高一数学空间图形的基本关系与公理教案

时间:2019-05-14 15:32:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高一数学空间图形的基本关系与公理教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一数学空间图形的基本关系与公理教案》。

第一篇:高一数学空间图形的基本关系与公理教案

高一数学空间图形的基本关系与公理教

本资料为woRD文档,请点击下载地址下载全文下载地址

空间图形的基本关系与公理

一.教学内容:

空间图形的基本关系与公理

二.学习目标:、学会观察长方体模型中点、线、面之间的关系,并能结合长方体模型,掌握空间图形的有关概念和有关定理;掌握平面的基本性质、公理4和等角定理;

2、培养和发展自己的空间想象能力、运用图形语言进行交流的能力、几何直观能力、通过典型例子的学习和自主探索活动,理解数学概念和结论,体会蕴涵在其中的数学思想方法;

3、培养严谨的思维习惯与严肃的科学态度;体会推理论证中反映出的辩证思维的价值观。

三、知识要点

(一)空间位置关系:

I、空间点与线的关系

空间点与直线的位置关系有两种:点P在直线上:;点P在直线外:;

II、空间点与平面的关系

空间点与平面的位置关系有两种:点P在平面上:点P在平面外:;

III、空间直线与直线的位置关系:

IV、空间直线与平面的位置关系:

V、空间平面与平面的位置关系:平行;相交

说明:本模块中所说的“两个平面”“两条直线”等均指不重合的情形。

(二)异面直线的判定、定义法:采取反证法的思路,否定平行与相交两种情形即可;

2、判定定理:已知P点在平面上,则平面上不经过该点的直线与平面外经过该点的直线是异面直线。

(三)平面的基本性质公理

、公理1

如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内,或曰平面经过这条直线)。

2、公理2

经过不在同一条直线上的三点,有且只有一个平面(即确定一个平面)。

3、公理3

如果两个不重合的平面有一个公共点,那么它们有且只有一条通过该点的公共直线。

4、平面的基本性质公理的三个推论

经过直线和直线外一点,有且只有一个平面;

经过两条相交直线,有且只有一个平面;

经过两条平行直线,有且只有一个平面

思考:

公理是公认为正确而不需要证明的命题,那么推论呢?

平面的基本性质公理是如何刻画平面的性质的?

(四)平行公理(公理4):平行于同一条直线的两条直线平行。

(五)等角定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。

(六)空间四边形:顺次连接不共面的四点构成的图形称为空间四边形。

【典型例题】

考点一

空间点线面位置关系的判断:主要判断依据是平面的基本性质公理及其推论,平行公理、等角定理等相关结论。

例1.下列命题:

空间不同的三点可以确定一个平面;

有三个公共点的两个平面必定重合;

空间中两两相交的三条直线可以确定一个平面;

④平行四边形、梯形等所有的四边形都是平面图形;

⑤两组对边分别相等的四边形是平行四边形;

⑥一条直线和两平行线中的一条相交,必定和另一条也相交。

其中正确的命题是。

解:⑥。

例2.空间中三条直线可以确定几个平面?试画出示意图说明。

解:0个、1个、2个或3个。分别如图(图中所画平面为辅助平面):

考点二

异面直线的判断:主要依据是异面直线的定义及判定定理。

例3.如图是一个正方体的展开图,如果将它还原为正方体,那么AB、cD、EF、GH这四条线段所在的直线是异面直线的有__________对,分别是____________________?

