第一篇:文科推理与证明
文科推理与证明(一)合情推理与演绎推理
1.了解合情 推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。
2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。3.了解合情推理和演绎推理之间的联系和差异。(二)直接证明与间接证明
1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。2.了解间接证明的一种基本方法──反证法;了解反证 法的思考过程、特点。(三)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。第1课时 合情推理与演绎推理
1.推理一般包括合情推理和演绎推理;2.合情推理包括 和;归纳推理:从个别事实中推演出 ,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、.类比 推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也 或 ,这样的推理称为类比推理,类比推理的思维过程是:、、.3.演绎推理:演绎推理是 ,按照严格的逻辑法则得到的 推理过程;三段论常用格式为:①M是P,② ,③S是P;其中①是 ,它提供了一个个一般性原理;②是 ,它指出了一个个特殊对象;③是 ,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.《新课标》高三数学第一轮复习单元讲座 —逻辑、推理与证明、复数、框图 一.课标要求: 1.常用逻辑用语(1)命题及其关系
① 了解命题的逆命题、否命题与逆否命题;② 理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;(2)简单的逻辑联结词
通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义。(3)全称量词与存在量词
① 通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;② 能正确地对含有一个量词的命题进行否定。2.推理与证明
(1)合情推理与演绎推理
①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;③通过具体实例,了解合情推理和演绎推理之间的联系和差异。(2)直接证明与间接证明 ①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;(3)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;(4)数学文化
①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;②介绍计算机在自动推理领域和数学证明中的作用;3.数系的扩充与复数的引入
(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;(2)理解复数的基本概念以及复数相等的充要条件;(3)了解复数的代数表示法及其几何意义;(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。4.框图(1)流程图
①通过具体实例,进一步认识程序框图;②通过具体实例,了解工序流程图(即统筹图);③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;(2)结构图
①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息;②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。二.命题走向 常用逻辑用语
本部分内容主要是常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式。
预测08年高考对本部分内容的考查形式如下:考查的形式以填空题为主,考察的重点是条件和复合命题真值的判断。
第二篇:文科推理与证明
文科推理与证明
(一)合情推理与演绎推理
1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。
2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
3.了解合情推理和演绎推理之间的联系和差异。
(二)直接证明与间接证明
1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
2.了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
(三)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。
2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。
第1课时合情推理与演绎推理
1.推理一般包括合情推理和演绎推理;
2.合情推理包括和;
归纳推理:从个别事实中推演出,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、.类比推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也或,这样的推理称为类比推理,类比推理的思维过程是:、、.3.演绎推理:演绎推理是,按照严格的逻辑法则得到的推理过程;三段论常用格式为:①M是p,②,③S是p;其中①是,它提供了一个个一般性原理;②是,它指出了一个个特殊对象;③是,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.《新课标》高三数学第一轮复习单元讲座
—逻辑、推理与证明、复数、框图
一.课标要求:
1.常用逻辑用语
(1)命题及其关系
①了解命题的逆命题、否命题与逆否命题;②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;
(2)简单的逻辑联结词
通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义。
(3)全称量词与存在量词
①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;
②能正确地对含有一个量词的命题进行否定。
2.推理与证明
(1)合情推理与演绎推理
①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;
②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;
③通过具体实例,了解合情推理和演绎推理之间的联系和差异。
(2)直接证明与间接证明
①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;
②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;
(3)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;
(4)数学文化
①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;
②介绍计算机在自动推理领域和数学证明中的作用;
3.数系的扩充与复数的引入
(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;
(2)理解复数的基本概念以及复数相等的充要条件;
(3)了解复数的代数表示法及其几何意义;
(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。
4.框图
(1)流程图
①通过具体实例,进一步认识程序框图;
②通过具体实例,了解工序流程图(即统筹图);
③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;
(2)结构图
①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息;
②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。
二.命题走向
常用逻辑用语
本部分内容主要是常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式。
预测08年高考对本部分内容的考查形式如下:考查的形式以填空题为主,考察的重点是条件和复合命题真值的判断。
推理证明
本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法(理科)等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势
第三篇:数学《推理与证明(文科)
!
