2018年高考数学数列压轴专项练习集(一)

时间:2019-05-14 15:51:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018年高考数学数列压轴专项练习集(一)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018年高考数学数列压轴专项练习集(一)》。

第一篇:2018年高考数学数列压轴专项练习集(一)

2018年高考数学数列压轴专项练习集

(一)1.已知等差数列an和等比数列bn,其中an的公差不为0.设Sn是数列an的前n项和.若a1,a2,a5是数列bn的前3项,且S4=16.

(1)求数列an和bn的通项公式;

(2)若数列4Sn1为等差数列,求实数t;

anta1,b1,a2,b1,b2,a3,b1,b2,b3,...ak,b1,b2,...bk,...若,该数列前n项和(3)构造数列Tn182,求1n的值.

2.已知数列an满足a11,a21,且an2(1)求aa的值;

56(2)设S为数列a的前n项的和,求S; nnn(3)设

2(1)nan(nN*).

2bna2n1a2n,是否存正整数i,j,k(i<j<k),使得bi,bj,bk成等差数列?若存在,求出所有满足条件的i,j,k;若不存在,请说明理由.

3.(本题满分12分)设数列{an}的前n项和为Sn,已知a1a21,bnnSn(n2)an,数列{bn}是公差为d的等差数列,nN*.(1)求d的值;(2)求数列{an}的通项公式;

22n1(3)求证:(a1a2an)(S1S2Sn).(n1)(n2)

an3,an3an1aan4,an≤3时,m1,2,3,. 4.设数列n的首项a1a(aR),且(1)若0a1,求a2,a3,a4,a5.(2)若0an4,证明:0an14.

(3)若0a≤2,求所有的正整数k,使得对于任意nN*,均有ankan成立.

5.已知数列{an}的前n项和为Sn,a1=0,a1+a2+a3+…+an+n=an+1,n∈N*.(Ⅰ)求证:数列{an+1}是等比数列;

(Ⅱ)设数列{bn}的前n项和为Tn,b1=1,点(Tn+1,Tn)在直线上,若不等式

bb1b92nma11a21an122an对于n∈N恒成立,求实数m的*最大值.

x46.设不等式组y0所表示的平面区域为Dn,记Dn内整点的个数为an(横纵坐ynx(xN*)标均为整数的点称为整点).

(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;(2)求数列{an}的通项公式;

*(3)记数列{an}的前n项的和为Sn,试证明:对任意n∈N恒有++…+<成立.

7.在数列an中,a121,Snan2n1,nN*. 3Sn(Ⅰ)求S1,S2,S3的值;

(Ⅱ)猜想Sn的表达式,并证明你的猜想.

8.设数列an是各项均为正数的等比数列,其前n项和为Sn,若a1a564,S5S348.(1)求数列an的通项公式;

(2)对于正整数k,m,l(kml),求证:“mk1且lk3”是“5ak,am,al这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列bn满足:对任意的正整数n,都有a1bna2bn1a3bn2anb1

b32n14n6,且集合Mn|n,nN*中有且仅有3个元素,试

an求的取值范围.9.已知f(n)=1++++…+,g(n)=﹣,n∈N*.

(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;(2)猜想f(n)与g(n)的大小关系,并给出证明.

10.设数列{an}的前n项和为Sn,若(1)若a1=1,(n∈N*),则称{an}是“紧密数列”;,a3=x,a4=4,求x的取值范围;

(2)若{an}为等差数列,首项a1,公差d,且0<d≤a1,判断{an}是否为“紧密数列”;(3)设数列{an}是公比为q的等比数列,若数列{an}与{Sn}都是“紧密数列”,求q的取值范围.

试卷答案

1.【考点】数列的求和;数列递推式.

【分析】(1)设{an}的公差d≠0.由a1,a2,a5是数列{bn}的前3项,且S4=16.可得,即(2)Sn==n2.可得

2,4a1+=

=16,解得a1,d,即可得出. .根据数列{

}为等差数列,可得=解得t. +,t﹣2t=0.

2(3)由(1)可得:Sn=n,数列{bn}的前n项和An=

=.数列{An}的前n项和Un=﹣n=﹣n.数列a1,b1,a2,b1,b2,a3,b1,b2,=

2项和=k+b3,…,ak,b1,b2,…,bk,…,可得:该数列前k+78(k﹣1),根据3=2187,3=6561.进而得出.

﹣【解答】解:(1)设{an}的公差d≠0.∵a1,a2,a5是数列{bn}的前3项,且S4=16. ∴,即,4a1+

=16,解得a1=1,d=2,∴an=1+(n﹣1)×2=2n﹣1. ∴b1=1,b2=3,公比q=3. ∴bn=3n﹣1.(2)Sn==n2.∴

=

∵数列{}为等差数列,∴=+,t﹣2t=0.

2解得t=2或0,经过验证满足题意.

2(3)由(1)可得:Sn=n,数列{bn}的前n项和An=

=.数列{An}的前n项和Un=﹣n=﹣n.

数列a1,b1,a2,b1,b2,a3,b1,b2,b3,…,ak,b1,b2,…,bk,…,∴该数列前k+∵37=2187,38=6561. ∴取k=8,可得前令Tn=1821=1700+∴n=36+5=41.

2.【考点】数列的求和;数列递推式. 【分析】(1)由题意,当n为奇数时,a1=﹣1,a2=1,进一步求得

;当n为偶数时,则a5+a6可求;

.结合=36项的和为:,解得m=5.

=1700,=

项和=k+

﹣(k﹣1),(2)①当n=2k时,Sn=S2k=(a1+a3+…+a2k﹣1)+(a2+a4+…+a2k),代入等比数列前n项和公式求解;②当n=2k﹣1时,由Sn=S2k﹣a2k求解;(3)由(1)得

(仅b1=0且{bn}递增).结合k>j,且k,j∈Z,可得k≥j+1.然后分k≥j+2与k=j+1两类分析可得满足条件的i,j,k只有唯一一组解,即i=1,j=2,k=3. 【解答】解:(1)由题意,当n为奇数时,又a1=﹣1,a2=1,∴即a5+a6=2;

(2)①当n=2k时,Sn=S2k=(a1+a3+…+a2k﹣1)+(a2+a4+…+a2k),;当n为偶数时,.

===.

②当n=2k﹣1时,Sn=S2k﹣a2k= ==.

∴ ;

(3)由(1),得

(仅b1=0且{bn}递增).

∵k>j,且k,j∈Z,∴k≥j+1.

①当k≥j+2时,bk≥bj+2,若bi,bj,bk成等差数列,则,此与bn≥0矛盾.故此时不存在这样的等差数列. ②当k=j+1时,bk=bj+1,若bi,bj,bk成等差数列,则,又∵i<j,且i,j∈Z,∴i≤j﹣1. 若i≤j﹣2,则bi≤bj﹣2,得,得≤0,矛盾,∴i=j﹣1. 从而

2bj=bj

1+bj+

1,化简,得3j﹣2=1,解得j=2.

从而,满足条件的i,j,k只有唯一一组解,即i=1,j=2,k=3.

3.a1a21,bnnSn(n2)anS1(12)a14a14S2(22)a22a16a28b2b14=

=

得20.解:b1b22d20.解:a1a21,bnnSn(n2)anb1S1(12)a14a14b22S2(22)a22a16a28db2b14…………………………………………………………3分

………………………………………………8分

………………………………………………12分 4.见解析

解:Ⅰ∵a1a(0,1)得a2(3,4),∴a2a14a4,∵a3(0,1),∴a3a23a1,a4(3,4),∴a4a34a3,a5(0,1),∴a5a43a.

Ⅱ证明:①当0an≤3时,an1an4,∴1≤an14,②当3an4,an1an3,∴0an11,综上,0an4时,0an14.

ⅡⅠ解:①若0a1,由Ⅰ知a5a1,所以k4,∴当k4m(mN*)时,对所有的nN*,ankan成立. ②若1≤a2,则a2a4,且a2(2,3],a3a24(a4)4aa1,∴k2,∴当k2m(mN*)时,对所有的nN*,ankan成立,③若a2,则a2a3a42,∴k1,∴km(mN*)时,对所有的nN*,ankan成立,综上,若0a1,则k4m,mN*,若1≤a2,则k2m,mN*,若a2,则km,mN*. 5.【考点】数列的求和;等比关系的确定.

【分析】(Ⅰ)利用递推式可得:an+1=2an+1,变形利用等比数列的定义即可证明;(Ⅱ)由(Ⅰ)得

上,可得可得:,由点(Tn+1,Tn)在直线,利用等差数列的通项公式,利用递推式可得bn=n.利用不等式,可得Rn=

.对n分类讨论即可得出.

【解答】解:(Ⅰ)由a1+a2+a3+…+an+n=an+1,得a1+a2+a3+…+an﹣1+n﹣1=an(n≥2),两式相减得an+1=2an+1,利用“错位相减法”可得:变形为an+1+1=2(an+1)(n≥2),∵a1=0,∴a1+1=1,a2=a1+1=1,a2+1=2(a1+1),∴{a1+1}是以1为首项,公比为2的等比数列.(Ⅱ)由(Ⅰ)得,∵点(Tn+1,Tn)在直线上,∴,故是以为首项,为公差的等差数列,则,∴,当n≥2时,∵b1=1满足该式,∴bn=n. ∴不等式即为,令,则,两式相减得,∴.

由恒成立,即恒成立,又,故当n≤3时,单调递减;当n=3时,,;

当n≥4时,单调递增;当n=4时,;

则6.的最小值为,所以实数m的最大值是.

【考点】数列与不等式的综合.

8的矩形区域内有5×9个整点,对角线上有5个整点,可求a2的值; 【分析】(1)在4×(2)直线y=nx与x=4交于点P(4,4n),即可求数列{an}的通项公式;(3)利用裂项法,放缩,求和即可证明结论. 【解答】解:(1)D2如图中阴影部分所示,∵在4×8的矩形区域内有5×9个整点,对角线上有5个整点,∴a2==25.

(另解:a2=1+3+5+7+9=25)

(2)直线y=nx与x=4交于点P(4,4n),据题意有an=

=10n+5.

(另解:an=1+(n+1)+(2n+1)+(3n+1)+(4n+1)=10n+5)(3)Sn=5n(n+2).(8分)∵=

=

<,∴++…+<++…+

=(﹣+…+﹣)=(+﹣﹣)<(13分)

【点评】本题考查数列与不等式的综合,考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.

