第三章推理与证明章末检测试题(文科)(教师版)

时间:2019-05-13 04:07:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第三章推理与证明章末检测试题(文科)(教师版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第三章推理与证明章末检测试题(文科)(教师版)》。

第一篇:第三章推理与证明章末检测试题(文科)(教师版)

第三章推理与证明章末检测试题(文科)

一、填空题

B)

A.综合法B.分析法C.间接证法D.合情推理法

2.对一个命题的证明,下列说法错误的是(D)

A.若能用分析法,必能用综合法

B.若用综合法或分析法证明难度较大时,可考虑分析法与综合法的合用等方法

C.若用直接证法难度较大时,可考虑反证法D.用反证法就是要证结论的反面成立

3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平

面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为(A)

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

4.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为(C)

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

5.下面几种推理是类比推理的是(B)

A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=1800B.由平面三角形的性质,推测空间四边形的性质

C.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D.一切偶数都能被2整除,2100是偶数,所以2100能被2整除.6.用反证法证明命题“若整系数一元二次方程ax2bxc0(a0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设中正确的是(B)

(A)假设a,b,c不都是偶数(B)假设a,b,c都不是偶数

(C)假设a,b,c至多有一个是偶数(D)假设a,b,c至多有两个是偶数

7.演绎推理是以(C)为前提,推出某个特殊情况下的结论的推理方法。

A.一般性的原理B.特定的命题C.一般性的真命题D.定理、公式

8.在某次考试中甲、乙、丙三人成绩互不相等,且满足:①如果乙的成绩不是最高,那么甲的成绩最低;②如果丙的成绩不是最低,那么甲的成绩最高,则三人中成绩最低的是(C)

A.甲B.乙C.丙D.不能确定

9.“所有金属都能导电,铁是金属,所以铁能导电,”此推理类型属于().

A.演绎推理B.类比推理C.合情推理D.归纳推理

10.当n1,2,3,4,5,6时,比较2和n的大小并猜想(D)

n2n2n2n2A.n1时,2n B.n3时,2n C.n4时,2nD.n5时,2n n

211.对“a,b,c是不全相等的正数”,给出两个判断:

①(ab)(bc)(ca)0;②ab,bc,ca不能同时成立,下列说法正确的是(A)

A.①对②错 B.①错②对C.①对②对D.①错②错

12.设a,b,c三数成等比数列,而x,y分别为a,b和b,c的等差中项,则222ac(B)xy

A.1B.2C.3D.不确定

13.如果f(ab)f(a)f(b)且f(1)2,则

A.f(2)f(4)f(6)(C)f(1)f(3)f(5)D.8 12 5B.37 5C.6

14.设数列{an}满足an1an2nan1,n1,2,3,a12, 通过求a1,a2,a3.猜想an的一个通项公式为(A).A.n+1,B.nC.n+2,D.n-

115.三角形的面积S=1(a+b+c)·r,其中a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理,2

可以得出四面体的体积(C)

11abcB.V =Sh 3

31C.V=(S1+S2+S3+S4)r(S1,S2,S3,S4)分别为四面体四个面的面积,r为四面体内切圆的半径)3

1D.V=(ab+bc+ac)h(h为四面体的高)3A.V=

二、填空题

16.“AC,BD是菱形ABCD的对角线,AC,BD互相垂直且平分。”补充以上推理的大前提是菱形对角线互相垂直且平分。

17.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为___1:8__.18.用反证法证明命题“a,bN,ab可以被5整除,那么a,b中至少有一个能被5整除。”那么假设的内容是a,b中没有一个能被5整除.2,2,2,2219.由1=11+3=21+3+5=31+3+5+7=4,„,得到1+3+„+(2n-1)=n用的是__归纳__推理.

20.在△ABC中,E、F分别为AB、AC的中点,则有EF∥BC,这个问题的大前提为

______三角形的中位线平行于第三边_______________.

21.已知一列数1,-5,9,-13,17,„„,根据其规律,下一个数应为-21.

