,不考虑税收时MM定理的命题一的推论二仍然成立。
证明:考虑税收,A公司股票预期收益率为:
/rAEBIT(1T)EBIT(1T)EBIT(1T)rA② //SA*MPAPVA(1T)PVA由不考虑税收推论二证明的最后一个公式和①(重新编号)得B公司股票的预期收益率为:
rD(EBITrD)(1T)rD(EBITrD)(1T)rD(EBITrD)(1T)rD1TrB///(1T)*rD*PVBrDSB*MPBPVBDPVA(1)PVA/EBITEBITEBITrD//再由②得:rBrArDrDPVA(1T)(1)EBIT③,由于EBIT>rD(盈利足够付利息,保//证不破产),故rB,证毕。rA
MM定理第一命题推论二:
考虑税收情况下,股东的每股收益也仍然会随着财务杠杆的上升而上升,即在考虑税收情况下,不考虑税收MM定理命题一推论三仍然成立。
证明:A、B两公司每股盈利分别为:
/EA(1T)EBIT/(1T)(EBITrD)rD④;EBSASB将第一部分第一命题推论一下面的④代入④得:
/EB(1k)(1T)(EBITrD)rDSA/EATrDk(1T)(EBITrD)rDSA/EA
因EBIT>rD,故上不等式成立,证毕。
MM定理第一命题推论三:
在考虑税收情况下,WACC与公司资本结构有关。(证略)
根据CAPM模型,有税收后的贝塔系数/和无税收情况下的贝塔系数的关系为/(1(1T)D)(证明从略),由此得出股权预期收益,然后再根据公司计算出SEWACC,显然WACC是受资本结构影响的。MM定理第一命题推论四:
在考虑税收情况下,有负债的公司的权益资本成本仍然大于同一风险等级的无负债公司的权益资本成本,风险补偿的形式也更复杂(证明如③)。
注:一个延伸,PV/PV(1(1Tc)(1Ts))D,Tc表示企业所得税率,Ts表示股票收入的税
1Td率,Td表示利息收入的税率,个人可试着证明一下子。
公司税MM定理命题二
在考虑所得税情况下,负债企业的权益资本成本率(KSL)等于同一风险等级中某一无负债企业的权益资本成本率(KSU)加上一定的风险报酬率。风险报酬率根据无负债企业的权益资本成本率和负债企业的债务资本成本率(KD)之差和债务权益比所确定。其公式为:
KSL=KSU*(1-T)+(KSU-KD)*(1-T)*D/SL 式中:D — 有负债企业的负债价值; SL —有负债企业的权益价值。T—公司税率 在命题一的基础上,风险报酬考虑了所得税的影响。因为(1一T)总是小于l,在D/SL比例不变的情况下,这一风险报酬率总小于无税条件下命题二中的风险报酬率。由于节税利益,这时的股东权益资本成本率的上升幅度小,或者说,在赋税条件下,当负债比率增加时,股东面临财务风险所要求增加的风险报酬的程度小于无税条件下风险报酬的增加程度,即在赋税条件下公司允许更大的负债规模。
第三篇:线面垂直的判定定理的证明过程
线面垂直的判定定理的证明过程
证明:已知直线L1 L22相交于O点且都与直线L垂直,L3是L1 L2所在平面内任意1条不与L1 L2重合或平行的直线(重合或平行直接可得它与L1平行)
不妨假设L3过O点(可以通过平移得到),在L3上取E、F令OE=OF,分别过E、F作ED、FB交L2于D、B(令OD=OB)则⊿OED ≌⊿ OFB(SAS)
延长DE、BF分别交L1于A、C 则⊿OEA≌⊿OFC(ASA)(注意角AEO与角CFO的补角相等所以它们相等)。所以OA=OC,所以⊿OAD≌⊿OBC(SAS)所以AD=CB
因为L3垂直于L1 L2所以MA=MC,MD=MB(M为L 上的任意点)所以⊿MAD≌⊿MCD(SSS)所以 角MAE= 角MCF 所以⊿MAE≌⊿MCF(SAS)
所以ME=MF,所以⊿MOE≌⊿MOF(SSS),所以角MOE=角MOF又因为 角MOE与 角MOF互补,所以角MOE=角MOF=90度,即L⊥L3
第四篇:正弦定理证明
新课标必修数学5“解三角形”内容分析及教学建议
江苏省锡山高级中学杨志文
新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中“解三角形”既是高中数学的基本内容,又有较强的应用性。在历次教材改革中都作为中学数学中的重点内容,一直被保留下来。在这次新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)与原全日制普通高级中学《数学教学大纲》(以下简称《大纲》)相比,“解三角形”这块内容在安排顺序上进行了新的整合。本文就《标准》必修模块数学5第一部分“解三角形”的课程内容、教学目标要求、课程关注点、内容处理上等方面的变化进行简要的分析,并对教学中应注意的几个问题谈谈自己的一些设想和教学建议,供大家参考。
一、《标准》必修模块数学5中“解三角形”与原课程中“解斜三角形”的比较
1.课程内容安排上的变化
“解三角形”在原课程中为“解斜三角形”,安排在“平面向量”一章中,作为平面向量的一个单元。而在新课程《标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章,与必修模块数学4中的“平面向量”分别安排在不同的模块中。
2.教学要求的变化
原大纲对“解斜三角形”的教学要求是:
(1)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
(2)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。
(3)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。《标准》对“解三角形”的教学要求是:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。由此可以看出,《标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。