解:3对,分别是AB、GH;AB、cD;GH、EF。

考点三

“有且只有一个”的证明:一般地,此类题型的证明需要分为两个步骤,分别证明“有”即存在性和“只有一个”即唯一性。

例4.求证:过两条平行直线有且只有一个平面。

已知:直线a∥b。

求证:过a,b有且只有一个平面。

证明:存在性:由平行线的定义可知,过平行直线a,b有一个平面。

唯一性(反证法):假设过a,b有两个平面。在直线上任取两点A、B,在直线b上任取一点c,则A、B、c三点不共线。由于这两个平面都过直线a,b,因此由公理1可知:都过点A、B、c。由平面的基本性质公理2,过不共线三点的平面唯一存在,因此重合,与假设矛盾。矛盾表明:过平行直线a,b只有一个平面。

综上所述:过a,b有且只有一个平面。

考点四

共点的判断与证明:此类题型主要有三线共点和三面共点。

例5.三个平面两两相交有三条交线,求证:三条交线或平行,或交于一点。

已知:平面,求证:a∥b∥c或者a,b,c交于一点P。

证明:因为,故a,b共面。

I、若a∥b:由于,故,因直线,故a,c无公共点。又a,c都在平面内,故a∥b;故a∥b∥c。

II、若,则,故知

综上所述:命题成立。

说明:证明三点共线的问题的常用思路是先证两条直线相交,然后再证该交点在第三条直线上;证明交点在第三条直线上常证明该点是两个相交平面的公共点,从而在这两个平面的交线上即在第三条直线上。

考点五

共线的判断与证明:常见题型是三点共线。

例6.如图,o1是正方体ABcD-A1B1c1D1的面A1B1c1D1的中心,m是对角线A1c和截面B1D1A的交点,求证:o1、m、A三点共线。

证明:连结Ac.因为A1c1∩B1D1=o1,B1D1平面B1D1A,A1c1AA1c1c,所以o1∈平面B1D1A且o1∈AA1c1c。同理可知,m∈平面B1D1A且m∈AA1c1c;A∈平面B1D1A且A∈AA1c1c。所以,o1、m、A三点在平面B1D1A和AA1c1c的交线上,故o1、m、A三点共线。

说明:证明三线共点问题的常见思路是证明第三点在前两点所确定的直线上;或者证明三点是两相交平面的公共点,从而在这两个平面的交线上。

考点六

共面问题的判断与证明:此类题型常见的是四点共面或三线共面,如证明某个图形是平面图形。

例7.如图,在空间四边形ABcD中,E、F分别是AB、AD的中点,G、H分别是Bc、cD上的点,且cG=Bc/3,cH=Dc/3。求证:E、F、G、H四点共面;直线FH、EG、Ac共点。

证明:如图,连结HG,EF。在△ABD中,E、F分别为AB、AD中点,故EF是△ABD的中位线,故EF∥BD。在△cBD中,cG=Bc/3,cH=Dc/3,故GH∥BD,故EF∥GH,从而GH、EF可确定一个平面,即G、H、E、F四点共面。

由于E、F、G、H四点共面,且FH与EG不平行,故相交,记交点为m,则m∈FH,FH面AcD,故m∈面AcD;m∈EG,EG面ABc,故m∈面ABc。从而m是面AcD和面ABc的公共点,由公理3可知,m在这两个平面的交线Ac上,从而FH、EG、Ac三线共点。

说明:共面问题的常用的处理方法是利用平面的基本性质公理2及三个推论,先证明部分元素确定一个平面,再证剩下的元素也在此平面上;有时也可先证部分元素共面,剩下的元素共面,然后证明这两个平面重合(此时也可用反证法)。

[本讲涉及的主要数学思想方法]、数学语言是数学表述和数学思维不可缺少的重要工具,必须能将这三种语言即文字语言、符号语言和图形语言进行准确的互译和表达,这在空间关系的证明与判断中显得十分重要;

2、空间观念和空间想象能力:高考中立体几何题的题型功能最重要的一点就是考查考生的空间观念和空间想象能力,因为我们是通过平面图形(直观图)去研究空间关系,所以同学们在学习过程中一定要多观察、多思考,动手做一些空间模型或通过电脑动画模拟一些空间图形,培养空间概念,提高空间想象能力。

【模拟试题】

一、选择题、在空间内,可以确定一个平面的条件是()

A.两两相交的三条直线

B.三条直线,其中的一条与另两条分别相交

c.三个点

D.三条直线,它们两两相交,但不交于同一点

2、(XX辽宁卷)在正方体ABcDA1B1c1D1中,E、F分别为棱AA1、cc1的中点,则在空间中与三条直线A1D1,EF,cD都相交的直线()