22.已知a13,an133an,试通过计算a2,a3,a4,a5的值,推测出an=_______.nan

3S△PA′B′PA′·PB′VP-A′B′C′=,则图(2)所示图形有体积关系=

________.S△PABPA·PBVP-ABC23.图(1)所示图形有面积关系

三、解答题

24.用三段论的形式写出下列演绎推理

1)菱形的对角线互相垂直,正方形是菱形,所以正方形的对角线互相垂直;

2)若两角是对顶角,则此两角相等,所以若两角两不相等,则此角不是对顶角;

解析:(1)每个菱形的对角线相互垂直(大前提)正方形是菱形(小前提)

所以,正方形的对角线相互垂直(结论)

(2)两个角是对顶角,则两角相等(大前提)<1和<2不相等(小前提)所以,<1和<2不是对顶角(结论)

1225.已知数列{an}的前n项和Sn满足Sn=an+1),且an>0(n∈N+),求出a1,a2,a3,并归纳这个数列的通项

4公式.

解析:n=1时,a1=1;n=2时,a2=3;n=3时,a3=5.综上归纳,可得an=2n-1.1226.设a,b,c为一个三角形的三边,s=(a+b+c),且s=2ab,试证:s<2a.2s2证明 要证s<2a,由于s=2ab,所以只需证s

1因为sa+b+c),所以只需证2b

由于a,b,c为一个三角形的三条边,所以上式成立.于是原命题成立.

27.设a,b,x,yR,且ab1,x2y21,试证:axby1。

证明: 1(ab)(xy)axaybxbyax2aybxby(axby)故axby1.28.已知a,b,c,d都是正数,求证(ab+cd)(ac+bd)≥4abcd.解析:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>0.∴***2222abcdabcd>0,2

acbdacbd>0.由不等式的性质定理4的推论1,得 2

(abcd)(acbd)≥abcd,即(ab+cd)(ac+bd)≥4abcd.4

29.在△ABC中,已知(abc)(abc)3ab,且2cosAsinBsinC.判断△ABC的形状.

解:∵ABC180°,∴sinCsin(AB).又2cosAsinBsinC,∴2cosAsinBsinAcosBcosAsinB,∴sin(AB)0.

又A与B均为△ABC的内角,∴AB.又由(abc)(abc)3ab,得(ab)2c23ab,a2b2c2ab,又由余弦定理c2a2b22abcosC,得a2b2c22abcosC,∴2abcosCab,cosC

又∵AB,∴△ABC为等边三角形.

230.在△ABC中,若a=b(b+c),求证:A=2B.1,∴C60°. 2

b2+c2-a2b2+c2-b2+bcc-b解析:因为a=b(b+c),所以cosA=2bc2bc2b2

22a2+c2-b22b+c2b+c-2b-2bcc-b又因为cos2B=2cosB-1=2= -1=22a-1=2bb+c2b2ac2

所以cosA=cos2B.又因为A、B是三角形的内角,所以A=2B.

第二篇:第三章推理与证明 章末检测试题(文科)(学生版)

第三章推理与证明章末检测试题(文科)

一、填空题)

A.综合法B.分析法C.间接证法D.合情推理法

2.对一个命题的证明,下列说法错误的是()

A.若能用分析法,必能用综合法

B.若用综合法或分析法证明难度较大时,可考虑分析法与综合法的合用等方法

C.若用直接证法难度较大时,可考虑反证法D.用反证法就是要证结论的反面成立

3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平

面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为()

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

4.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为()

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

5.下面几种推理是类比推理的是()

A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=1800B.由平面三角形的性质,推测空间四边形的性质

C.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D.一切偶数都能被2整除,2100是偶数,所以2100能被2整除.6.用反证法证明命题“若整系数一元二次方程ax2bxc0(a0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设中正确的是()

(A)假设a,b,c不都是偶数(B)假设a,b,c都不是偶数

(C)假设a,b,c至多有一个是偶数(D)假设a,b,c至多有两个是偶数

7.演绎推理是以()为前提,推出某个特殊情况下的结论的推理方法。

A.一般性的原理B.特定的命题C.一般性的真命题D.定理、公式

8.在某次考试中甲、乙、丙三人成绩互不相等,且满足:①如果乙的成绩不是最高,那么甲的成绩最低;②如果丙的成绩不是最低,那么甲的成绩最高,则三人中成绩最低的是()