7.(Ⅰ)当n2时,anSnSni,Sn分)

11SnSn12,Sn(n2)(3SnSn1221314S1a1,S2,S3(6分)

3S124S225(Ⅱ)猜想Snn1,(7分)n2下面用数学归纳法证明:

211猜想正确;(8分),312k12)假设当n=k时猜想正确,即Sk,k211(k1)1那么Sk1,即n=k+1时猜想也正确.(12分)

k1Sk2(k1)22k2n1根据1),2)可知,对任意nÎN+,都有Sn.(13分)

n21)当n=1时,S1略 8.2(1)数列an是各项均为正数的等比数列,a1a5a364,a38,2又S5S348,a4a58q8q48,q2,an82n32n; ………… 4分

(2)(ⅰ)必要性:设5ak,am,al这三项经适当排序后能构成等差数列,①若25akamal,则102k2m2l,102mk2lk,52mk12lk1,mk11mk12lk1, .………… 6分

lk324②若2am5akal,则22m52k2l,2m1k2lk5,左边为偶数,等式不成立,③若2al5akam,同理也不成立,综合①②③,得mk1,lk3,所以必要性成立.…………8分(ⅱ)充分性:设mk1,lk3,则5ak,am,al这三项为5ak,ak1,ak3,即5ak,2ak,8ak,调整顺序后易知2ak,5ak,8ak成等差数列,所以充分性也成立.综合(ⅰ)(ⅱ),原命题成立.…………10分

n1(3)因为a1bna2bn1a3bn2anb1324n6,即2bn2bn12bn22b132123nn14n6,(*)

当n2时,21bn122bn223bn32n1b132n4n2,(**)

234nn1则(**)式两边同乘以2,得2bn12bn22bn32b1328n4,(***)

(*)-(***),得2bn4n2,即bn2n1(n2),2又当n1时,2b132102,即b11,适合bn2n1(n2),bn2n1.………14分 bn2n1bb2n12n352nn,nn1nn1,an2anan1222nbnbn1bb0,即21; anan1a2a1bnbn1b0,此时n单调递减,anan1ann2时,n3时,又9.b11b23b35b4771,,,,.……………16分 a12a24a38a416162【考点】用数学归纳法证明不等式;不等式比较大小. 【分析】(1)根据已知,n∈N.我们

*易得当n=1,2,3时,两个函数函数值的大小,比较后,根据结论我们可以归纳推理得到猜想f(n)≤g(n);

(2)但归纳推理的结论不一定正确,我们可用数学归纳法进行证明,先证明不等式f(n)≤g(n)当n=1时成立,再假设不等式f(n)≤g(n)当n=k(k≥1)时成立,进而证明当n=k+1时,不等式f(n)≤g(n)也成立,最后得到不等式f(n)≤g(n)对于所有的正整数n成立;

【解答】解:(1)当n=1时,f(1)=1,g(1)=1,所以f(1)=g(1); 当n=2时,,所以f(2)<g(2); 当n=3时,,所以f(3)<g(3).

(2)由(1),猜想f(n)≤g(n),下面用数学归纳法给出证明: ①当n=1,2,3时,不等式显然成立. ②假设当n=k(k≥3)时不等式成立,即即++…+<,那么,当n=k+1时,因为,所以.

*由①、②可知,对一切n∈N,都有f(n)≤g(n)成立.

10.【考点】数列的应用. 【分析】(1)由题意,且,即可求出x的取值范围;

(2)由题意,an=a1+(n﹣1)d,数列”的定义即可证明结论;

==1+,根据“紧密(3)先设公比是q并判断出q≠1,由等比数列的通项公式、前n项和公式化简,根据“紧密数列”的定义列出不等式组,再求出公比q的取值范围.

【解答】解:(1)由题意,∴x的取值范围是[2,3];

(2)由题意,an=a1+(n﹣1)d,∴

且,∴2≤x≤3,==1+,随着n的增大而减小,所以当n=1时,∴{an}是“紧密数列”;

(3)由题意得,等比数列{an}的公比q n1当q≠1时,所以an=a1q﹣,Sn=

取得最大值,∴≤2,=,因为数列{an}与{Sn}都是“紧密数列”,所以,当q=1时,an=a1,Sn=na1,则 ∴q的取值范围是

=1,≤2,解得

=1+∈(1,],符合题意,

第二篇:高考数列专题练习(汇总)

数列综合题

1.已知等差数列满足:,的前n项和为.

(Ⅰ)求及;

(Ⅱ)令bn=(),求数列的前n项和。

2.已知递增的等比数列满足是的等差中项。

(Ⅰ)求数列的通项公式;

(Ⅱ)若是数列的前项和,求

3.等比数列为递增数列,且,数列(n∈N※)

(1)求数列的前项和;

(2),求使成立的最小值.

4.已知数列{

}、{

}满足:.(1)求;

(2)求数列{

}的通项公式;

(3)设,求实数为何值时恒成立

5.在数列中,为其前项和,满足.

(I)若,求数列的通项公式;

(II)若数列为公比不为1的等比数列,且,求.

6.已知数列中,,(1)求证:数列为等比数列。

(2)设数列的前项和为,若,求正整数列的最小值。

7.已知数列的前n项和为,若

(1)求证:为等比数列;

(2)求数列的前n项和。

8.已知数列中,当时,其前项和满足.

(1)求的表达;

(2)求数列的通项公式;

9.已知数列的首项,其中。

(1)求证:数列为等比数列;

(2)记,若,求最大的正整数.

10已知数列的前项和为,且对任意,有成等差数列.

(1)记数列,求证:数列是等比数列;

(2)数列的前项和为,求满足的所有的值.

11.已知数列的前n项和满足:(为常数,)

(1)求的通项公式;

(2)设,若数列为等比数列,求的值;

(3)在满足条件(2)的情形下,数列的前n项和为.

求证:.

正数数列{an}的前n项和为Sn,且2.

(1)试求数列{an}的通项公式;

(2)设bn=,{bn}的前n项和为Tn,求证:.

13已知数列是公差不为零的等差数列,其前项和为,且,又

成等比数列.

(1)求;

(2)若对任意,都有,求的最小值.

14已知数列满足:.

(1)求证:数列是等比数列;

(2)令(),如果对任意,都有,求实数的取值范围.

在数列中,,(1)设,求数列的通项公式;

(2)求数列的前项和.

16.已知各项均为正数的数列{an}前n项和为Sn,(p

1)Sn

=

p2

an,n

∈N*,p

0且p≠1,数列{bn}满足bn

=

2logpan.

(1)若p

=,设数列的前n项和为Tn,求证:0

Tn≤4;

(2)是否存在自然数M,使得当n

M时,an

1恒成立?若存在,求出相应的M;若不存在,请说明理由.

17.设数列的前n项和为,且对任意正整数n都成立,其中为常数,且,(1)求证:是等比数列;

(2)设数列的公比,数列满足:,求数列的前项和.

END

第三篇:高考数列压轴题汇总(附答案解析)

高考数列压轴题

一.解答题(共50小题)

1.数列{an}满足a1=1,a2=+,…,an=++…+(n∈N*)

(1)求a2,a3,a4,a5的值;

(2)求an与an﹣1之间的关系式(n∈N*,n≥2);

(3)求证:(1+)(1+)…(1+)<3(n∈N*)

2.已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;

(Ⅱ)2xn+1﹣xn≤;

(Ⅲ)≤xn≤.

3.数列{an}中,a1=,an+1=(n∈N*)

(Ⅰ)求证:an+1<an;

(Ⅱ)记数列{an}的前n项和为Sn,求证:Sn<1.

4.已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1.

(1)求a2的值;

(2)证明:对任意实数n∈N*,an≤2an+1;

(3)记数列{an}的前n项和为Sn,证明:对任意n∈N*,2﹣≤Sn<3.

5.已知在数列{an}中,.,n∈N*

(1)求证:1<an+1<an<2;

(2)求证:;

(3)求证:n<sn<n+2.

6.设数列{an}满足an+1=an2﹣an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*,(I)当0≤a1≤1时,0≤an≤1;

(II)当a1>1时,an>(a1﹣1)a1n﹣1;

(III)当a1=时,n﹣<Sn<n.

7.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).

(Ⅰ)求S1,S2及数列{Sn}的通项公式;

(Ⅱ)若数列{bn}满足,且{bn}的前n项和为Tn,求证:当n≥2时,.

8.已知数列{an}满足a1=1,(n∈N*),(Ⅰ)

证明:;

(Ⅱ)

证明:.

9.设数列{an}的前n项的和为Sn,已知a1=,an+1=,其中n∈N*.

(1)证明:an<2;

(2)证明:an<an+1;

(3)证明:2n﹣≤Sn≤2n﹣1+()n.

10.数列{an}的各项均为正数,且an+1=an+﹣1(n∈N*),{an}的前n项和是Sn.

(Ⅰ)若{an}是递增数列,求a1的取值范围;

(Ⅱ)若a1>2,且对任意n∈N*,都有Sn≥na1﹣(n﹣1),证明:Sn<2n+1.

11.设an=xn,bn=()2,Sn为数列{an•bn}的前n项和,令fn(x)=Sn﹣1,x∈R,a∈N*.

(Ⅰ)若x=2,求数列{}的前n项和Tn;

(Ⅱ)求证:对∀n∈N*,方程fn(x)=0在xn∈[,1]上有且仅有一个根;

(Ⅲ)求证:对∀p∈N*,由(Ⅱ)中xn构成的数列{xn}满足0<xn﹣xn+p<.

12.已知数列{an},{bn},a0=1,(n=0,1,2,…),Tn为数列{bn}的前n项和.

求证:(Ⅰ)an+1<an;

(Ⅱ);

(Ⅲ).

13.已知数列{an}满足:a1=,an=an﹣12+an﹣1(n≥2且n∈N).

(Ⅰ)求a2,a3;并证明:2﹣≤an≤•3;

(Ⅱ)设数列{an2}的前n项和为An,数列{}的前n项和为Bn,证明:=an+1.

14.已知数列{an}的各项均为非负数,其前n项和为Sn,且对任意的n∈N*,都有.

(1)若a1=1,a505=2017,求a6的最大值;

(2)若对任意n∈N*,都有Sn≤1,求证:.

15.已知数列{an}中,a1=4,an+1=,n∈N*,Sn为{an}的前n项和.

(Ⅰ)求证:n∈N*时,an>an+1;

(Ⅱ)求证:n∈N*时,2≤Sn﹣2n<.

16.已知数列{an}满足,a1=1,an=﹣.

(1)求证:an≥;

(2)求证:|an+1﹣an|≤;

(3)求证:|a2n﹣an|≤.

17.设数列{an}满足:a1=a,an+1=(a>0且a≠1,n∈N*).

(1)证明:当n≥2时,an<an+1<1;

(2)若b∈(a2,1),求证:当整数k≥+1时,ak+1>b.

18.设a>3,数列{an}中,a1=a,an+1=,n∈N*.

(Ⅰ)求证:an>3,且<1;(Ⅱ)当a≤4时,证明:an≤3+.

19.已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).

(Ⅰ)证明:an>1;

(Ⅱ)证明:++…+<(n≥2).

20.已知数列{an}满足:.

(1)求证:;

(2)求证:.

21.已知数列{an}满足a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣).

(1)求数列{an}的通项公式;

(2)求证:++…+<;

(3)记Sn=++…+,证明:对于一切n≥2,都有Sn2>2(++…+).