A.不存在 B.有且只有两条

c.有且只有三条

D.有无数条

*

3、已知平面外一点P和平面内不共线的三点A、B、c。A'、B'、C'分别在PA、PB、Pc上,若延长A'B'、B'C'、A'C'与平面分别交于D、E、F三点,则D、E、F三点()

A.成钝角三角形

B.成锐角三角形

c.成直角三角形

D.在一条直线上

4、空间中有三条线段AB、Bc、cD,且∠ABc=∠BcD,那么直线AB与cD的位置关系是()

A.平行

B.异面

c.相交

D.平行或异面或相交均有可能

5、下列叙述中正确的是()

A.因为P∈α,Q∈α,所以PQ∈α。

B.因为P∈α,Q∈β,所以α∩β=PQ。

c.因为,c∈AB,D∈AB,因此cD∈α。

D.因为,所以A∈(α∩β)且B∈(α∩β)。

6、已知异面直线a,b分别在平面α,β内且α∩β=c,那么c()

A.至少与a,b中的一条相交;

B.至多与a,b中的一条相交;

c.至少与a,b中的一条平行;

D.与a,b中的一条平行,与另一条相交

7、已知空间四边形ABcD中,m、N分别为AB、cD的中点,则下列判断正确的是()

二、填空题

8、在空间四边形ABcD中,m、N分别是Bc、AD的中点,则2mN与AB+cD的大小关系是。

9、对于空间中的三条直线,有下列四个条件:三条直线两两相交且不共点;三条直线两两平行;三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交。其中,能推出三条直线共面的有。

三、解答题

0、正方体ABcD-A1B1c1D1中,E、F分别是AB、AA1的中点。

求证:cE、D1F、DA三线共点;

求证:E、c、D1、F四点共面;

1、在正方体ABcD-A1B1c1D1中,若Q是A1c与平面ABc1D1的交点,求证:B、Q、D1三点共线。

2、如图,已知α∩β=a,bα,cβ,b∩a=A,c//a.求证:b与c是异面直线。

*

13、(XX高考题改编)正方体ABcD-A1B1c1D1中,P、Q、R分别是AB、AD、c1B1的中点,试作出正方体过P、Q、R三点的截面。

第二篇:2017北师大版高中数学(必修2)1.4《空间图形的基本关系与公理》word教案.doc

空间图形的基本关系与公理

一.教学内容:

空间图形的基本关系与公理

二.学习目标:

1、学会观察长方体模型中点、线、面之间的关系,并能结合长方体模型,掌握空间图形的有关概念和有关定理;掌握平面的基本性质、公理4和等角定理;

2、培养和发展自己的空间想象能力、运用图形语言进行交流的能力、几何直观能力、通过典型例子的学习和自主探索活动,理解数学概念和结论,体会蕴涵在其中的数学思想方法;

3、培养严谨的思维习惯与严肃的科学态度;体会推理论证中反映出的辩证思维的价值观。

三、知识要点

(一)空间位置关系: I、空间点与线的关系

空间点与直线的位置关系有两种:点P在直线上:

II、空间点与平面的关系

空间点与平面的位置关系有两种:点P在平面

III、空间直线与直线的位置关系:

上:

点P在平面

外:

;点P在直线外:

IV、空间直线与平面的位置关系:

V、空间平面与平面的位置关系:平行;相交

说明:本模块中所说的“两个平面”“两条直线”等均指不重合的情形。

(二)异面直线的判定

1、定义法:采取反证法的思路,否定平行与相交两种情形即可;

2、判定定理:已知P点在平面上,则平面上不经过该点的直线与平面外经过该点的直线是异面直线。

(三)平面的基本性质公理

1、公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内,或曰平面经过这条直线)。

2、公理2 经过不在同一条直线上的三点,有且只有一个平面(即确定一个平面)。

3、公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条通过该点的公共直线

4、平面的基本性质公理的三个推论

经过直线和直线外一点,有且只有一个平面; 经过两条相交直线,有且只有一个平面; 经过两条平行直线,有且只有一个平面 思考:

公理是公认为正确而不需要证明的命题,那么推论呢? 平面的基本性质公理是如何刻画平面的性质的?