A.甲B.乙C.丙D.不能确定

9.“所有金属都能导电,铁是金属,所以铁能导电,”此推理类型属于()

A.演绎推理B.类比推理C.合情推理D.归纳推理

10.当n1,2,3,4,5,6时,比较2和n的大小并猜想()

n2n2n2n2A.n1时,2n B.n3时,2n C.n4时,2nD.n5时,2n n

211.对“a,b,c是不全相等的正数”,给出两个判断:

①(ab)(bc)(ca)0;②ab,bc,ca不能同时成立,下列说法正确的是()

A.①对②错 B.①错②对C.①对②对D.①错②错

12.设a,b,c三数成等比数列,而x,y分别为a,b和b,c的等差中项,则222ac()xy

A.1B.2C.3D.不确定

13.如果f(ab)f(a)f(b)且f(1)2,则

A.f(2)f(4)f(6)()f(1)f(3)f(5)D.8 12 5B.37 5C.6

14.设数列{an}满足an1an2nan1,n1,2,3,a12, 通过求a1,a2,a3.猜想an的一个通项公式为()

A.n+1,B.nC.n+2,D.n-

115.三角形的面积S=1(a+b+c)·r,其中a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理,2

可以得出四面体的体积()

11abcB.V =Sh 3

31C.V=(S1+S2+S3+S4)r(S1,S2,S3,S4)分别为四面体四个面的面积,r为四面体内切圆的半径)3

1D.V=(ab+bc+ac)h(h为四面体的高)3A.V=

二、填空题

16.“AC,BD是菱形ABCD的对角线,AC,BD互相垂直且平分。”补充以上推理的大前提是。

17.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为_____.18.用反证法证明命题“a,bN,ab可以被5整除,那么a,b中至少有一个能被5整除。”那么假设的内容是.2,2,2,2219.由1=11+3=21+3+5=31+3+5+7=4,„,得到1+3+„+(2n-1)=n用的是____推理.

20.在△ABC中,E、F分别为AB、AC的中点,则有EF∥BC,这个问题的大前提为 _____________________.

21.已知一列数1,-5,9,-13,17,„„,根据其规律,下一个数应为.

22.已知a13,an13an,试通过计算a2,a3,a4,a5的值,推测出an=an

3S△PA′B′PA′·PB′VP-A′B′C′=,则图(2)所示图形有体积关系=

________.S△PABPA·PBVP-ABC23.图(1)所示图形有面积关系

三、解答题

24.用三段论的形式写出下列演绎推理

1)菱形的对角线互相垂直,正方形是菱形,所以正方形的对角线互相垂直;

2)若两角是对顶角,则此两角相等,所以若两角两不相等,则此角不是对顶角;

1225.已知数列{an}的前n项和Sn满足Sn=an+1),且an>0(n∈N+),求出a1,a2,a3,并归纳这个数列的通项4

公式.

1226.设a,b,c为一个三角形的三边,s=(a+b+c),且s=2ab,试证:s<2a.2

2227.设a,b,x,yR,且ab1,xy1,试证:axby1。22

28.已知a,b,c,d都是正数,求证(ab+cd)(ac+bd)≥4abcd.29.在△ABC中,已知(abc)(abc)3ab,且2cosAsinBsinC.判断△ABC的形状.

30.在△ABC中,若a=b(b+c),求证:A=2B.