22.已知数列{an}满足a1=1,an+1=,n∈N*.

(1)求证:≤an≤1;

(2)求证:|a2n﹣an|≤.

23.已知数列{an]的前n项和记为Sn,且满足Sn=2an﹣n,n∈N*

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)证明:+…(n∈N*)

24.已知数列{an}满足:a1=,an+1=+an(n∈N*).

(1)求证:an+1>an;

(2)求证:a2017<1;

(3)若ak>1,求正整数k的最小值.

25.已知数列{an}满足:an2﹣an﹣an+1+1=0,a1=2

(1)求a2,a3;

(2)证明数列为递增数列;

(3)求证:<1.

26.已知数列{an}满足:a1=1,(n∈N*)

(Ⅰ)求证:an≥1;

(Ⅱ)证明:≥1+

(Ⅲ)求证:<an+1<n+1.

27.在正项数列{an}中,已知a1=1,且满足an+1=2an(n∈N*)

(Ⅰ)求a2,a3;

(Ⅱ)证明.an≥.

28.设数列{an}满足.

(1)证明:;

(2)证明:.

29.已知数列{an}满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.

(Ⅰ)求证:{bn}是等比数列;

(Ⅱ)记数列{nbn}的前n项和为Tn,求Tn;

(Ⅲ)求证:﹣<+…+.

30.已知数列{an}中,a1=3,2an+1=an2﹣2an+4.

(Ⅰ)证明:an+1>an;

(Ⅱ)证明:an≥2+()n﹣1;

(Ⅲ)设数列{}的前n项和为Sn,求证:1﹣()n≤Sn<1.

31.已知数列{an}满足a1=,an+1=,n∈N*.

(1)求a2;

(2)求{}的通项公式;

(3)设{an}的前n项和为Sn,求证:(1﹣()n)≤Sn<.

32.数列{an}中,a1=1,an=.

(1)证明:an<an+1;

(2)证明:anan+1≥2n+1;

(3)设bn=,证明:2<bn<(n≥2).

33.已知数列{an}满足,(1)若数列{an}是常数列,求m的值;

(2)当m>1时,求证:an<an+1;

(3)求最大的正数m,使得an<4对一切整数n恒成立,并证明你的结论.

34.已知数列{an}满足:,p>1,.

(1)证明:an>an+1>1;

(2)证明:;

(3)证明:.

35.数列{an}满足a1=,an+1﹣an+anan+1=0(n∈N*).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…an<1.

36.已知数列{an}满足a1=1,an+1=an2+p.

(1)若数列{an}就常数列,求p的值;

(2)当p>1时,求证:an<an+1;

(3)求最大的正数p,使得an<2对一切整数n恒成立,并证明你的结论.

37.已知数列{an}满足a1=a>4,(n∈N*)

(1)求证:an>4;

(2)判断数列{an}的单调性;

(3)设Sn为数列{an}的前n项和,求证:当a=6时,.

38.已知数列{an}满足a1=1,an+1=.

(Ⅰ)求证:an+1<an;

(Ⅱ)求证:≤an≤.

39.已知数列{an}满足:a1=1,.

(1)若b=1,证明:数列是等差数列;

(2)若b=﹣1,判断数列{a2n﹣1}的单调性并说明理由;

(3)若b=﹣1,求证:.

40.已知数列{an}满足,(n=1,2,3…),Sn=b1+b2+…+bn.

证明:(Ⅰ)an﹣1<an<1(n≥1);

(Ⅱ)(n≥2).

41.已知数列{an}满足a1=1,an+1=,n∈N*,记S,Tn分别是数列{an},{a}的前n项和,证明:当n∈N*时,(1)an+1<an;

(2)Tn=﹣2n﹣1;

(3)﹣1<Sn.

42.已知数列{an}满足a1=3,an+1=an2+2an,n∈N*,设bn=log2(an+1).

(I)求{an}的通项公式;

(II)求证:1+++…+<n(n≥2);

(III)若=bn,求证:2≤<3.

43.已知正项数列{an}满足a1=3,n∈N*.

(1)求证:1<an≤3,n∈N*;

(2)若对于任意的正整数n,都有成立,求M的最小值;

(3)求证:a1+a2+a3+…+an<n+6,n∈N*.

44.已知在数列{an}中,,n∈N*.

(1)求证:1<an+1<an<2;

(2)求证:;

(3)求证:n<sn<n+2.

45.已知数列{an}中,(n∈N*).

(1)求证:;

(2)求证:是等差数列;

(3)设,记数列{bn}的前n项和为Sn,求证:.

46.已知无穷数列{an}的首项a1=,=n∈N*.

(Ⅰ)证明:0<an<1;

(Ⅱ)

记bn=,Tn为数列{bn}的前n项和,证明:对任意正整数n,Tn.

47.已知数列{xn}满足x1=1,xn+1=2+3,求证:

(I)0<xn<9;

(II)xn<xn+1;

(III).

48.数列{an}各项均为正数,且对任意n∈N*,满足an+1=an+can2(c>0且为常数).

(Ⅰ)若a1,2a2,3a3依次成等比数列,求a1的值(用常数c表示);

(Ⅱ)设bn=,Sn是数列{bn}的前n项和,(i)求证:;

(ii)求证:Sn<Sn+1<.

49.设数列满足|an﹣|≤1,n∈N*.

(Ⅰ)求证:|an|≥2n﹣1(|a1|﹣2)(n∈N*)

(Ⅱ)若|an|≤()n,n∈N*,证明:|an|≤2,n∈N*.

50.已知数列{an}满足:a1=1,an+1=an+.(n∈N*)

(Ⅰ)证明:≥1+;

(Ⅱ)求证:<an+1<n+1.

高考数列压轴题

参考答案与试题解析

一.解答题(共50小题)

1.数列{an}满足a1=1,a2=+,…,an=++…+(n∈N*)

(1)求a2,a3,a4,a5的值;

(2)求an与an﹣1之间的关系式(n∈N*,n≥2);

(3)求证:(1+)(1+)…(1+)<3(n∈N*)

【解答】解:(1)a2=+=2+2=4,a3=++=3+6+6=15,a4=+++=4+4×3+4×3×2+4×3×2×1=64,a5=++++=5+20+60+120+120=325;

(2)an=++…+=n+n(n﹣1)+n(n﹣1)(n﹣2)+…+n!

=n+n[(n﹣1)+(n﹣1)(n﹣2)+…+(n﹣1)!]

=n+nan﹣1;

(3)证明:由(2)可知=,所以(1+)(1+)…(1+)=•…

==+++…+=+++…+

=+++…+≤1+1+++…+

=2+1﹣+﹣+…+﹣=3﹣<3(n≥2).

所以n≥2时不等式成立,而n=1时不等式显然成立,所以原命题成立.

2.已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;

(Ⅱ)2xn+1﹣xn≤;

(Ⅲ)≤xn≤.

【解答】解:(Ⅰ)用数学归纳法证明:xn>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则xk>0,那么n=k+1时,若xk+1<0,则0<xk=xk+1+ln(1+xk+1)<0,矛盾,故xn+1>0,因此xn>0,(n∈N*)

∴xn=xn+1+ln(1+xn+1)>xn+1,因此0<xn+1<xn(n∈N*),(Ⅱ)由xn=xn+1+ln(1+xn+1)得xnxn+1﹣4xn+1+2xn=xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0

∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1)≥0,故2xn+1﹣xn≤;

(Ⅲ)∵xn=xn+1+ln(1+xn+1)≤xn+1+xn+1=2xn+1,∴xn≥,由≥2xn+1﹣xn得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴xn≤,综上所述≤xn≤.

3.数列{an}中,a1=,an+1=(n∈N*)

(Ⅰ)求证:an+1<an;

(Ⅱ)记数列{an}的前n项和为Sn,求证:Sn<1.

【解答】证明:(Ⅰ)∵>0,且a1=>0,∴an>0,∴an+1﹣an=﹣an=<0.

∴an+1<an;

(Ⅱ)∵1﹣an+1=1﹣=,∴=.

∴,则,又an>0,∴.

4.已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1.

(1)求a2的值;

(2)证明:对任意实数n∈N*,an≤2an+1;

(3)记数列{an}的前n项和为Sn,证明:对任意n∈N*,2﹣≤Sn<3.

【解答】解:(1)an2+an=3a2n+1+2an+1,a1=1,即有a12+a1=3a22+2a2=2,解得a2=(负的舍去);

(2)证明:an2+an=3a2n+1+2an+1,可得an2﹣4a2n+1+an﹣2an+1+a2n+1=0,即有(an﹣2an+1)(an+2an+1+1)+a2n+1=0,由于正项数列{an},即有an+2an+1+1>0,4a2n+1>0,则有对任意实数n∈N*,an≤2an+1;

(3)由(1)可得对任意实数n∈N*,an≤2an+1;

即为a1≤2a2,可得a2≥,a3≥a2≥,…,an≥,前n项和为Sn=a1+a2+…+an≥1+++…+

==2﹣,又an2+an=3a2n+1+2an+1>a2n+1+an+1,即有(an﹣an+1)(an+an+1+1)>0,则an>an+1,数列{an}递减,即有Sn=a1+a2+…+an<1+1+++…+

=1+=3(1﹣)<3.

则有对任意n∈N*,2﹣≤Sn<3.

5.已知在数列{an}中,.,n∈N*

(1)求证:1<an+1<an<2;

(2)求证:;

(3)求证:n<sn<n+2.

【解答】证明:(1)先用数学归纳法证明1<an<2.

①.n=1时,②.假设n=k时成立,即1<ak<2.

那么n=k+1时,成立.

由①②知1<an<2,n∈N*恒成立..

所以1<an+1<an<2成立.

(2),当n≥3时,而1<an<2.所以.

由,得,所以

(3)由(1)1<an<2得sn>n

由(2)得,6.设数列{an}满足an+1=an2﹣an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*,(I)当0≤a1≤1时,0≤an≤1;

(II)当a1>1时,an>(a1﹣1)a1n﹣1;

(III)当a1=时,n﹣<Sn<n.

【解答】证明:(Ⅰ)用数学归纳法证明.

①当n=1时,0≤an≤1成立.

②假设当n=k(k∈N*)时,0≤ak≤1,则当n=k+1时,=()2+∈[]⊂[0,1],由①②知,.

∴当0≤a1≤1时,0≤an≤1.

(Ⅱ)由an+1﹣an=()﹣an=(an﹣1)2≥0,知an+1≥an.

若a1>1,则an>1,(n∈N*),从而=﹣an=an(an﹣1),即=an≥a1,∴,∴当a1>1时,an>(a1﹣1)a1n﹣1.

(Ⅲ)当时,由(Ⅰ),0<an<1(n∈N*),故Sn<n,令bn=1﹣an(n∈N*),由(Ⅰ)(Ⅱ),bn>bn+1>0,(n∈N*),由,得.