(四)平行公理(公理4):平行于同一条直线的两条直线平行。

(五)等角定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。

(六)空间四边形:顺次连接不共面的四点构成的图形称为空间四边形。

【典型例题】

考点一 空间点线面位置关系的判断:主要判断依据是平面的基本性质公理及其推论,平行公理、等角定理等相关结论。例1.下列命题:

空间不同的三点可以确定一个平面; 有三个公共点的两个平面必定重合;

空间中两两相交的三条直线可以确定一个平面;

④平行四边形、梯形等所有的四边形都是平面图形; ⑤两组对边分别相等的四边形是平行四边形;

⑥一条直线和两平行线中的一条相交,必定和另一条也相交。其中正确的命题是。解:⑥。

例2.空间中三条直线可以确定几个平面?试画出示意图说明。

解:0个、1个、2个或3个。分别如图(图中所画平面为辅助平面):

考点二 异面直线的判断:主要依据是异面直线的定义及判定定理。

例3.如图是一个正方体的展开图,如果将它还原为正方体,那么AB、CD、EF、GH这四条线段所在的直线是异面直线的有__________对,分别是____________________?

解:3对,分别是AB、GH;AB、CD;GH、EF。

考点三 “有且只有一个”的证明:一般地,此类题型的证明需要分为两个步骤,分别证明“有”即存在性和“只有一个”即唯一性。例4.求证:过两条平行直线有且只有一个平面。已知:直线a∥b。

求证:过a,b有且只有一个平面。

证明:存在性:由平行线的定义可知,过平行直线a,b有一个平面。

唯一性(反证法):假设过a,b有两个平面1可知:

。在直线上任取两点A、B,在直线b

都过直线a,b,因此由公理上任取一点C,则A、B、C三点不共线。由于这两个平面都过点A、B、C。由平面的基本性质公理2,过不共线三点的平面唯一存在,因此重合,与假设矛盾。矛盾表明:过平行直线a,b只有一个平面。综上所述:过a,b有且只有一个平面。

考点四 共点的判断与证明:此类题型主要有三线共点和三面共点。

例5.三个平面两两相交有三条交线,求证:三条交线或平行,或交于一点。已知:平面证明:因为I、若a∥b:由于面,故,求证:a∥b∥c或者a,b,c交于一点P。,故a,b共面,因直线,故a,c无公共点。又a,c都在平内,故a∥b;故a∥b∥c。

II、若,则,故知 综上所述:命题成立。

说明:证明三点共线的问题的常用思路是先证两条直线相交,然后再证该交点在第三条直线上;证明交点在第三条直线上常证明该点是两个相交平面的公共点,从而在这两个平面的交线上即在第三条直线上。

考点五 共线的判断与证明:常见题型是三点共线。

例6.如图,O1是正方体ABCD-A1B1C1D1的面A1B1C1D1的中心,M是对角线A1C和截面B1D1A的交点,求证:O1、M、A三点共线。

证明:连结AC.因为A1C1∩B1D1=O1,B1D1平面B1D1A,A1C1AA1C1C,所以O1∈平面B1D1A且O1∈AA1C1C。同理可知,M∈平面B1D1A且M∈AA1C1C;A∈平面B1D1A且A∈AA1C1C。所以,O1、M、A三点在平面B1D1A和AA1C1C的交线上,故O1、M、A三点共线。

说明:证明三线共点问题的常见思路是证明第三点在前两点所确定的直线上;或者证明三点是两相交平面的公共点,从而在这两个平面的交线上。

考点六 共面问题的判断与证明:此类题型常见的是四点共面或三线共面,如证明某个图形是平面图形。

例7.如图,在空间四边形ABCD中,E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=BC/3,CH=DC/3。求证:E、F、G、H四点共面;直线FH、EG、AC共点。