文科数学《推理与证明》练习题
2013-5-10
1.归纳推理和类比推理的相似之处为()
A、都是从一般到一般B、都是从一般到特殊C、都是从特殊到特殊D、都不一定正确
2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了()
A.归纳推理B.类比推理C. “三段论”,但大前提错误D.“三段论”,但小前提错误
3.三角形的面积为S1abcr,a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理,2可得出四面体的体积为()
111abcB、VShC、VS1S2S3S4r(S1,S2,S3,S4分别为四面体的四33
31个面的面积,r为四面体内切球的半径)D、V(abbcac)h,(h为四面体的高)3A、V
4.当n1,2,3,4,5,6时,比较2和n的大小并猜想()
n2n2n2n2A.n1时,2nB.n3时,2nC.n4时,2nD.n5时,2n n
25.已知数列an的前n项和为Sn,且a11,Snn2an nN,试归纳猜想出Sn的表达式为()*
A、2n2n12n12nB、C、D、n1n1n1n
26.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接受方由密文明文(解密),已知加密规则为:明文a,b,c,d对应密文a2b,2bc,2c3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为().
A. 4,6,1,7B. 7,6,1,4C. 6,4,1,7D. 1,6,4,7
7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为
()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
8.下面使用类比推理恰当的是.①“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”
②“(a+b)c=ac+bc”类推出“abab=+” ccc
abab=+(c≠0)” ccc
nnn③“(a+b)c=ac+bc”类推出“nnn④“(ab)=ab”类推出“(a+b)=a+b”
9.“AC,BD是菱形ABCD的对角线,AC,BD互相垂直且平分。”补充以上推理的大前提是。
10.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是。
11.补充下列推理的三段论:
(1)因为互为相反数的两个数的和为0,又因为a与b互为相反数且所以b=8.(2)因为又因为e2.71828是无限不循环小数,所以e是无理数.
12.在平面直角坐标系中,直线一般方程为AxByC0,圆心在(x0,y0)的圆的一般方程为(xx0)2(yy0)2r2;则类似的,在空间直角坐标系中,平面的一般方程为________________,球心在(x0,y0,z0)的球的一般方程为_______________________.13.在平面几何里,有勾股定理:“设ABC的两边AB、AC互相垂直,则ABACBC。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得妯的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则”.14.从1=1,14(12),149123,14916(1234)„,概括出第n个式子为.
15.对函数f(n),nN*,若满足f(n)222n100n3,试由f104,f103和ffn5n100
f99,f98,f97和f96的值,猜测f2f3116.若函数f(n)k,其中nN,k是3.1415926535......的小数点后第n位数字,例
如f(2)4,则f{f.....f[f(7)]}(共2007个f)17.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用n表示).18.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边
形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数.则
f(4)=_____;f(n)=_____________.
19.在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立,类比上述性质,相应地:在等比数列bn中,若b91,则有等式.:
20.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○„,按这种规律往下排,那么第36个圆的颜色应是.21.求垂直于直线2x6y10并且与曲线yx3x5相切的直线方程
32322.已知函数f(x)ax3(a2)x26x3 2
(1)当a2时,求函数f(x)极小值;
(2)试讨论曲线yf(x)与x轴公共点的个数。
《2.1合情推理与演绎推理》知识要点梳理
知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.
知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。其中归纳推理和类比推理是最常见的合情推理。
1.归纳推理
(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。
(2)一般模式:部分整体,个体一般
(3)一般步骤:
①通过观察个别情况发现某些相同性质;
②从已知的相同的性质中猜想出一个明确表述的一般性命题;
③检验猜想.(4)归纳推理的结论可真可假
2.类比推理
(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊
(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:
①找出两类对象之间的相似性或一致性;
②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);
③检验猜想.(5)类比推理的结论可真可假
知识点三:演绎推理
(1)定义:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理.简言之,演绎推理是由一般到特殊的推理.