∴=(b1﹣b2)+(b2﹣b3)+…+(bn﹣bn+1)=b1﹣bn+1<b1=,∵≥,∴nbn2,即,(n∈N*),∵==,∴b1+b2+…+bn[()+()+…+()]=,即n﹣Sn,亦即,∴当时,.

7.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).

(Ⅰ)求S1,S2及数列{Sn}的通项公式;

(Ⅱ)若数列{bn}满足,且{bn}的前n项和为Tn,求证:当n≥2时,.

【解答】解:(Ⅰ)数列{an}满足Sn=2an+1,则Sn=2an+1=2(Sn+1﹣Sn),即3Sn=2Sn+1,∴,即数列{Sn}为以1为首项,以为公比的等比数列,∴Sn=()n﹣1(n∈N*).

∴S1=1,S2=;

(Ⅱ)在数列{bn}中,Tn为{bn}的前n项和,则|Tn|=|=.

而当n≥2时,即.

8.已知数列{an}满足a1=1,(n∈N*),(Ⅰ)

证明:;

(Ⅱ)

证明:.

【解答】(Ⅰ)

证明:∵①,∴②

由②÷①得:,∴

(Ⅱ)

证明:由(Ⅰ)得:(n+1)an+2=nan

令bn=nan,则③

∴bn﹣1•bn=n④

由b1=a1=1,b2=2,易得bn>0

由③﹣④得:

∴b1<b3<…<b2n﹣1,b2<b4<…<b2n,得bn≥1

根据bn•bn+1=n+1得:bn+1≤n+1,∴1≤bn≤n

=

=

一方面:

另一方面:由1≤bn≤n可知:.

9.设数列{an}的前n项的和为Sn,已知a1=,an+1=,其中n∈N*.

(1)证明:an<2;

(2)证明:an<an+1;

(3)证明:2n﹣≤Sn≤2n﹣1+()n.

【解答】证明:(1)an+1﹣2=﹣2=,由于+2=+1>0,+2=2+>0.

∴an+1﹣2与an﹣2同号,因此与a1﹣2同号,而a1﹣2=﹣<0,∴an<2.

(2)an+1﹣1=,可得:an+1﹣1与an﹣1同号,因此与a1﹣1同号,而a1﹣1=>0,∴an>1.

又an<2.∴1<an<2.an+1﹣an=,可得分子>0,分母>0.

∴an+1﹣an>0,故an<an+1.

(3)n=1时,S1=,满足不等式.

n≥2时,==,∴,即2﹣an≥.

∴2n﹣Sn≥=1﹣.即Sn≤2n﹣1+.

另一方面:由(II)可知:.,=≤.

从而可得:=≤.

∴2﹣an≤,∴2n﹣Sn≤=.

∴Sn≥2n﹣>2n﹣.

综上可得:2n﹣≤Sn≤2n﹣1+()n.

10.数列{an}的各项均为正数,且an+1=an+﹣1(n∈N*),{an}的前n项和是Sn.

(Ⅰ)若{an}是递增数列,求a1的取值范围;

(Ⅱ)若a1>2,且对任意n∈N*,都有Sn≥na1﹣(n﹣1),证明:Sn<2n+1.

【解答】(I)解:由a2>a1>0⇔﹣1>a1>0,解得0<a1<2,①.

又a3>a2>0,⇔>a2,⇔0<a2<2⇔﹣1<2,解得1<a1<2,②.

由①②可得:1<a1<2.

下面利用数学归纳法证明:当1<a1<2时,∀n∈N*,1<an<2成立.

(1)当n=1时,1<a1<2成立.

(2)假设当n=k∈N*时,1<an<2成立.

则当n=k+1时,ak+1=ak+﹣1∈⊊(1,2),即n=k+1时,不等式成立.

综上(1)(2)可得:∀n∈N*,1<an<2成立.

于是an+1﹣an=﹣1>0,即an+1>an,∴{an}是递增数列,a1的取值范围是(1,2).

(II)证明:∵a1>2,可用数学归纳法证明:an>2对∀n∈N*都成立.

于是:an+1﹣an=﹣1<2,即数列{an}是递减数列.

在Sn≥na1﹣(n﹣1)中,令n=2,可得:2a1+﹣1=S2≥2a1﹣,解得a1≤3,因此2<a1≤3.

下证:(1)当时,Sn≥na1﹣(n﹣1)恒成立.

事实上,当时,由an=a1+(an﹣a1)≥a1+(2﹣)=.

于是Sn=a1+a2+…+an≥a1+(n﹣1)=na1﹣.

再证明:(2)时不合题意.

事实上,当时,设an=bn+2,可得≤1.

由an+1=an+﹣1(n∈N*),可得:bn+1=bn+﹣1,可得=≤≤.

于是数列{bn}的前n和Tn≤<3b1≤3.

故Sn=2n+Tn<2n+3=na1+(2﹣a1)n+3,③.

令a1=+t(t>0),由③可得:Sn<na1+(2﹣a1)n+3=na1﹣﹣tn+.

只要n充分大,可得:Sn<na1﹣.这与Sn≥na1﹣(n﹣1)恒成立矛盾.

∴时不合题意.

综上(1)(2)可得:,于是可得=≤≤.(由可得:).

故数列{bn}的前n项和Tn≤<b1<1,∴Sn=2n+Tn<2n+1.

11.设an=xn,bn=()2,Sn为数列{an•bn}的前n项和,令fn(x)=Sn﹣1,x∈R,a∈N*.

(Ⅰ)若x=2,求数列{}的前n项和Tn;

(Ⅱ)求证:对∀n∈N*,方程fn(x)=0在xn∈[,1]上有且仅有一个根;

(Ⅲ)求证:对∀p∈N*,由(Ⅱ)中xn构成的数列{xn}满足0<xn﹣xn+p<.

【解答】解:(Ⅰ)若x=2,an=2n,则=(2n﹣1)()n,则Tn=1×()1+3×()2+…+(2n﹣1)()n,∴Tn=1×()2+3×()3+…+(2n﹣1)()n+1,∴Tn=+2×[()2+()3+…+()n]﹣(2n﹣1)()n+1

=+2×﹣(2n﹣1)()n+1=+1﹣()n﹣1﹣(2n﹣1)()n+1,∴Tn=3﹣()n﹣2﹣(2n﹣1)()n=3﹣;

(Ⅱ)证明:fn(x)=﹣1+x+++…+(x∈R,n∈N+),fn′(x)=1+++…+>0,故函数f(x)在(0,+∞)上是增函数.

由于f1(x1)=0,当n≥2时,fn(1)=++…+>0,即fn(1)>0.

又fn()=﹣1++[+++…+]≤﹣+•()i,=﹣+×=﹣•()n﹣1<0,根据函数的零点的判定定理,可得存在唯一的xn∈[,1],满足fn(xn)=0.

(Ⅲ)证明:对于任意p∈N+,由(1)中xn构成数列{xn},当x>0时,∵fn+1(x)=fn(x)+>fn(x),∴fn+1(xn)>fn(xn)=fn+1(xn+1)=0.

fn+1(x)

在(0,+∞)上单调递增,可得

xn+1<xn,即

xn﹣xn+1>0,故数列{xn}为减数列,即对任意的n、p∈N+,xn﹣xn+p>0.

由于

fn(xn)=﹣1+xn+++…+=0,①,fn+p

(xn+p)=﹣1+xn+p+++…++[++…+],②,用①减去②并移项,利用

0<xn+p≤1,可得

xn﹣xn+p=+≤≤<=﹣<.

综上可得,对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn﹣xn+p<.

12.已知数列{an},{bn},a0=1,(n=0,1,2,…),Tn为数列{bn}的前n项和.

求证:(Ⅰ)an+1<an;

(Ⅱ);

(Ⅲ).

【解答】解:证明:(Ⅰ)=,所以an+1<an

(Ⅱ)法一、记,则,原命题等价于证明;用数学归纳法

提示:构造函数在(1,+∞)单调递增,故==+>+×=+×(﹣)=,法二、只需证明,由,故:n=1时,n≥2,可证:,(3)由,得=,可得:,叠加可得,所以,13.已知数列{an}满足:a1=,an=an﹣12+an﹣1(n≥2且n∈N).

(Ⅰ)求a2,a3;并证明:2﹣≤an≤•3;

(Ⅱ)设数列{an2}的前n项和为An,数列{}的前n项和为Bn,证明:=an+1.

【解答】解:(I)a2=a12+a1==,a3=a22+a2==.

证明:∵an=an﹣12+an﹣1,∴an+=an﹣12+an﹣1+=(an﹣1+)2+>(an﹣1+)2,∴an+>(an﹣1+)2>(an﹣2+)4>>(an﹣3+)8>…>(a1+)=2,∴an>2﹣,又∵an﹣an﹣1=an﹣12>0,∴an>an﹣1>an﹣2>…>a1>1,∴an2>an,∴an=an﹣12+an﹣1<2a,∴an<2a<2•22<2•22•24<…<2•22•24•…•2a1

=2•()=•3.

综上,2﹣≤an≤•3.

(II)证明:∵an=an﹣12+an﹣1,∴an﹣12=an﹣an﹣1,∴An=a12+a22+a32+…an2=(a2﹣a1)+(a3﹣a2)+…+(an+1﹣an)=an+1﹣,∵an=an﹣12+an﹣1=an﹣1(an﹣1+1),∴==,∴=,∴Bn=…+=()+()+(﹣)+…+()

=﹣.

∴==.

14.已知数列{an}的各项均为非负数,其前n项和为Sn,且对任意的n∈N*,都有.

(1)若a1=1,a505=2017,求a6的最大值;

(2)若对任意n∈N*,都有Sn≤1,求证:.

【解答】解:(1)由题意知an+1﹣an≤an+2﹣an+1,设di=ai+1﹣ai(i=1,2,…,504),则d1≤d2≤d3≤…≤d504,且d1+d2+d3+…+d504=2016,∵=,所以d1+d2+…+d5≤20,∴a6=a1+(d1+d2+…+d5)≤21.

(2)证明:若存在k∈N*,使得ak<ak+1,则由,得ak+1≤ak﹣ak+1≤ak+2,因此,从an项开始,数列{an}严格递增,故a1+a2+…+an≥ak+ak+1+…+an≥(n﹣k+1)ak,对于固定的k,当n足够大时,必有a1+a2+…+an≥1,与题设矛盾,所以{an}不可能递增,即只能an﹣an+1≥0.

令bk=ak﹣ak+1,(k∈N*),由ak﹣ak+1≥ak+1﹣ak+2,得bk≥bk+1,bk>0,故1≥a1+a2+…+an=(b1+a2)+a2+…+an=b1+2(b2+a3)+a3+…+an,=…=b1+2b2+…+nbn+nan,所以,综上,对一切n∈N*,都有.

15.已知数列{an}中,a1=4,an+1=,n∈N*,Sn为{an}的前n项和.

(Ⅰ)求证:n∈N*时,an>an+1;

(Ⅱ)求证:n∈N*时,2≤Sn﹣2n<.