证明:如图,连结HG,EF。在△ABD中,E、F分别为AB、AD中点,故EF是△ABD的中位线,故EF∥BD。在△CBD中,CG=BC/3,CH=DC/3,故GH∥BD,故EF∥GH,从而GH、EF可确定一个平面,即G、H、E、F四点共面

由于E、F、G、H四点共面,且FH与EG不平行,故相交,记交点为M,则M∈FH,FH面ACD,故M∈面ACD;M∈EG,EG面ABC,故M∈面ABC。从而M是面ACD和面ABC的公共点,由公理3可知,M在这两个平面的交线AC上,从而FH、EG、AC三线共点。

说明:共面问题的常用的处理方法是利用平面的基本性质公理2及三个推论,先证明部分元素确定一个平面,再证剩下的元素也在此平面上;有时也可先证部分元素共面,剩下的元素共面,然后证明这两个平面重合(此时也可用反证法)。

[本讲涉及的主要数学思想方法]

1、数学语言是数学表述和数学思维不可缺少的重要工具,必须能将这三种语言即文字语言、符号语言和图形语言进行准确的互译和表达,这在空间关系的证明与判断中显得十分重要;

2、空间观念和空间想象能力:高考中立体几何题的题型功能最重要的一点就是考查考生的空间观念和空间想象能力,因为我们是通过平面图形(直观图)去研究空间关系,所以同学们在学习过程中一定要多观察、多思考,动手做一些空间模型或通过电脑动画模拟一些空间图形,培养空间概念,提高空间想象能力。

【模拟试题】

一、选择题

1、在空间内,可以确定一个平面的条件是()A.两两相交的三条直线

B.三条直线,其中的一条与另两条分别相交 C.三个点

D.三条直线,它们两两相交,但不交于同一点

2、(2008辽宁卷)在正方体ABCDA1B1C1D1中,E、F分别为棱AA1、CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线()

A.不存在 B.有且只有两条 C.有且只有三条 D.有无数条

*

3、已知平面外一点P和平面内不共线的三点A、B、C。A'、B'、C'分别在PA、PB、PC上,若延长A'B'、B'C'、A'C'与平面分别交于D、E、F三点,则D、E、F三点()

A.成钝角三角形 B.成锐角三角形 C.成直角三角形 D.在一条直线上

4、空间中有三条线段AB、BC、CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()

A.平行 B.异面 C.相交 D.平行或异面或相交均有可能

5、下列叙述中正确的是()

A.因为P∈α,Q∈α,所以PQ∈α。B.因为P∈α,Q∈β,所以α∩β=PQ。

C.因为,C∈AB,D∈AB,因此CD∈α。

D.因为,所以A∈(α∩β)且B∈(α∩β)。

6、已知异面直线a,b分别在平面α,β内且α∩β=c,那么c()A.至少与a,b中的一条相交; B.至多与a,b中的一条相交; C.至少与a,b中的一条平行;

D.与a,b中的一条平行,与另一条相交

7、已知空间四边形ABCD中,M、N分别为AB、CD的中点,则下列判断正确的是()

二、填空题

8、在空间四边形ABCD中,M、N分别是BC、AD的中点,则2MN与AB+CD的大小关系是。

9、对于空间中的三条直线,有下列四个条件:三条直线两两相交且不共点;三条直线两两平行;三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交。其中,能推出三条直线共面的有。

三、解答题

10、正方体ABCD-A1B1C1D1中,E、F分别是AB、AA1的中点。求证:CE、D1F、DA三线共点; 求证:E、C、D1、F四点共面;

11、在正方体ABCD-A1B1C1D1中,若Q是A1C与平面ABC1D1的交点,求证:B、Q、D1三点共线。

12、如图,已知α∩β=a,b

α,c

β,b∩a=A,c//a.求证:b与c是异面直线。

*

13、(2005高考题改编)正方体ABCD-A1B1C1D1中,P、Q、R分别是AB、AD、C1B1的中点,试作出正方体过P、Q、R三点的截面。

第三篇:数学公理

过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行

12两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理 三角形两边的和大于第三边推论 三角形两边的差小于第三边三角形内角和定理 三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等

