现浇箱梁碗扣式钢管支架体系验算.(推荐5篇)

时间:2019-05-14 17:01:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《现浇箱梁碗扣式钢管支架体系验算.》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《现浇箱梁碗扣式钢管支架体系验算.》。

第一篇:现浇箱梁碗扣式钢管支架体系验算.

现浇箱梁满堂支架及模板施工方案 现浇箱梁满堂支架及模板施工方案

1、工程概况

三环路东北段B段道路工程(Ⅶ标段)桥梁工程主要包括:A匝道桥,设计起点桩号为AK0-0.039,终点桩号为AK0+292.961,全长293m,桥梁位于R=60m的平曲线内。上部结构分别采用普通钢筋混凝土及预应力混凝土连续箱梁,共四联,A匝道桥标准宽为

8.50m,下部结构桥墩采用椭圆型花瓶墩,基础采用钻孔灌注桩;B匝道桥,设计起点桩号为BK0-0.048,终点桩号为BK0+288.152,全长288.20m,桥梁位于R=60m的平曲线内,上部结构分别采用普通钢筋混凝土及预应力混凝土连续箱梁,共四联,B匝道桥标准宽为8.50m,下部结构桥墩采用椭圆型花瓶墩,基础采用钻孔灌注桩;C匝道桥分为两段, 第一段设计起点桩号为CK25+359.04,终点桩号为CK25+791.04,桥长为432m,桥梁位于R=1300m的平曲线内,第二段设计起点桩号为CK26+011.675,终点桩号为CK26+201.675,桥长为190m, 桥梁位于R=350m的平曲线内, 上部结构分别采用普通钢筋混凝土及预应力混凝土连续箱梁,第一段共四联,第二段共两联,第一段桥跨布置为(30x4)+(30x2+27)+(30x3)+(27x5)m,第二段桥跨布置为(20x2)+(30x5)m,C匝道标准桥宽为18.75m;洪湾主路高架桥设计起点桩号为K26+614,终点桩号为K27+040,全长426m,桥跨布置为右幅4x30+(30+27+36+33)+3x30+3x30=426m,左幅4x30+(30+33+36+27)+3x30+3x30=426m,采用现浇预应力混凝土连续箱梁,梁高1.8m。结合现场地质、地形以及各联箱梁的具体情况,采用碗扣式钢管满堂支架作为现浇箱梁支架。现就C匝道桥第一段第三联所采用的碗扣式钢管满堂支架体系进行验算。

2、检算依据

施工检算荷载计算项目按《公路桥涵施工技术规范》JTJ041-2000执行、《路桥施工计算手册》 人民交通出版社 2001年5月(周水兴、何兆益、邹毅松等编著)。

3、碗扣式钢管满堂支架体系设计概述

C匝道桥第一段第三联跨径均为30m,此联箱梁为等截面单箱双室箱梁结构,梁高

1.8米,桥面宽为18.75 米。支架立杆纵桥向布置为47×60cm,共48排;横向立杆布置为39×60cm,共40排;碗扣式钢管满堂支架体系由支架基础(80cm厚砂碎石垫层+20cm 1 现浇箱梁满堂支架及模板施工方案

厚C20砼)、υ48mm×3.5mm钢管立杆、横杆、剪刀撑(扣件式)、斜撑杆、可调托架、12×12cm方木横桥向分配梁、12×12cm方木顺桥向分配梁以及上铺15mm厚竹胶板组成。侧模板下布置12×12cm的纵桥向方木,间距为20cm,其下布置定型钢骨架,纵向间距80cm,定型钢骨架上下弦杆采用[10槽钢,立柱采用υ48mm×3.5mm钢管制作。

碗扣式钢管支架体系各组成部分所采用材料及相关参数如下: 模板:采用规格尺寸为2440×1220×15mm优质竹胶板。竹胶板密度为γ

=8.3KN/m3;抗弯强度[σw板竹胶板]=60.0MPa,弹性模量为Em=5000MPa。木方木:为马尾松,横向方木间距为60cm;纵向方木间距为20cm;方木密度为γ

=6.0KN/m3,方木抗弯强度为[σw方木]=12MPa,方木横纹抗剪强度[τj方木]=1.5MPa,弹性模量E方木=9.0×103MPa。横向方木直接铺设在碗扣式满堂支架立杆顶部的可调顶托

上。纵向方木铺设在横向方木上。υ48mm×3.5mm钢管:立杆间距为60×60cm,横杆层距(即立杆步距)为120cm,立杆竖向容许荷载[N]=33.1KN,其抗压强度值[σ钢管]=215MPa,钢材弹性模量为Eg=2.1 ×105MPa,截面积A=4.89×10-4m2,惯性矩I=1.215×10-7m4,抵抗矩W=5.078×10-6m3,回转半径i=1.578×10-2m,每米重量3.84Kg。支架在桥纵向每1.8m间距设置剪刀撑;立杆顶部安装可调顶托,立杆底部支立在底托上;底托下设置垫木,以确保基础受力均匀。