【解答】证明:(I)n≥2时,作差:an+1﹣an=﹣=,∴an+1﹣an与an﹣an﹣1同号,由a1=4,可得a2==,可得a2﹣a1<0,∴n∈N*时,an>an+1.

(II)∵2=6+an,∴=an﹣2,即2(an+1﹣2)(an+1+2)=an﹣2,①

∴an+1﹣2与an﹣2同号,又∵a1﹣2=2>0,∴an>2.

∴Sn=a1+a2+…+an≥4+2(n﹣1)=2n+2.

∴Sn﹣2n≥2.

由①可得:=,因此an﹣2≤(a1﹣2),即an≤2+2×.

∴Sn=a1+a2+…+an≤2n+2×<2n+.

综上可得:n∈N*时,2≤Sn﹣2n<.

16.已知数列{an}满足,a1=1,an=﹣.

(1)求证:an≥;

(2)求证:|an+1﹣an|≤;

(3)求证:|a2n﹣an|≤.

【解答】证明:(1)∵a1=1,an=﹣.

∴a2=,a3=,a4=,猜想:≤an≤1.

下面用数学归纳法证明.

(i)当n=1时,命题显然成立;

(ii)假设n=k时,≤1成立,则当n=k+1时,ak+1=≤<1.,即当n=k+1时也成立,所以对任意n∈N*,都有.

(2)当n=1时,当n≥2时,∵,∴.

(3)当n=1时,|a2﹣a1|=<;

当n≥2时,|a2n﹣an|≤|a2n﹣a2n﹣1|+|a2n﹣1﹣a2n﹣2|+…+|an+1﹣an|.

17.设数列{an}满足:a1=a,an+1=(a>0且a≠1,n∈N*).

(1)证明:当n≥2时,an<an+1<1;

(2)若b∈(a2,1),求证:当整数k≥+1时,ak+1>b.

【解答】证明:(1)由an+1=知an与a1的符号相同,而a1=a>0,∴an>0,∴an+1=≤1,当且仅当an=1时,an+1=1

下面用数学归纳法证明:

①∵a>0且a≠1,∴a2<1,∴=>1,即有a2<a3<1,②假设n=k时,有ak<ak+1<1,则

ak+2==<1且=>1,即ak+1<ak+2<1

即当n=k+1时不等式成立,由①②可得当n≥2时,an<an+1<1;

(2)若ak≥b,由(1)知ak+1>ak≥b,若ak<b,∵0<x<1以及二项式定理可知(1+x)n=1+Cn1x+…+Cnnxn≥nx,而ak2+1<b2+1<b+1,且a2<a3<…<ak<b<1

∴ak+1=a2••…,=a2•

>a2•()k﹣1>a2•()k﹣1=a2•(1+)k﹣1,≥a2•[1+(k﹣1)],∵k≥+1,∴1+(k﹣1)≥+1=,∴ak+1>b.

18.设a>3,数列{an}中,a1=a,an+1=,n∈N*.

(Ⅰ)求证:an>3,且<1;

(Ⅱ)当a≤4时,证明:an≤3+.

【解答】证明:(I)∵an+1﹣3=﹣3=.=﹣=,∴()=>0,∴与同号,又a>3,∴=a﹣>0,∴>0,∴an+1﹣3>0,即an>3(n=1时也成立).

∴==<1.

综上可得:an>3,且<1;

(Ⅱ)当a≤4时,∵an+1﹣3=﹣3=.

∴=,由(I)可知:3<an≤a1=a≤4,∴3<an≤4.

设an﹣3=t∈(0,1].

∴==≤,∴•…•≤,∴an﹣3≤(a1﹣3)×≤,∴an≤3+.

19.已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).

(Ⅰ)证明:an>1;

(Ⅱ)证明:++…+<(n≥2).

【解答】证明:(Ⅰ)由题意得(n+1)an+12﹣(n+1)=nan2﹣n+an﹣1,∴(n+1)(an+1+1)(an+1﹣1)=(an﹣1)(nan+n+1),由an>0,n∈N*,∴(n+1)(an+1+1)>0,nan+n+1>0,∴an+1﹣1与an﹣1同号,∵a1﹣1=1>0,∴an>1;

(Ⅱ)由(Ⅰ)知,故(n+1)an+12=nan2+an<(n+1)an2,∴an+1<an,1<an≤2,又由题意可得an=(n+1)an+12﹣nan2,∴a1=2a22﹣a12,a2=3a32﹣2a22,…,an=(n+1)an+12﹣nan2,相加可得a1+a2+…+an=(n+1)an+12﹣4<2n,∴an+12≤,即an2≤,n≥2,∴≤2(+)≤2(﹣)+(﹣+),n≥2,当n=2时,=<,当n=3时,+≤<<,当n≥4时,++…+<2(+++)+(++﹣)=1+++++<,从而,原命题得证

20.已知数列{an}满足:.

(1)求证:;

(2)求证:.

【解答】证明:(1)由,所以,因为,所以an+2<an+1<2.

(2)假设存在,由(1)可得当n>N时,an≤aN+1<1,根据,而an<1,所以.

于是,….

累加可得(*)

由(1)可得aN+n﹣1<0,而当时,显然有,因此有,这显然与(*)矛盾,所以.

21.已知数列{an}满足a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣).

(1)求数列{an}的通项公式;

(2)求证:++…+<;

(3)记Sn=++…+,证明:对于一切n≥2,都有Sn2>2(++…+).

【解答】解:(1)a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣),可得an+12+an2﹣2an+1an﹣2an+1+2an+1=0,即有(an+1﹣an)2﹣2(an+1﹣an)+1=0,即为(an+1﹣an﹣1)2=0,可得an+1﹣an=1,则an=a1+n﹣1=n,n∈N*;

(2)证明:由=<=﹣,n≥2.

则++…+=1+++…+

<1++﹣+﹣+…+﹣=﹣<,故原不等式成立;

(3)证明:Sn=++…+=1++…+,当n=2时,S22=(1+)2=>2•=成立;

假设n=k≥2,都有Sk2>2(++…+).

则n=k+1时,Sk+12=(Sk+)2,Sk+12﹣2(++…++)

=(Sk+)2﹣2(++…+)﹣2•

=Sk2﹣2(++…+)++2•﹣2•

=Sk2﹣2(++…+)+,由k>1可得>0,且Sk2>2(++…+).

可得Sk2﹣2(++…+)>0,则Sk+12>2(++…++)恒成立.

综上可得,对于一切n≥2,都有Sn2>2(++…+).

22.已知数列{an}满足a1=1,an+1=,n∈N*.

(1)求证:≤an≤1;

(2)求证:|a2n﹣an|≤.

【解答】证明:(1)用数学归纳法证明:

①当n=1时,=,成立;

②假设当n=k时,有成立,则当n=k+1时,≤≤1,≥=,∴当n=k+1时,命题也成立.

由①②得≤an≤1.

(2)当n=1时,|a2﹣a1|=,当n≥2时,∵()()=()=1+=,∴|an+1﹣an|=||=≤|an﹣an﹣1|<…<()n﹣1|a2﹣a1|=,∴|a2n﹣a2n﹣1|≤|a2n﹣a2n﹣1|+|a2n﹣1﹣a2n﹣2|+…+|an+1﹣an|

≤=

=()n﹣1﹣()2n﹣1≤,综上:|a2n﹣an|≤.

23.已知数列{an]的前n项和记为Sn,且满足Sn=2an﹣n,n∈N*

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)证明:+…(n∈N*)

【解答】解:(Ⅰ)∵Sn=2an﹣n(n∈N+),∴Sn﹣1=2an﹣1﹣n+1=0(n≥2),两式相减得:an=2an﹣1+1,变形可得:an+1=2(an﹣1+1),又∵a1=2a1﹣1,即a1=1,∴数列{an+1}是首项为2、公比为2的等比数列,∴an+1=2•2n﹣1=2n,an=2n﹣1.

(Ⅱ)由,(k=1,2,…n),∴=,由=﹣,(k=1,2,…n),得﹣=,综上,+…(n∈N*).

24.已知数列{an}满足:a1=,an+1=+an(n∈N*).

(1)求证:an+1>an;

(2)求证:a2017<1;

(3)若ak>1,求正整数k的最小值.

【解答】(1)证明:an+1﹣an=≥0,可得an+1≥an.

∵a1=,∴an.

∴an+1﹣an=>0,∴an+1>an.

(II)证明:由已知==,∴=﹣,由=,=,…,=,累加求和可得:=++…+,当k=2017时,由(I)可得:=a1<a2<…<a2016.

∴﹣=++…+<<1,∴a2017<1.

(III)解:由(II)可得:可得:=a1<a2<…<a2016<a2017<1.

∴﹣=++…+>2017×=1,∴a2017<1<a2018,又∵an+1>an.∴k的最小值为2018.

25.已知数列{an}满足:an2﹣an﹣an+1+1=0,a1=2

(1)求a2,a3;

(2)证明数列为递增数列;

(3)求证:<1.

【解答】(1)解:∵a1=2,∴a2=22﹣2+1=3,同理可得:a3=7.

(2)证明:,对n∈N*恒成立,∴an+1>an.

(3)证明:

故=.

26.已知数列{an}满足:a1=1,(n∈N*)

(Ⅰ)求证:an≥1;

(Ⅱ)证明:≥1+

(Ⅲ)求证:<an+1<n+1.

【解答】证明:(I)数列{an}满足:a1=1,(n∈N*),可得:,⇒an+1≥an≥an﹣1≥…≥a1=1;

(Ⅱ)由(Ⅰ)可得:;

(Ⅲ),由(Ⅱ)得:,所以,累加得:,另一方面由an≤n可得:原式变形为,所以:,累加得.

27.在正项数列{an}中,已知a1=1,且满足an+1=2an(n∈N*)

(Ⅰ)求a2,a3;

(Ⅱ)证明.an≥.

【解答】解:(Ⅰ)∵在正项数列{an}中,a1=1,且满足an+1=2an(n∈N*),∴=,=.

证明:(Ⅱ)①当n=1时,由已知,成立;

②假设当n=k时,不等式成立,即,∵f(x)=2x﹣在(0,+∞)上是增函数,∴≥

=()k+()k﹣

=()k+

=()k+,∵k≥1,∴2×()k﹣3﹣3=0,∴,即当n=k+1时,不等式也成立.

根据①②知不等式对任何n∈N*都成立.

28.设数列{an}满足.

(1)证明:;

(2)证明:.

【解答】(本题满分15分)

证明:(I)易知an>0,所以an+1>an+>an,所以

ak+1=ak+<ak+,所以.

所以,当n≥2时,=,所以an<1.

又,所以an<1(n∈N*),所以

an<an+1<1(n∈N*).…(8分)

(II)当n=1时,显然成立.

由an<1,知,所以,所以,所以,所以,当n≥2时,=,即.

所以(n∈N*).

…(7分)

29.已知数列{an}满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.