22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)

推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

推论1 三个角都相等的三角形是等边三角形

推论 2 有一个角等于60°的等腰三角形是等边三角形

在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半

定理 线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

第四篇:高一数学辅导之集合间的基本关系

高一数学辅导之集合间的基本关系

一、知识梳理

1、V enn图:适合元素较少的集合

2、子集:如果集合A的任意一个元素都是集合B的元素(若aA则aB),则称

集合A为集合B的子集,记为AB或BA;如果AB,并且AB,这时集合A称为集合B的真子集,记为AB或B

A.3、集合的相等:如果集合A、B同时满足AB、BA,则A=B.4、空集:不含任何元素的集合称为空集,记作。

5、子集的个数问题:

二、双基自测

1、已知集合M={xZ|x|<5},则下列式子正确的是()(A)2.5M(B)0M(C){0}M(D){0}M

2、设A={(x,y)|x+y=4,xN, yN},则集合A的子集的个数为()(A)16(B)8(C)7(D)4

3、设A={0,1,3,5},B={0,1},从“、、、”中选择适当的符号填空:(1)0____A(2){0}_____B(3)A______B

4、六个关系式:(1){a, b}= { b, a };(2){a, b} { b, a };(3);(4)0;(5)0;(6)00其中正确的个数为()

*

* A.6个 B.5个 C.4个 D.3个及3个以下

5、已知 {a}A{a,b,c,d},求所有满足条件的集合A.三、高效例题 例1 两集合间的关系

已知M{x|xa21,aN},P{y|yb26b10,bN},问集合M与集合P之间的关系是怎样的?

总结: __________________________________________________________________ 例2 已知两集合间的关系,求参数的取值范围

已知集合Ax|3x4,Bx|2m1xm1,BA,求实数m的取值范围。

练习:已知集合P= {x︱x2=1, x∈R }.集合Q={x︱ax=1 },若QP,求 a的值

总结:____________________________________________________________

四、课堂检测(优化设计)

第五篇:空间图形的基本知识教案

空间图形的基本知识

一.考纲要求

1.了解平面的概念、画法及表示法,平面的基本性质,直线 和平面、平面和平面的垂直及其应用. 2.会画长方形的直观图;会画立方体、长方体的直观图. 3.了解圆柱、圆锥、圆台的底面、高线、母线、轴截面等概念.

通过画长方体等的直观图,以此为基本模型,来研究直线与平面,平面与平面的垂直与否,逐步培养学生空间想象能力。圆柱、圆锥、圆台的轴截面及其在生产生活中的实际应用不可忽视。二.基础回顾

1.下面说法中,正确的是()(A)一点能确定的一个平面(B)两点能确定的一个平面

(C)任意三点能确定一个平面(D)任意三点不一定能确定一个平面

2.如图,长方体中,和平面AD1垂直的棱是_______,和棱的BB1垂直的平面是________.3.如图,长方体中,过点A1和平面A1C1垂直的平面有()(A)1个(B)2个(C)3个(D)4个 4.画一个水平放置的边长为3cm的正方形的直观图.(要求正确画出图形,画图工具不限)

5.等腰三角形以底边上的高线为轴旋转,其余各边旋转所围成的几何体是()(A)一个圆锥(B)二个圆锥(C)三个圆锥(D)四个圆锥 三.典型例题

例1.要画立方体(即正方体)的直观图,甲、乙两位同学分别画出了以下两个表示立方体上底面A1B1C1D1的直观图,请你选择其中画得正确的一个,将它画成立方体的直观图,并标上顶点字母.(画图工具不限,不要求写画法)

例2.在半径为30m的圆形广场的中心上空,设置一个照明光源,射向地面的光束呈圆锥形,它的轴截面顶角为120°,要使光源照到整个广场,求光源的高度至少要多少m.(精确到0.1m)