第三篇:文科推理与证明

文科推理与证明(一)合情推理与演绎推理

1.了解合情 推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。

2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。3.了解合情推理和演绎推理之间的联系和差异。(二)直接证明与间接证明

1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。2.了解间接证明的一种基本方法──反证法;了解反证 法的思考过程、特点。(三)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。第1课时 合情推理与演绎推理

1.推理一般包括合情推理和演绎推理;2.合情推理包括 和;归纳推理:从个别事实中推演出 ,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、.类比 推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也 或 ,这样的推理称为类比推理,类比推理的思维过程是:、、.3.演绎推理:演绎推理是 ,按照严格的逻辑法则得到的 推理过程;三段论常用格式为:①M是P,② ,③S是P;其中①是 ,它提供了一个个一般性原理;②是 ,它指出了一个个特殊对象;③是 ,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.《新课标》高三数学第一轮复习单元讲座 —逻辑、推理与证明、复数、框图 一.课标要求: 1.常用逻辑用语(1)命题及其关系

① 了解命题的逆命题、否命题与逆否命题;② 理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;(2)简单的逻辑联结词

通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义。(3)全称量词与存在量词

① 通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;② 能正确地对含有一个量词的命题进行否定。2.推理与证明

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;③通过具体实例,了解合情推理和演绎推理之间的联系和差异。(2)直接证明与间接证明 ①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;②介绍计算机在自动推理领域和数学证明中的作用;3.数系的扩充与复数的引入

(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;(2)理解复数的基本概念以及复数相等的充要条件;(3)了解复数的代数表示法及其几何意义;(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。4.框图(1)流程图

①通过具体实例,进一步认识程序框图;②通过具体实例,了解工序流程图(即统筹图);③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;(2)结构图

①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息;②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。二.命题走向 常用逻辑用语

本部分内容主要是常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式。

预测08年高考对本部分内容的考查形式如下:考查的形式以填空题为主,考察的重点是条件和复合命题真值的判断。

第四篇:文科推理与证明

文科推理与证明

(一)合情推理与演绎推理

1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。

2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

3.了解合情推理和演绎推理之间的联系和差异。

(二)直接证明与间接证明

1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

2.了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

(三)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。

2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。

第1课时合情推理与演绎推理

1.推理一般包括合情推理和演绎推理;

2.合情推理包括和;

归纳推理:从个别事实中推演出,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、.类比推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也或,这样的推理称为类比推理,类比推理的思维过程是:、、.3.演绎推理:演绎推理是,按照严格的逻辑法则得到的推理过程;三段论常用格式为:①M是p,②,③S是p;其中①是,它提供了一个个一般性原理;②是,它指出了一个个特殊对象;③是,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.《新课标》高三数学第一轮复习单元讲座

—逻辑、推理与证明、复数、框图

一.课标要求:

1.常用逻辑用语

(1)命题及其关系

①了解命题的逆命题、否命题与逆否命题;②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;

(2)简单的逻辑联结词

通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义。

(3)全称量词与存在量词

①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;

②能正确地对含有一个量词的命题进行否定。

2.推理与证明

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;

(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;

②介绍计算机在自动推理领域和数学证明中的作用;

3.数系的扩充与复数的引入

(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;

(2)理解复数的基本概念以及复数相等的充要条件;

(3)了解复数的代数表示法及其几何意义;

(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。

4.框图

(1)流程图

①通过具体实例,进一步认识程序框图;

②通过具体实例,了解工序流程图(即统筹图);

③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;

(2)结构图

①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息;

②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。

二.命题走向

常用逻辑用语

本部分内容主要是常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式。

预测08年高考对本部分内容的考查形式如下:考查的形式以填空题为主,考察的重点是条件和复合命题真值的判断。

推理证明

本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法(理科)等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势

第五篇:数学《推理与证明(文科)

文科数学《推理与证明》练习题

2013-5-10

1.归纳推理和类比推理的相似之处为()

A、都是从一般到一般B、都是从一般到特殊C、都是从特殊到特殊D、都不一定正确

2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了()

A.归纳推理B.类比推理C. “三段论”,但大前提错误D.“三段论”,但小前提错误

3.三角形的面积为S1abcr,a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理,2可得出四面体的体积为()

111abcB、VShC、VS1S2S3S4r(S1,S2,S3,S4分别为四面体的四33

31个面的面积,r为四面体内切球的半径)D、V(abbcac)h,(h为四面体的高)3A、V

4.当n1,2,3,4,5,6时,比较2和n的大小并猜想()

n2n2n2n2A.n1时,2nB.n3时,2nC.n4时,2nD.n5时,2n n

25.已知数列an的前n项和为Sn,且a11,Snn2an nN,试归纳猜想出Sn的表达式为()*

A、2n2n12n12nB、C、D、n1n1n1n

26.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接受方由密文明文(解密),已知加密规则为:明文a,b,c,d对应密文a2b,2bc,2c3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为().