(Ⅰ)求证:{bn}是等比数列;

(Ⅱ)记数列{nbn}的前n项和为Tn,求Tn;

(Ⅲ)求证:﹣<+…+.

【解答】(I)证明:a1=2,an+1=2(Sn+n+1)(n∈N*),∴a2=2×(2+1+1)=8.

n≥2时,an=2(Sn﹣1+n),相减可得:an+1=3an+2,变形为:an+1+1=3(an+1),n=1时也成立.

令bn=an+1,则bn+1=3bn.∴{bn}是等比数列,首项为3,公比为3.

(II)解:由(I)可得:bn=3n.

∴数列{nbn}的前n项和Tn=3+2×32+3×33+…+n•3n,3Tn=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2Tn=3+32+…+3n﹣n•3n+1=﹣n•3n+1=×3n+1﹣,解得Tn=+.

(III)证明:∵bn=3n=an+1,解得an=3n﹣1.

由=.

∴+…+>…+==,因此左边不等式成立.

又由==<=,可得+…+<++…+

=<.因此右边不等式成立.

综上可得:﹣<+…+.

30.已知数列{an}中,a1=3,2an+1=an2﹣2an+4.

(Ⅰ)证明:an+1>an;

(Ⅱ)证明:an≥2+()n﹣1;

(Ⅲ)设数列{}的前n项和为Sn,求证:1﹣()n≤Sn<1.

【解答】证明:(I)an+1﹣an=﹣an=≥0,∴an+1≥an≥3,∴(an﹣2)2>0

∴an+1﹣an>0,即an+1>an;

(II)∵2an+1﹣4=an2﹣2an=an(an﹣2)

∴=≥,∴an﹣2≥(an﹣1﹣2)≥()2(an﹣2﹣2)≥()3(an﹣3﹣2)≥…≥()n﹣1(a1﹣2)=()n﹣1,∴an≥2+()n﹣1;

(Ⅲ)∵2(an+1﹣2)=an(an﹣2),∴==(﹣)

∴=﹣,∴=﹣+,∴Sn=++…+=﹣+﹣+…+﹣=﹣=1﹣,∵an+1﹣2≥()n,∴0<≤()n,∴1﹣()n≤Sn=1﹣<1.

31.已知数列{an}满足a1=,an+1=,n∈N*.

(1)求a2;

(2)求{}的通项公式;

(3)设{an}的前n项和为Sn,求证:(1﹣()n)≤Sn<.

【解答】(1)解:∵a1=,a,n∈N+.∴a2==.

(2)解:∵a1=,a,n∈N+.∴=﹣,化为:﹣1=,∴数列是等比数列,首项与公比都为.

∴﹣1=,解得=1+.

(3)证明:一方面:由(2)可得:an=≥=.

∴Sn≥+…+==,因此不等式左边成立.

另一方面:an==,∴Sn≤+++…+=×<×3<(n≥3).

又n=1,2时也成立,因此不等式右边成立.

综上可得:(1﹣()n)≤Sn<.

32.数列{an}中,a1=1,an=.

(1)证明:an<an+1;

(2)证明:anan+1≥2n+1;

(3)设bn=,证明:2<bn<(n≥2).

【解答】证明:(1)数列{an}中,a1=1,an=.

可得an>0,an2=anan+1﹣2,可得an+1=an+>an,即an<an+1;

(2)由(1)可得anan﹣1<an2=anan+1﹣2,可得anan+1﹣anan﹣1>2,n=1时,anan+1=a12+2=3,2n+1=3,则原不等式成立;

n≥2时,anan+1>3+2(n﹣1)=2n+1,综上可得,anan+1≥2n+1;

(3)bn=,要证2<bn<(n≥2),即证2<an<,只要证4n<an2<5n,由an+1=an+,可得an+12=an2+4+,且a2=3,an+12﹣an2=4+>4,且4+<4+=4+=,即有an+12﹣an2∈(4,),由n=2,3,…,累加可得

an2﹣a22∈(4(n﹣2),),即有an2∈(4n+1,)⊆(4n,5n),故2<bn<(n≥2).

33.已知数列{an}满足,(1)若数列{an}是常数列,求m的值;

(2)当m>1时,求证:an<an+1;

(3)求最大的正数m,使得an<4对一切整数n恒成立,并证明你的结论.

【解答】解:(1)若数列{an}是常数列,则,得.显然,当时,有an=1.

…(3分)

(2)由条件得,得a2>a1.…(5分)

又因为,两式相减得.

…(7分)

显然有an>0,所以an+2﹣an+1与an+1﹣an同号,而a2﹣a1>0,所以an+1﹣an>0,从而有an<an+1.…(9分)

(3)因为,…(10分)

所以an=a1+(a2﹣a1)+…+(an﹣an﹣1)≥1+(n﹣1)(m﹣2).

这说明,当m>2时,an越来越大,显然不可能满足an<4.

所以要使得an<4对一切整数n恒成立,只可能m≤2.…(12分)

下面证明当m=2时,an<4恒成立.用数学归纳法证明:

当n=1时,a1=1显然成立.

假设当n=k时成立,即ak<4,则当n=k+1时,成立.

由上可知an<4对一切正整数n恒成立.

因此,正数m的最大值是2.…(15分)

34.已知数列{an}满足:,p>1,.

(1)证明:an>an+1>1;

(2)证明:;

(3)证明:.

【解答】证明:(1)先用数学归纳法证明an>1.

①当n=1时,∵p>1,∴;

②假设当n=k时,ak>1,则当n=k+1时,.

由①②可知an>1.

再证an>an+1.,令f(x)=x﹣1﹣xlnx,x>1,则f'(x)=﹣lnx<0,所以f(x)在(1,+∞)上单调递减,所以f(x)<f(1)=0,所以,即an>an+1.

(2)要证,只需证,只需证其中an>1,先证,令f(x)=2xlnx﹣x2+1,x>1,只需证f(x)<0.

因为f'(x)=2lnx+2﹣2x<2(x﹣1)+2﹣2x=0,所以f(x)在(1,+∞)上单调递减,所以f(x)<f(1)=0.

再证(an+1)lnan﹣2an+2>0,令g(x)=(x+1)lnx﹣2x+2,x>1,只需证g(x)>0,令,x>1,则,所以h(x)在(1,+∞)上单调递增,所以h(x)>h(1)=0,从而g'(x)>0,所以g(x)在(1,+∞)上单调递增,所以g(x)>g(1)=0,综上可得.

(3)由(2)知,一方面,由迭代可得,因为lnx≤x﹣1,所以,所以ln(a1a2…an)=lna1+lna2+…+lnan=;

另一方面,即,由迭代可得.

因为,所以,所以=;

综上,.

35.数列{an}满足a1=,an+1﹣an+anan+1=0(n∈N*).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…an<1.

【解答】解(Ⅰ):由已知可得数列{an}各项非零.

否则,若有ak=0结合ak﹣ak﹣1+akak﹣1=0⇒ak﹣1=0,继而⇒ak﹣1=0⇒ak﹣2=0⇒…⇒a1=0,与已知矛盾.

所以由an+1﹣an+anan+1=0可得.

即数列是公差为1的等差数列.

所以.

所以数列{an}的通项公式是(n∈N*).

(Ⅱ)

证明一:因为.

所以a1+a1a2+a1a2a3+…+a1a2…an=.

所以a1+a1a2+a1a2a3+…+a1a2…an<1.

证明二:a1+a1a2+a1a2a3+…+a1a2…an===.

所以a1+a1a2+a1a2a3+…+a1a2…an<1.

36.已知数列{an}满足a1=1,an+1=an2+p.

(1)若数列{an}就常数列,求p的值;

(2)当p>1时,求证:an<an+1;

(3)求最大的正数p,使得an<2对一切整数n恒成立,并证明你的结论.

【解答】解:(1)若数列{an}是常数列,则,;显然,当时,有an=1

(2)由条件得得a2>a1,又因为,两式相减得

显然有an>0,所以an+2﹣an+1与an+1﹣an同号,而a2﹣a1>0,所以an+1﹣an>0;

从而有an<an+1.

(3)因为,所以an=a1+(a2﹣a1)+…(an﹣an﹣1)>1+(n﹣1)(p﹣1),这说明,当p>1时,an越来越大,不满足an<2,所以要使得an<2对一切整数n恒成立,只可能p≤1,下面证明当p=1时,an<2恒成立;用数学归纳法证明:

当n=1时,a1=1显然成立;

假设当n=k时成立,即ak<2,则当n=k+1时,成立,由上可知对一切正整数n恒成立,因此,正数p的最大值是1

37.已知数列{an}满足a1=a>4,(n∈N*)

(1)求证:an>4;

(2)判断数列{an}的单调性;

(3)设Sn为数列{an}的前n项和,求证:当a=6时,.

【解答】(1)证明:利用数学归纳法证明:

①当n=1时,a1=a>4,成立.

②假设当n=k≥2时,ak>4,.

则ak+1=>=4.

∴n=k+1时也成立.

综上①②可得:∀n∈N*,an>4.

(2)解:∵,(n∈N*).

∴﹣=﹣2an﹣8=﹣9>(4﹣1)2﹣9=0,∴an>an+1.

∴数列{an}单调递减.

(3)证明:由(2)可知:数列{an}单调递减.

一方面Sn>a1+4(n﹣1)=4n+2.

另一方面:=<,∴an﹣4<,∴Sn﹣4n<<.即Sn<4n+.

∴当a=6时,.

38.已知数列{an}满足a1=1,an+1=.

(Ⅰ)求证:an+1<an;

(Ⅱ)求证:≤an≤.

【解答】解:(Ⅰ)证明:由a1=1,an+1=,得an>0,(n∈N),则an+1﹣an=﹣an=<0,∴an+1<an;

(Ⅱ)证明:由(Ⅰ)知0<an<1,又an+1=.,∴=≥,即an+1>an,∴an>an﹣1≥()2an﹣1≥…≥()2an﹣1≥()n﹣1a1=,即an≥.

由an+1=,则=an+,∴﹣=an,∴﹣=a1=1,﹣=a2=,﹣=a3=()2…﹣=an﹣1≥()n﹣2,累加得﹣=1++()2+…+()n﹣2==2﹣()n﹣2,而a1=1,∴≥3﹣()n﹣2==,∴an≤.

综上得≤an≤.

39.已知数列{an}满足:a1=1,.

(1)若b=1,证明:数列是等差数列;

(2)若b=﹣1,判断数列{a2n﹣1}的单调性并说明理由;

(3)若b=﹣1,求证:.

【解答】解:(1)证明:当b=1,an+1=+1,∴(an+1﹣1)2=(an﹣1)2+2,即(an+1﹣1)2﹣(an﹣1)2=2,∴(an﹣1)2﹣(an﹣1﹣1)2=2,∴数列{(an﹣1)2}是0为首项、以2为公差的等差数列;

(2)当b=﹣1,an+1=﹣1,数列{a2n﹣1}单调递减.