(2)一般模式:“三段论”是演绎推理的一般模式,常用的一种格式
① 大前提——已知的一般原理;
② 小前提——所研究的特殊情况;
③ 结论——根据一般原理,对特殊情况作出的结论.(3)用集合的观点理解“三段论”若集合的所有元素都具有性质,是的子集,那么中所有元素都具有性质
(4)演绎推理的结论一定正确
演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。
合情推理与演绎推理(文科)答案
1——7.D C C D A C A8.③
9.菱形对角线互相垂直且平分。10.②③①。11.(1)a=-8;(2)无限不循环小数都是无理数
12.AxByCzD0;(xx0)2(yy0)2(zz0)2r2;
13.SBCDSABCSACDSABD;
14.122222223242(1)n1n2(123n);
18.【解题思路】找出f(n)f(n1)的关系式 15.97,98;16.1;17.5; n+1)(n-2);
[解析]f(1)1,f(2)16,f(3)1612,f(4)16121837
f(n)1612186(n1)3n23n1
【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系.19.【解析】:在等差数列an中,由a100,得a1a19a2a18ana20n
an1a19n2a100
所以a1a2ana190即a1a2ana19a18an1
又a1a19,a2a18,a19nan1
a1a2ana19a18an1a1a2a19n
若a90,同理可得a1a2ana1a2a17n
相应地等比数列bn中,则可得:b1b2bnb1b2b17nn17,nN*
【点评】已知性质成立的理由是应用了“等距和”性质,故类比等比数列中,相应的“等距积”性质,即可求解。
20.白色
21.解:设切点为P(a,b),函数yx33x25的导数为y'3x26x
切线的斜率ky'|xa3a26a3,得a1,代入到yx3x5
得b3,即P(1,3),y33(x1),3xy6032
22.解:(1)a2f'(x)3ax23(a2)x63a(x)(x1),f(x)极小值为f(1) 2a
2(2)①若a0,则f(x)3(x1),f(x)的图像与x轴只有一个交点;
②若a0,f(x)极大值为f(1)a20,f(x)的极小值为f()0,2a
f(x)的图像与x轴有三个交点;
③若0a2,f(x)的图像与x轴只有一个交点;
'2④若a2,则f(x)6(x1)0,f(x)的图像与x轴只有一个交点;
⑤若a2,由(1)知f(x)的极大值为f()4(点; 2a1323)0,f(x)的图像与x轴只有一个交a44
综上知,若a0,f(x)的图像与x轴只有一个交点;若a0,f(x)的图像与x轴有三个交点。
第四篇:高二文科推理与证明练习题
推理与证明文科练习
增城市华侨中学陈敏星
一、选择题(每小题3分,共30分)
1.有个小偷 在警察面前作了如下辩解:
是我的录象机,我就一定能把它打开。
看,我把它大开了。
所以它是我的录象机。
请问这一推理错在哪里?()
A大前提B小前提C结论D以上都不是
2.数列2,5,11,20,x,47,┅中的x等于()
A28B32C33D27
3.否定“自然数a,b,c中恰有一个偶数”时正确的反设为()
A a,b,c都是奇数B a,b,c都是偶数Ca,b,c中至少有两个偶数Da,b,c都是奇数或至少有两个偶数 4的最小值是()x
1A2B3C4D5 4.设x1,yx
5.下列命题:①a,b,cR,ab,则ac2bc2;②a,bR,ab0,则ba2;③aba,bR,ab,则
abanbn;④ab,cd,则.cd
A0B1C2D
36.在十进制中2004410010010210,那么在5进制中数码2004折合成十进制为()
A29B254C602D2004 0123
b52,7.已知{bn}为等比数列,则b1b2b929。若an为等差数列,a52,则an的类似结论为()
A a1a2a929 B a1a2a929C a1a2a929 D a1a2a929
8.已知函a,b,c均大于1,且logaclogbc4,则下列等式一定正确的是()
AacbBabcCbcaDabc
9.设正数a,b,c,d满足adbc,且|ad||bc|,则()
AadbcBadbcCadbcDadbc
x(xy)31,例如344,则()(cos2sin)的最大值是()10.定义运算xy y(xy)24
A4B3C2D1
二、填空题(每小题4分,共16分)
11.对于“求证函数f(x)x在R上是减函数”,用“三段论”可表示为:大前提是___________________,小前提是_______________,结论是12.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定是
13.已知数列
an的通项公式
an
(nN)
2(n1),记
f(n)(1a1)(1a2)(1an),试通过计算f(1),f(2),f(3)的值,推测出
f(n)_______________._
14.设f(x)
122
x,利用课本中推导等差数列前n项和公式的方法,可求得
f(5)f(4)f(0)f(5)f(6)的值是________________.)