A. 4,6,1,7B. 7,6,1,4C. 6,4,1,7D. 1,6,4,7

7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为

()

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

8.下面使用类比推理恰当的是.①“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”

②“(a+b)c=ac+bc”类推出“abab=+” ccc

abab=+(c≠0)” ccc

nnn③“(a+b)c=ac+bc”类推出“nnn④“(ab)=ab”类推出“(a+b)=a+b”

9.“AC,BD是菱形ABCD的对角线,AC,BD互相垂直且平分。”补充以上推理的大前提是。

10.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是。

11.补充下列推理的三段论:

(1)因为互为相反数的两个数的和为0,又因为a与b互为相反数且所以b=8.(2)因为又因为e2.71828是无限不循环小数,所以e是无理数.

12.在平面直角坐标系中,直线一般方程为AxByC0,圆心在(x0,y0)的圆的一般方程为(xx0)2(yy0)2r2;则类似的,在空间直角坐标系中,平面的一般方程为________________,球心在(x0,y0,z0)的球的一般方程为_______________________.13.在平面几何里,有勾股定理:“设ABC的两边AB、AC互相垂直,则ABACBC。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得妯的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则”.14.从1=1,14(12),149123,14916(1234)„,概括出第n个式子为.

15.对函数f(n),nN*,若满足f(n)222n100n3,试由f104,f103和ffn5n100

f99,f98,f97和f96的值,猜测f2f3116.若函数f(n)k,其中nN,k是3.1415926535......的小数点后第n位数字,例

如f(2)4,则f{f.....f[f(7)]}(共2007个f)17.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用n表示).18.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边

形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数.则

f(4)=_____;f(n)=_____________.

19.在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立,类比上述性质,相应地:在等比数列bn中,若b91,则有等式.:

20.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○„,按这种规律往下排,那么第36个圆的颜色应是.21.求垂直于直线2x6y10并且与曲线yx3x5相切的直线方程

32322.已知函数f(x)ax3(a2)x26x3 2

(1)当a2时,求函数f(x)极小值;

(2)试讨论曲线yf(x)与x轴公共点的个数。

《2.1合情推理与演绎推理》知识要点梳理

知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.

知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。其中归纳推理和类比推理是最常见的合情推理。

1.归纳推理

(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。

(2)一般模式:部分整体,个体一般

(3)一般步骤:

①通过观察个别情况发现某些相同性质;

②从已知的相同的性质中猜想出一个明确表述的一般性命题;

③检验猜想.(4)归纳推理的结论可真可假

2.类比推理

(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊

(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:

①找出两类对象之间的相似性或一致性;

②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);

③检验猜想.(5)类比推理的结论可真可假

知识点三:演绎推理

(1)定义:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理.简言之,演绎推理是由一般到特殊的推理.

(2)一般模式:“三段论”是演绎推理的一般模式,常用的一种格式

① 大前提——已知的一般原理;

② 小前提——所研究的特殊情况;

③ 结论——根据一般原理,对特殊情况作出的结论.(3)用集合的观点理解“三段论”若集合的所有元素都具有性质,是的子集,那么中所有元素都具有性质

(4)演绎推理的结论一定正确

演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。

合情推理与演绎推理(文科)答案

1——7.D C C D A C A8.③

9.菱形对角线互相垂直且平分。10.②③①。11.(1)a=-8;(2)无限不循环小数都是无理数

12.AxByCzD0;(xx0)2(yy0)2(zz0)2r2;

13.SBCDSABCSACDSABD;

14.122222223242(1)n1n2(123n);