可令an+1→an,可得1+an=,可得an→,即有an<(n=2,3,…),再令f(x)=﹣1,可得

在(﹣∞,1]上递减,可得{a2n﹣1}单调递减.

(3)运用数学归纳法证明,当n=1时,a1=1<成立;

设n=k时,a1+a3+…+22k﹣1<,当n=k+1时,a1+a3+…+a2k﹣1+a2k+1

<+=,综上可得,成立.

40.已知数列{an}满足,(n=1,2,3…),Sn=b1+b2+…+bn.

证明:(Ⅰ)an﹣1<an<1(n≥1);

(Ⅱ)(n≥2).

【解答】证明:(Ⅰ)由得:(*)

显然an>0,(*)式⇒

故1﹣an与1﹣an﹣1同号,又,所以1﹣an>0,即an<1…(3分)

(注意:也可以用数学归纳法证明)

所以

an﹣1﹣an=(2an+1)(an﹣1)<0,即an﹣1<an

所以

an﹣1<an<1(n≥1)…(6分)

(Ⅱ)(*)式⇒,由0<an﹣1<an<1⇒an﹣1﹣an+1>0,从而bn=an﹣1﹣an+1>0,于是,Sn=b1+b2+…+bn>0,…(9分)

由(Ⅰ)有1﹣an﹣1=2(1+an)(1﹣an)⇒,所以(**)…(11分)

所以Sn=b1+b2+…+bn=(a0﹣a1+1)+(a1﹣a2+1)+…(an﹣1﹣an+1)=…(12分)

=…(14分)

∴(n≥2)成立…(15分)

41.已知数列{an}满足a1=1,an+1=,n∈N*,记S,Tn分别是数列{an},{a}的前n项和,证明:当n∈N*时,(1)an+1<an;

(2)Tn=﹣2n﹣1;

(3)﹣1<Sn.

【解答】解:(1)由a1=1,an+1=,n∈N*,知an>0,故an+1﹣an=﹣an=<0,因此an+1<an;

(2)由an+1=,取倒数得:=+an,平方得:=+an2+2,从而﹣﹣2=an2,由﹣﹣2=a12,﹣﹣2=a22,…,﹣﹣2=an2,累加得﹣﹣2n=a12+a22+…+an2,即Tn=﹣2n﹣1;

(3)由(2)知:﹣=an,可得﹣=a1,﹣=a2,…,﹣=an,由累加得﹣=a1+a2+…+an=Sn,又因为=a12+a22+…+an2+2n+1>2n+2,所以>,Sn=an+an﹣1+…+a1

=﹣>﹣1>﹣1;

又由>,即>,得

当n>1时,an<=<=(﹣),累加得Sn<a1+[(﹣1)+(﹣)+…+(﹣)]=1+(﹣1)<,当n=1时,Sn成立.

因此﹣1<Sn.

42.已知数列{an}满足a1=3,an+1=an2+2an,n∈N*,设bn=log2(an+1).

(I)求{an}的通项公式;

(II)求证:1+++…+<n(n≥2);

(III)若=bn,求证:2≤<3.

【解答】解:(I)由,则,由a1=3,则an>0,两边取对数得到,即bn+1=2bn(2分)

又b1=log2(a1+1)=2≠0,∴{bn}是以2为公比的等比数列.

即(3分)

又∵bn=log2(an+1),∴(4分)

(2)用数学归纳法证明:1o当n=2时,左边为=右边,此时不等式成立;

(5分)

2o假设当n=k≥2时,不等式成立,则当n=k+1时,左边=(6分)

<k+1=右边

∴当n=k+1时,不等式成立.

综上可得:对一切n∈N*,n≥2,命题成立.(9分)

(3)证明:由得cn=n,∴,首先,(10分)

其次∵,∴,当n=1时显然成立.所以得证.(15分)

43.已知正项数列{an}满足a1=3,n∈N*.

(1)求证:1<an≤3,n∈N*;

(2)若对于任意的正整数n,都有成立,求M的最小值;

(3)求证:a1+a2+a3+…+an<n+6,n∈N*.

【解答】(1)证明:由正项数列{an}满足a1=3,n∈N*.

得+an+2=2an+1,两式相减得(an+2﹣an+1)(an+2+an+1+1)=2(an+1﹣an),∵an>0,∴an+2﹣an+1与an+1﹣an同号.

∵+a2=2a1=6,∴a2=2,则a2﹣a1<0,∴an+1﹣an<0,即数列{an}是单调减数列,则an≤a1=3.

另一方面:由正项数列{an}满足a1=3,n∈N*.

可得:+an+1=2an,得+an+1﹣2=2an﹣2,得(an+1+2)(an+1﹣1)=2(an﹣1),由an+1+2>0,易知an+1﹣1与an﹣1同号,由于a1﹣1=2>0,可知an﹣1>0,即an>1.

综上可得:1<an≤3,n∈N*.

(2)解:由(1)知:=,而3<an+1+2≤a2+2=4,则≤,∴.

故M的最小值为.

(3)证明:由(2)知n≥2时,an﹣1=(a1﹣1)×××…×<=2×,又n=1时,a1﹣1=2,故有an﹣1≤,n∈N*.

即an≤,n∈N*.

则a1+a2+a3+…+an<n+2=n+2×<n+6,n∈N*.

44.已知在数列{an}中,,n∈N*.

(1)求证:1<an+1<an<2;

(2)求证:;

(3)求证:n<sn<n+2.

【解答】证明:(1)先用数学归纳法证明1<an<2

1°.n=1时

2°.假设n=k时成立,即1<ak<2,n=k+1时,ak∈(1,2)成立.

由1°2°知1<an<2,n∈N*恒成立.=(an﹣1)(an﹣2)<0.

所以1<an+1<an<2成立.

(2),当n≥3时,而1<an<2.

所以.

由得,=

所以

(3)由(1)1<an<2得sn>n

由(2)得,=.

45.已知数列{an}中,(n∈N*).

(1)求证:;

(2)求证:是等差数列;

(3)设,记数列{bn}的前n项和为Sn,求证:.

【解答】证明:(1)当n=1时,满足,假设当n=k(k≥1)时结论成立,即≤ak<1,∵ak+1=,∴,即n=k+1时,结论成立,∴当n∈N*时,都有.

(2)由,得,∴,∴==﹣1,即,∴数列是等差数列.

(3)由(2)知,∴,∴==,∵当n≥2时,12n2+18n﹣(7n2+21n+14)=(5n+7)(n﹣2)≥0,∴n≥2时,∴n≥2时,又b1=,b2=,∴当n≥3时,==

46.已知无穷数列{an}的首项a1=,=n∈N*.

(Ⅰ)证明:0<an<1;

(Ⅱ)

记bn=,Tn为数列{bn}的前n项和,证明:对任意正整数n,Tn.

【解答】(Ⅰ)证明:①当n=1时显然成立;

②假设当n=k(k∈N*)时不等式成立,即0<ak<1,那么:当n=k+1时,>,∴0<ak+1<1,即n=k+1时不等式也成立.

综合①②可知,0<an<1对任意n∈N*成立.﹣﹣﹣﹣

(Ⅱ),即an+1>an,∴数列{an}为递增数列.

又=,易知为递减数列,∴也为递减数列,∴当n≥2时,==

∴当n≥2时,=

当n=1时,成立;

当n≥2时,Tn=b1+b2+…+bn<=

综上,对任意正整数n,47.已知数列{xn}满足x1=1,xn+1=2+3,求证:

(I)0<xn<9;

(II)xn<xn+1;

(III).

【解答】证明:(I)(数学归纳法)

当n=1时,因为x1=1,所以0<x1<9成立.

假设当n=k时,0<xk<9成立,则当n=k+1时,.

因为,且得xk+1<9

所以0<xn<9也成立.

(II)因为0<xn<9,所以.

所以xn<xn+1.

(III)因为0<xn<9,所以.

从而xn+1=2+3>+3.

所以,即.

所以.

又x1=1,故.

48.数列{an}各项均为正数,且对任意n∈N*,满足an+1=an+can2(c>0且为常数).

(Ⅰ)若a1,2a2,3a3依次成等比数列,求a1的值(用常数c表示);

(Ⅱ)设bn=,Sn是数列{bn}的前n项和,(i)求证:;

(ii)求证:Sn<Sn+1<.

【解答】(I)解:对任意n∈N*,满足an+1=an+can2(c>0且为常数).∴a2=.a3=.

∵a1,2a2,3a3依次成等比数列,∴=a1•3a3,∴=a1•3(),a2>0,化为4a2=3a1(1+ca2).

∴4()=3a1[1+c()],a1>0,化为:3c2x2﹣cx﹣1=0,解得x=.

(II)证明:(i)由an+1=an+can2(c>0且为常数),an>0.

∴﹣=﹣==﹣.即﹣=﹣.

(ii)由(i)可得:﹣=﹣.

∴bn==,∴Sn=+…+=.

由an+1=an+can2>an>0,可得﹣.

∴Sn<=Sn+1<.

∴Sn<Sn+1<.

49.设数列满足|an﹣|≤1,n∈N*.

(Ⅰ)求证:|an|≥2n﹣1(|a1|﹣2)(n∈N*)

(Ⅱ)若|an|≤()n,n∈N*,证明:|an|≤2,n∈N*.

【解答】解:(I)∵|an﹣|≤1,∴|an|﹣|an+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1.

∴|an|≥2n﹣1(|a1|﹣2)(n∈N*).

(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)

≤++…+=<.

∴|an|<(+)•2n≤[+•()m]•2n=2+()m•2n.①

由m的任意性可知|an|≤2.

否则,存在n0∈N*,使得|a|>2,取正整数m0>log且m0>n0,则

2•()<2•()=|a|﹣2,与①式矛盾.

综上,对于任意n∈N*,都有|an|≤2.

50.已知数列{an}满足:a1=1,an+1=an+.(n∈N*)

(Ⅰ)证明:≥1+;

(Ⅱ)求证:<an+1<n+1.

【解答】证明:(Ⅰ)∵,∴an+1>an>a1≥1,∴.

(Ⅱ)∵,∴0<<1,即﹣=<<﹣,累加可得,﹣<1﹣,故an+1<n+1,另一方面,由an≤n可得,原式变形为

累加得,故<an+1<n+1.