三、解答题:
15(8分)若两平行直线a,b之一与平面M相交,则另一条也与平面M相交。16(8分)设a,b都是正数,且ab,求证:abab。
17(8分)若x
18(10分)已知xR,试比较x与2x2x的大小。
19(10分)设{an}是集合{22|0st,且s,tZ}中的所有的数从小到大排成的数列,即a13,a25,a36,a49,a510,a612,,将数列{an}各项按照上小下大,左小右大的原则写成如下三角形数表:
t
s
abba
51,求证:14x-2。454x56
9101
2__________________
⑴写出这个三角形数表的第四行、第五行各数;
⑵求a100.exa
20(10分)设a0,f(x)是R上的偶函数。
aex
⑴求a的值;
⑵证明f(x)在(0,)上是增函数。
参考答案:
11、减函数的定义 ;函数f(x)x在R上满足减函数的定义
12、a≤b13、f(n)
三、解答题:
15、证明:不妨设直线a与平面M相交,b与a平行,今证b与平面M相交,否则,n214、322(n1)
设b不与平面M相交,则必有下面两种情况: ⑴b在平面M内,由a//b,则a//平面M,与题设矛盾。
16、设a,b都是正数,且ab,求证:abab。
ab
ba
aabbabaaabbba()ab,abb
aa
若ab,1,ab0,则()ab1,得aabbabba;
bbaa
若ab,1,ab0,则()ab1,得aabbabba.bb17、略
18、log23log827log927log916log34,log23log34.19、第四行:17182024第五行:3334364048
a1002142911664020、⑴a1;⑵略
第五篇:高考文科数学试题分类—推理与证明
高中数学
高考文科试题解析分类汇编:推理和证明
1.【高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,1AEBF。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反3
射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为
(A)8(B)6(C)4(D)3
115123,233
11151222 2343……
照此规律,第五个不等式为....
高中数学
【答案】1
1111111.22324252626
1,【解析】观察不等式的左边发现,第n个不等式的左边=111
2232n1
右边=
11111112n11,所以第五个不等式为122222.
234566n1
5.【高考湖南文16】对于nN,将n表示为nak2kak12k1a121a020,当ik时ai1,当0ik1时ai为0或1,定义bn如下:在n0,a1,a2,…,ak中等于1的个数为奇数时,bn=1;否则bn=0.(1)b2+b4+b6+b8=__;
(2)记cm为数列{bn}中第m个为0的项与第m+1个为0cm是___.【答案】(1)3;(2)2.【解析】(1)观察知1a020,a01,b11;212100,1b21; 一次类推3121120,b30;4120,5122021120,b50;221060,b71,b81,b2+b4+b6+b8=3;(2)由(1)知cm..6.【高考湖北文17】,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成{an}中的第______项;(Ⅱ)b2k-1。(用k表示)【答案】(Ⅰ)5030;(Ⅱ)
5k5k1
n(n1),写出其若2
【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为an
干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故b1a4,b2a5,b3a9,b4a10,b5a14,b6a15.从而由上述规律可猜想:b2ka5k
5k(5k1)
(k为正整数),2
(5k1)(5k11)5k(5k1)
b2k1a5k1,22
故b2012a21006a51006a5030,即b2012是数列{an}中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想
需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.质,并且,因此,不妨设112,由的定义,(A从)c而k(1A)r(1A),k(A)k3k1(A)r1(A2)c(A )c(A)a(b(abcdef)(abf)abf3
因此k(A)1,由(2)知,存在满足性质P的数表A,使k(A)1,故k(A)的最大值为知,1。
8.【高考福建文20】20.(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215°-sin15°cos15°(3)sin218°+cos212°-sin18°cos12°