18.【解题思路】找出f(n)f(n1)的关系式 15.97,98;16.1;17.5; n+1)(n-2);

[解析]f(1)1,f(2)16,f(3)1612,f(4)16121837

f(n)1612186(n1)3n23n1

【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系.19.【解析】:在等差数列an中,由a100,得a1a19a2a18ana20n

an1a19n2a100

所以a1a2ana190即a1a2ana19a18an1

又a1a19,a2a18,a19nan1

a1a2ana19a18an1a1a2a19n

若a90,同理可得a1a2ana1a2a17n

相应地等比数列bn中,则可得:b1b2bnb1b2b17nn17,nN*

【点评】已知性质成立的理由是应用了“等距和”性质,故类比等比数列中,相应的“等距积”性质,即可求解。

20.白色

21.解:设切点为P(a,b),函数yx33x25的导数为y'3x26x

切线的斜率ky'|xa3a26a3,得a1,代入到yx3x5

得b3,即P(1,3),y33(x1),3xy6032

22.解:(1)a2f'(x)3ax23(a2)x63a(x)(x1),f(x)极小值为f(1) 2a

2(2)①若a0,则f(x)3(x1),f(x)的图像与x轴只有一个交点;

②若a0,f(x)极大值为f(1)a20,f(x)的极小值为f()0,2a

f(x)的图像与x轴有三个交点;

③若0a2,f(x)的图像与x轴只有一个交点;

'2④若a2,则f(x)6(x1)0,f(x)的图像与x轴只有一个交点;

⑤若a2,由(1)知f(x)的极大值为f()4(点; 2a1323)0,f(x)的图像与x轴只有一个交a44

综上知,若a0,f(x)的图像与x轴只有一个交点;若a0,f(x)的图像与x轴有三个交点。

下载第三章推理与证明章末检测试题(文科)(教师版)word格式文档
下载第三章推理与证明章末检测试题(文科)(教师版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高二文科推理与证明练习题

    推理与证明文科练习增城市华侨中学陈敏星一、选择题(每小题3分,共30分)1.有个小偷 在警察面前作了如下辩解:是我的录象机,我就一定能把它打开。看,我把它大开了。所以它是我的录象......

    高考文科数学试题分类—推理与证明

    高中数学高考文科试题解析分类汇编:推理和证明1.【高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,1AEBF。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反......

    高二文科推理与证明测试题(5篇)

    推理与证明测试题一、选择题1.设f0(x)sinx,f1(x)f0(x),f2(x)f1'(x),,fn1(x)fn'(x),n∈N,则f2007(x)A.sinxB.-sinx222'C.cosx D.-cosx2.下面的四个不等式:①abcabbcca;②a1a1ab;③2 ;......

    数列与推理证明检测题

    2013届高三寒假作业数学章节检测(5)一 选择题()2.已知等差数列an的前项和为Sn,若M,N,P三点共线,O为坐标原点,且ONaOM15aO(P直线MP不过点O),则S20等于() 6A.15B.10C.40D.203.数列{an}中,a1......

    推理与证明试题与答案

    1、求证:(1)a2b23abab);(2) +>22+5。2、设a,b,x,y∈R,且3、若a,b,c均为实数,且,,, (8分)求证:a,b,c中至少有一个大于0。(8分)4、用数学归纳法证明: 1222n2n(n1)(Ⅰ);(7分) 1335(2n1)(2n1)2(2n1)......

    高二文科数学合情推理与证明训练

    高二文科数学选修1-2《推理与证明》训练1. 下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是......

    高二文科期中数学复习题(推理与证明)

    高二文科期中考试复习题二:推理与证明班级_____姓名_________1、下列说法中正确的是(A)合情推理就是正确的推理(B) 归纳推理是从一般到特殊的推理过程(C) 合情推理就是归纳推......

    高三二轮复习015推理与证明(文科)

    高三数学二轮学案 序号 015 高三年级 15班教师王德鸿学生课题:推理与证明目的要求:1、进一步体会合情推理在数学中的作用,掌握演绎推理的基本方法并能运用;2、进一步理解证明的......