例3.如图,圆锥的底面半径为R,用一个平行于底面的平面去截这个圆锥,把圆锥分成一个小圆锥和一个圆台,设小圆锥的底面半径为r,母线长为x,圆台的母线长为l. xr(1)求证; = lR-rx1(2)若 =,R=8,l=13,求圆台的高线长h.l3

例4.如图,平面ABC与平面BCD是空间两个相交平面,AB是⊙O的直径,C是⊙O上一点,D是平面ABC外的一点,CD⊥AC,试判断平面ABC与平面BCD是否垂直,并说明理由

例5.某纸晶加工厂为了制作甲、乙两种无盖的长方体小盒(如图),利用边角废料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图),现将150张正方形硬纸片和300张长方形硬纸片全都用于制作两种小盒,可以各做多少个?

四.反馈练习

1.画出长、宽、高分别为4cm,3cm,2cm的长方体的直观图. 2.巳知圆锥的轴截面周长32cm,底面积为36πcm,求轴截面的面积.

3.在长方体ABCD--A1B1C1Dl中,如果AA1=1,AB=BC=2,求A1C的长.

五.作业

1.若圆台的上、下底面面积分别为16π,36π经过高线的中点画平行于底面的截面,求这个截面的面积。

2.圆锥的母线长是3cm,轴截面的顶角是45°,用于平行于圆锥底面的截面截圆锥,截面过高线的三等分点,求截面圆的面积.

3.下列各图是由全等的正方形组成的图形,能围成一个立方体的图形是()

4.一个正方体的六个面上分别标有2、3、4、5、6、7中的一个数字;如图所示,表示这个正方体的三种不同的放置方法,则这三种放置方法中,三个正方体下底面上所标数字之和是()5.观察图中的正方体,AC为上底的对角线,A'C'、B'D',为下底的对角线.AC与A'C'相互______;且C与B'D'相互_________.(填人下面的标即可)(1)平行;(2)相交但不垂直;(3)垂直但不相交;(4)垂直相交.

下载高一数学空间图形的基本关系与公理教案word格式文档
下载高一数学空间图形的基本关系与公理教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学平行线及平行公理.doc

    平行线及平行公理教学建议1、教材分析 知识结构 本节从实例中概括出平行线的概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论. 重点、难点分析 本节的......

    集合间的基本关系教案

    集合间的基本关系教案 本资料为woRD文档,请点击下载地址下载全文下载地址.1.2 集合间的基本关系 整体设计 教学分析 课本从学生熟悉的集合出发,通过类比实数间的大小关系引入......

    真命题与公理、定理

    真命题与公理、定理 初学几何的同学,对真命题、公理、定理之间的区别与联系容易混淆。现作如下辨析,供同学们参考。 真命题就是正确的命题,即如果命题的题设成立,那么结论一定成......

    初一数学中的公理定理

    (一)学过的公理: 1、直线公理:两点确定一条直线。 2、线段公理:两点之间,线段最短。 3、垂线公理:过一点有且只有一条直线与已知直线垂直。 4、平行公理:过直线外一点,有且只有一条直......

    高一数学等比数列教案

    高一数学等比数列教案 高一数学等比数列教案1 教学准备教学目标熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题......

    高二数学 立体几何的概念、公理、定理

    立体几何的概念、公理、定理王 春 老师 编辑 2007-12 -20一.写出以下公理、定理,并根据图形写出它们的条件与结论。(一)立体几何三公理公理1:如果一条直线上的两点在一个平面内,那......

    高一数学集合与简易逻辑3教案

    第三教时证明:设 x 是 A 的任一元素,则xA 教材:子集 目的:让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念. 过程: 一 提出问题:现在开始研究集合与集合......

    高一数学集合与简易逻辑2教案

    第二教时 教材: 1、复习2、《课课练》及《教学与测试》中的有关内容 目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。 过程: 一、 复习:(结合提问) 1.集合的概念含集......