END

第四篇:高考数学数列专题训练

高考限时训练----数列(45分钟)

一、选择题

1.已知等比数列{a2

n}的公比为正数,且a3·a9=2a5,a2=1,则a1= A.12B.22C.2D.2

2.等差数列a2

n的前n项和为Sn,已知am1am1am0,S2m138,则m

(A)38(B)20(C)10(D)9

3.已知{an}为等差数列,a1a3a5105,a2a4a699,则a20等于

A.1B.1C.3D.7

5.等差数列{an}的前n项和为Sn,且S3 =6,a1=4,则公差d等于

A.1B53C.2D 3

6.等比数列an的前n项和为sn,且4a1,2a2,a3成等差数列。若a1=1,则s4=

(A)7(B)8(C)15(D)16

7.设an是公差不为0的等差数列,a12且a1,a3,a6成等比数列,则an的前n项和Sn=

A.n27nB.n445nC.n3323n

4D.n2n

二、填空题

8.设等差数列an的前n项和为Sn,若S972,则a2a4a99.设等比数列{an}的公比q1

2,前n项和为SS

n,则4

a

10.若数列{an}满足:a11,an12an(nN),则a5

前8项的和S8(用数字作答)

三解答题 11.已知等差数列{an}中,a3a716,a4a60,求{an}前n项和Sn.12.设数列{an}的前n项和为Sn, 已知a11,Sn14an2(I)设bnan12an,证明数列{bn}是等比数列(II)求数列{an}的通项公式

第五篇:高考数学专题-数列求和

复习课:

数列求和

一、【知识梳理】

1.等差、等比数列的求和公式,公比含字母时一定要讨论.

2.错位相减法求和:如:已知成等差,成等比,求.

3.分组求和:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和.

4.合并求和:如:求的和.

5.裂项相消法求和:把数列的通项拆成两项之差、正负相消剩下首尾若干项.

常见拆项:,,(理科).

6.倒序相加法求和:如等差数列求和公式的推导.

7.其它求和法:归纳猜想法,奇偶法等.

二、【经典考题】

【1.公式求和】例1.(浙江)在公差为的等差数列中,已知,且成等比数列.

(1)求;

(2)若,求.

【分析】第一问注意准确利用等差等比数列定义即可求解,第二问要注意去绝对值时项的正负讨论.

【解答】(1)由已知得到:

(2)由(1)知,当时,①当时,②当时,所以,综上所述:

【点评】本题考查等差数列、等比数列的概念,等差数列通项公式、求和公式等基础知识,同时考查运算求解能力.

变式训练:

(重庆文)设数列满足:,.

(1)求的通项公式及前项和;

(2)已知是等差数列,为前项和,且,求.

【解答】

(1)由题设知是首项为,公比为的等比数列,.

(2),故.

【2.倒序相加法】例2.已知函数.

(1)证明:;

(2)若数列的通项公式为,求数列的前项和;

(3)设数列满足:,若(2)中的满足对任意不小于的任意正整数恒成立,试求的最大值.

【分析】第(1)问,先利用指数的相关性质对化简,后证明左边=右边即可;第(2)问,注意利用(1)中的结论,构造倒序求和;第(3)问,由已知条件求出的最小值,将不等式转化为最值问题求解.

【解答】(1)

(2)由(1)知,,即,又两式相加得,即.

(3)由,知对任意的,则,即,所以.,即数列是单调递增数列.

关于递增,时,.

由题意知,即,解得,的最大值为.

【点评】解题时,对于某些前后具有对称性的数列,可以运用倒序相加法求和.

变式训练:

已知函数.

(1)证明:;

(2)求的值.

【解答】(1)

(2)利用第(1)小题已经证明的结论可知,令,两式相加得:

所以.

【3.错位相减法】例3.(山东理)设等差数列的前项和为,且.

(1)求数列的通项公式;

(2)设数列前项和为,且

(为常数).令,求数列的前项和.

【分析】第(1)问利用等差数列通项公式及前项和公式列方程组求解及即可;第(2)问先利用与关系求出,进而用乘公比错位相减法求出.

【解答】(1)设等差数列的首项为,公差为,由得,解得,.

因此

(2)由题意知:,所以时,故,.

所以,则,两式相减得,整理得.

所以数列数列的前项和.

【点评】用错位相减法求和时,应注意:

(1)要善于识别题目类型,特别是等比数列公比为负数时的情形;

(2)在写出与的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出的表达式;

(3)利用错位相减法转化为等比数列求和时,若公比是参数(字母),一般情况要先对参数加以讨论,主要分公比为和不等于两种情况分别求和.

变式训练:

(山东文)设等差数列的前项和为,且.

(1)求数列的通项公式;

(2)设数列满足,求的前项和.

【解答】(1)同例3.(1).

(2)由已知,当时,当时,结合知,.

又,两式相减得,.

【4.裂项相消法】例4.(广东)设各项均为正数的数列的前项和为,满足,且构成等比数列.

(1)证明:;

(2)求数列的通项公式;

(3)证明:对一切正整数,有.

【分析】本题主要考查利用与关系求出,进而用裂项相消法求出和,然后采用放缩的方法证明不等式.

【解答】

(1)当时,(2)当时,,当时,是公差的等差数列.

构成等比数列,,解得,由(1)可知,是首项,公差的等差数列.

数列的通项公式为.

(3)

【点评】

(1)利用裂项相消法求和时,应注意抵消后不一定只剩第一项和最后一项,也有可能前后各剩两项或若干项;将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.

(2)一般情况下,若是等差数列,则;此外,根式在分母上时可考虑利用分母有理化相消求和.

变式训练:

(大纲卷文)等差数列中,(1)求的通项公式;

(2)设.

【解答】(1)设等差数列的公差为,则

因为,所以.

解得,.

所以的通项公式为.

(2),所以.

【5.分组求和法】例5.(安徽)设数列满足,且对任意,函数

满足

(1)求数列的通项公式;

(2)若,求数列的前项和.

【分析】,由可知数列为等差数列.

【解答】(1)由,得,所以,是等差数列.

而,.

(2),.

【点评】本题主要考查了分组求和法,具体求解过程中一定要注意观察数列通项的构成特点,将其分成等差、等比或其它可求和的式子,分组求出即可.

变式训练:

(2012山东)在等差数列中,.

(1)求数列的通项公式;

(2)对任意,将数列中落入区间内的项的个数记为,求数列的前项和.

【解答】(1)由可得,则,于是,即

(2)对任意,则,即,,.

于是,即.

【6.奇偶项求和】例6.(2011山东)等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.

(1)求数列的通项公式;

(2)若数列满足:,求数列的前项和.

第一列

第二列

第三列

第一行

第二行

第三行

【分析】根据等比数列定义先判断出,求出通项;求和时要对分奇偶讨论.

【解答】(1)由题意知,因为是等比数列,所以公比为,所以数列的通项公式.

(2)解法一:

当时,.

当时,故.解法二:令,即

.【点评】解法一分为奇数和偶数对进行化简求和,而解法二直接采用乘公比错位相减法进行求和,只不过此时的公比

.本题主要意图还是考查数列概念和性质,求通项公式和数列求和的基本方法.

变式训练:

已知数列,求.

【解答】,若,则

三、【解法小结】

1.数列求和的关键在于分析数列的通项公式的结构特征,在具体解决求和问题中,要善于从数列的通项入手观察数列通项公式的结构特征与变化规律,根据通项公式的形式准确、迅速地选择方法,从而形成“抓通项、寻规律、定方法”的数列求和思路是解决这类试题的诀窍.

2.一般地,非等差(比)数列求和题的通常解题思路是:如果数列能转化为等差数列或等比数列就用公式法;如果数列项的次数及系数有规律一般可用错位相减法、倒序相加法来解决;如果每项可写成两项之差一般可用裂项法;如果能求出通项,可用拆项分组法;如果通项公式中含有可用并项或分奇偶项求和法.

四、【小试牛刀】

1.数列前项的和为()

A.

B.

C.

D.

2.数列的前项和为,若,则等于()

A.

B.

C.

D.

3.数列中,若前项的和为,则项数为()

A.

B.

C.

D.

4.(2013大纲)已知数列满足则的前项和等于()

A.

B.

C.

D.

5.设首项为,公比为的等比数列的前项和为,则()

A.

B.

C.

D.

6.(2013新课标)设等差数列的前项和为,则()

A.

B.

C.

D.

7..

8.已知数列,则其前项和为

9.(2013江西)某住宅小区计划植树不少于棵,若第一天植棵,以后每天植树的棵树是前一天的倍,则需要的最少天数等于

10..

11.(2013江苏)在正项等比数列中,,则满足的最大正整数的值为

12.正项数列的前项和满足:

.(1)求数列的通项公式;

(2)令,数列的前项和为.证明:对于任意的,都有.参考答案:

1.B

2.B

3.C

4.C

5.D

6.C

7.8.

9.10.11.,.,..,所以的最大值为.12.(1)由,得.由于是正项数列,所以.于是时,.综上,数列的通项.(2)证明:由于.则..

下载2018年高考数学数列压轴专项练习集(一)word格式文档
下载2018年高考数学数列压轴专项练习集(一).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2013高考数列解答题练习

    数列的专题训练1..设数列an的前n项和为Sn,且Snc1can,其中c是不等于1和0的实常数.(1)求证: an为等比数列;(2)设数列an的公比qfc,数列bn满足b11,bnfbn1nN,n2,试写出 的通项公式,并求b1b2b......

    2014信息技术高考 问答题专项练习一

    2014信息技术高考 问答题专项练习一 1、请从信息技术的现状来谈谈信息技术对人类社会产生的影响。 答:信息技术的应用现状:可应用于很多方面:在家庭生活方面的应用、在日常学习......

    教辅:高考数学复习练习之压轴题1

    第二部分/三、压轴题压轴题(一)8.(2020·山东德州一模)已知函数f(x)=若关于x的方程f2(x)+(1-m)f(x)-m=0有且只有两个不同实数根,则m的取值范围是(  )A.B.(-∞,0)∪C.(-∞,-1)∪(-1,0)∪D.(......

    一年级下册数学专项练习一

    专项练习——解决问题(一)1.小明看一本书,看了78页,还有20页没看,这本书共有多少页?2.妈妈又83元钱,买书用去了30元,还剩多少元钱?3.书架上有36本书,拿走一些,书架上还有9本数,拿走了几......

    2018年高考政治压轴题(一)

    2018年高考政治压轴题(一) 12. 2018年3月26日,中国原油期货在上海国际能源中心(INE) 挂盘交易。中国原油期货的最大亮点是,以人民币计价、可转换成黄金。中国原油期货上市,将弥补......

    江西高考数学压轴题新解及对证明数列不等式的启示

    江西高考数学压轴题新解及对证明数列不等式的启示江西省萍乡市教研室(337000)曾建强(发表于《中学数学研究》2006年第9期)2006年江西高考理科数学压轴题,是一个数列不等式的证......

    高三专项练习一

    天道酬勤,勤能补拙! 高三专项练习一 一、单选题(答案写在每题题号前) 1.公益“飞侠”邓飞通过微博,发出为贫困山区学生开展“免费午餐”活动,仅24小时内就收到善款46万元,“微公益”......

    江苏省2014年高考数学压轴题答案

    江苏省2014年高考数学压轴题答案 14、由siAn2siBn2siCn,得a2b2c,c1(a2b)2, 122ab(a2b)2222abc3a22b222ab26ab22ab2cosC2ab2ab8ab8ab4 答案是62 4 20、(2) 1n(n1)d1(m1)d,2 1n1n(n......