3、课程关注点的变化
原《大纲》中,解斜三角形内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》则关注运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。侧重点放在学生探究和推理能力的培养上。
4、内容处理上的变化
原《大纲》中,解斜三角形作为平面向量知识的应用,突出其工具性和应用性。而《标准》将解三角形作为几何度量问题来处理,突出几何的作用,为学生理解数学中的量化思想、进一步学习数学奠定基础。解三角形处理的是三角形中长度、角度、面积的度量问题,长度、面积是理解积分的基础,角度是刻画方向的,长度、方向是向量的特征,有了长度、方向,向量的工具自然就有用武之地。
二、教学中应注意的几个问题及教学建议
原《大纲》中解斜三角形的内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》将解三角形作为几何度量问题来展开,强调学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,解决简单的三角形度量问题。这就要求在教学过程中,突出几何的作用和数学量化思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究过程、再创造过程。因此在教学中应注意以下几个问题。
1.要重视探究和推理
《标准》要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。因此建议在教学中,既要重视从特殊到一般的探索学习过程的教学,又要重视数学的理性思维的培养。教学中不要直接给出定理进行证明,可通过学生对三角形边与角的正弦的测量与计算,研究边与其对角的正弦之间的比,揭示它们在数量上的规律,发现正弦定理的结论,然后再从理论上进行论证,从而掌握正弦定理。从中体会发现和探索数学知识的思想方法。
参考案例:正弦定理的探索、发现与证明
教学建议:建议按如下步骤设计教学过程:
(1)从特殊三角形入手进行发现
让学生观察并测量一个三角板的边长。
提出问题:你能发现三边长与其对角的正弦值之比之间的关系吗?
例如,量得三角板三内角300,600,900所对的三边长分别约为5cm,8.6cm,10cm,58.610,101010 000
sin30sin60sin90
abc
对于特殊三角形,我们发现规律:。
sinAsinBsinC
则有:
提出问题:上述规律,对任意三角形成立吗?(2)实验,探索规律
二人合作,先在纸上做一任意锐角(锐角或钝角)三角形,测量三边长及其三个对角,然后用计算器计算每一边与其对角正弦值的比,填入下面表中,验证前面得出的结论是否正确。(其中,角精确到分,忽略测量误差,通过实验,对任意三角形,有结论:
abc,即在一个三角形中,
sinAsinBsinC
各边和它所对的角的正弦的比相等。
提出问题:上述的探索过程所得出的结论,只是我们通过实验(近似结果)发现的一个结果,如果我们能在理论上证明它是正确的,则把它叫做正弦定理。那么怎样证明呢?
(4)研究定理证明的方法方法一:(向量法)①若△ABC为直角三角形,由锐角三角函数的定义知,定理显然成立。②若△ABC为锐角三角形,过点A做单位向量j垂直于AC,则向量j与向量的夹角为900-A,向
量j
与向量CB的夹角为900-C,(如图1),且有:ACCBAB,所以j·(+)= j·即j·+ j· = j·AB 展开|j||AC|cos900+ | j||CB|cos(900-C)=| j|||cos(900-A)
ac
。
sinAsinC
cbabc
同理,过点C做单位向量j垂直于,可得:,故有。
sinCsinBsinAsinBsinC
③若△ABC为钝角三角形,不妨设角A>900(如图2),过点A做单位向量j垂直于AC,则向量j与
则得 a sinC = c sinA,即
向量AB的夹角为A-900,向量j与向量的夹角为900-C,且有:,同样可证得:
abc
。
sinAsinB
提出问题:你还能利用其他方法证明吗?
方法二:请同学们课后自己利用平面几何中圆内接三角形(锐角,钝角和直角)及同弧所对的圆周角相等等知识,将△ABC中的边角关系转化为以直径为斜边的直角三角形中去探讨证明方法。
2.要重视综合应用
《标准》要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。建议在正弦定理、余弦定理的教学中,设计一些关于正弦定理、余弦定理的综合性问题,提高学生综合应用知识解决问题的能力。如可设计下面的问题进行教学:
参考案例:正弦定理、余弦定理的综合应用 C 如图,在四边形ABCD中,已知ADCD,AD=10,AB=14,BDA=60,BCD=135.求BC的长.教学建议:
引导学生进行分析,欲求BC,需在△BCD中求解,∵BCD=135,BDC=30,∴需要求BD,而BD需在△ABD中求解.再引导学生将
A B
四边形问题转化为三角形问题,选择余弦定理求BD,再由正弦定理
例2图 求BC。
3.要重视实际应用
《标准》要求运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。因此建议在教学中,设计一些实际应用问题,为学生体验数学在解决问题中的作用,感受数学与日常生活及与其他学科的联系,培养学生的数学应用意识,提高学生解决实际问题的能力。在题目的设计中要注意对恒等变形降低要求,避免技巧性强的变形和繁琐的运算。
参考案例:解三角形在实际中的应用
参考案例1.航海中甲船在A处发现乙船在北偏东45,与A的距离为10海里的C处正以20海里/h的速度向南偏东75的方向航行,已知甲船速度是203海里/h,问甲船沿什么方向,用多少时间才能与
乙船相遇?
教学建议:引导学生依据题意画出示意图,将实际问题转化为解三角形问题。若设甲船与乙船经过t小时在B处相遇,构建ACB,容易计算出AB20海里,BC20海里,根据余弦定理建立关于t的方程,求出t,问题就解决了。
答: 甲船沿北偏东75的方向,经过0.5小时与乙船相遇.参考案例2.为了测量某城市电视塔的高度,在一条直道上选 择了A,B,C三点,使ABBC60m,在A,B,C三点
例1图 DA 观察塔的最高点,测得仰角分别为45,54.2,60,若测量 E
者的身高为1.5m,试求电视塔的高度(结果保留1位小数).F 教学建议:引导学生依据题意画出示意图如图,将实际问题转化为
解三角形问题。要求电视塔的高度。只要求出DE的长。将问题中的已
知量、未知量集中到有关三角形中,构造出解三角形的数学模型。在例2图 ACE中和BCE中应用余弦定理,使问题获得解决.答: 电视塔的高度约为158.3m.4.要重视研究性学习
解三角形的内容有较强的应用性和研究性,可为学生提供丰富的研究性素材。建议在教学内容的设计上探索开放,在教学形式上灵活多样。可设计一些研究性、开放性的问题,让学生自行探索解决。参考案例:研究性学习
课外研究题:将一块圆心角为120,半径为20厘米的扇形铁片裁成一块矩形,请你设计裁法,使裁得矩形的面积最大?并说明理由.
教学建议:这是一个研究性学习内容,可让学生在课外两人一组合作完成,写成研究报告,在习题课上让学生交流研究结果,老师可适当进行点评。
参考答案:这是一个如何下料的问题,一般有如图(1)、图(2)的两种裁法:即让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB
平行。从图形的特点来看,涉及到线段的长度和角度,将
这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.
NBB
PO图(2)
QM
O图(1)
按图(1)的裁法:矩形的一边OP在OA上,顶点M在圆弧上,设MOA,则:
时,Smax200.
4按图(2)的裁法: 矩形一边PQ与弦AB平行,设MOQ,在MOQ中,OQM9030120,由正弦定理,得:
sin120
又MN2OMsin(60)40sin(60),MQ
20sin
3sin. 3
MP20sin,OP20cos,从而S400sincos200sin2.即当
∴SMQMN
sinsin(60)cos(260)cos60. 33
∴当30时,Smax由于
400. 3
400平方厘米. 200,所以用第二中裁法可裁得面积最大的矩形,最大面积为33
也可以建议学生在课外自行寻找研究性、应用性的题目去做,写出研究或实验报告,在学校开设的研究性学习课上进行交流,评价。
参考文献:
①全日制普通高中级学《数学教学大纲》。人民教育出版社。2002年4 月。
②《普通高中数学课程标准(实验))》。人民教育出版社。2003年4月第一次印刷。③《普通高中数学课程标准(实验)解读》。严士健 张奠宙王尚志等主编。江苏教育出版社。2004年4月。
第五篇:原创正弦定理证明
1.直角三角形中:sinA=,sinB=,sinC=1
即c=
∴abc,c=,c=.sinAsinBsinCacbcabc== sinAsinBsinC
2.斜三角形中
证明一:(等积法)在任意斜△ABC当中
S△ABC=absinCacsinBbcsinA
两边同除以abc即得:
证明二:(外接圆法)
如图所示,∠A=∠D ∴aaCD2R sinAsinD
bc=2R,=2R sinBsinC12121212abc== sinAsinBsinC
同理
证明三:(向量法)
过A作单位向量j垂直于AC
由 AC+CB=AB
两边同乘以单位向量j 得 j•(AC+CB)=j•AB 则•+•=•
∴|j|•|AC|cos90+|j|•|CB|cos(90C)=| j|•|AB|cos(90A)
∴asinCcsinA∴ac= sinAsinC
cbabc同理,若过C作j垂直于CB得: =∴== sinCsinBsinAsinBsinC
正弦定理的应用 从理论上正弦定理可解决两类问题:
1.两角和任意一边,求其它两边和一角;
2已知a, b和A, 用正弦定理求B时的各种情况
:
⑴若A为锐角时: absinA无解absinA一解(直角)
bsinAab二解(一锐, 一钝)ab一解(锐角)
已知边a,b和A
a 无解a=CH=bsinA仅有一个解 CH=bsinA ab无解⑵若A为直角或钝角时: ab一解(锐角)