4、碗扣式钢管满堂支架验算 4.1 荷载标准值计算

梁端实体横隔梁下的底板模板受力最大,作为控制验算部位。分析相关荷载如下:

(1)竹胶板自重:q11=0.015×8.3=0.125KN/m2;纵向方木自重:q12=0.12×0.12×1 ×5×6.0=0.432KN/m;横向方木自重:q13=(0.12×0.12×1×2×6.0)/1.2=0.144 KN/m;

(2)C50钢筋混凝土自重:梁端 q2=1.8×26=46.8KN/m2。(3)计算支撑模板及直接支撑模板的小棱时施工荷载取均布荷载q31=2.5 KN/m2,另以集中荷载P=2.5KN进行检算。计算直接支撑小棱的梁时,施工均布荷载取q32=1.5 KN/m2。计算支架立柱时,取均布荷载q33=1.0 KN/m2。(4)振捣混凝土时产生荷载:q4=2.0 KN/m2。4.2 竹胶板强度及刚度验算 4.2.1 竹胶板计算模型 22 现浇箱梁满堂支架及模板施工方案

竹胶板计算模型取跨度为20cm的简支梁进行验算,计算范围为20×100cm。4.2.2 竹胶板强度验算(1)验算时荷载组合:

情况一:q竹胶板1=(0.125×1+46.8×1+2.5×1+2.0×1)×0.20=10.285KN/m。情况二:q 载P=2.5KN。(2)内力计算:

情况一:M1= q竹胶板1l2/8=10.285×0.202/8=0.051KN.m。情况二:M2= q竹胶板2l2/8+P×l/4=9.785×0.202/8+2.5×0.20/4=0.174KN.m。(3)强度验算:

W=bh2/6=1×0.0152/6=3.75×10-5m3 σ=Mmax/W=M2/W=0.174×103/(3.75×10-5)=0.0464×108Pa =4.64MPa<[σw板竹胶板2 =(0.125×1+46.8×1+2.0×1)×0.20=9.785KN/m,且承受集中荷]=60.0MPa 强度满足要求。4.2.3 竹胶板刚度验算

对于现浇混凝土模板验算刚度时,按照最不利原则,取恒、活荷载均布线荷载标准值进行验算

I=bh3/12=1×0.0153/12=2.813×10-7m4 ν1=5 q竹胶板1l4/(384EI)= 5×10.285×103×0.204/(384×5×109×2.813×10-7)=0.152×10-3m ν2=5 q竹胶板2l4/(384EI)+Pl3/48EI= 5×9.785×103×0.204/(384×5×109×2.813 ×10-7)+2.5×103×0.203/(48×5×109×2.813×10-7)=0.441×10-3m<0.20/400=0.500×10-3m 刚度满足要求。4.3 纵向方木强度及刚度验算 4.3.1 纵向方木计算模型

纵向方木其下横向方木间距为60cm,纵向方木每根长度为3m;故纵向方木计算模型取五跨等跨连续梁进行验算。4.3.2 纵向方木强度验算

(1)强度验算时荷载组合:

情况一:q纵向方木1=(0.125+46.8+0.432+2.5+2.0)×0.20=10.371KN/m。现浇箱梁满堂支架及模板施工方案 情况二:q P=2.5KN。纵向方木2 =(0.125+46.8+0.432+2.0)×0.20=9.871KN/m 且承受集中荷载(2)内力计算:

情况一:M1max= 0.105q纵向方木1l2=0.105×10.371×0.62=0.392KN.m Q1max= 0.606q纵向方木1l=0.606×10.371×0.6=3.771KN 情况二:M2max=0.105q纵向方木2l2+0.158Pl =0.105×9.871×0.62+0.158×2.5×0.6=0.610KN.m。Q2max= 0.606q纵向方木2l+P=0.606×9.871×0.6+2.5=6.089KN(3)强度验算:

W=bh2/6=0.12×0.122/6=2.88×10-4m3 σ=Mmax/W=M2max/W=0.610×103×10-6/(2.88×10-4)=2.12MPa<[σw方木]=12MPa 抗弯强度满足要求。

τ=3Qmax/(2bh)=3×6.089×103×10-6/(2×0.12×0.12)=0.634MPa<[τj方木]=1.5MPa 抗剪强度满足要求。4.3.3 纵向方木刚度验算

按照最不利原则,取恒、活荷载均布线荷载标准值对其刚度进行验算 I=bh3/12=0.12×0.123/12=1.728×10-5m4 ν1=0.664×5q纵向方木1l4/384EI= 0.664×5×10.371×103×0.604/384×9×109× 1.728×10-5=0.747×10-4m<0.6/400=1.5×10-3m ν2=0.664×5q纵向方木2l4/384EI+1.097×Pl3/48EI = 0.664×5×9.871×103× 0.604/384×9×109×1.728×10-5+1.097×2.5×103×0.63/48×9×109×1.728×10-5=1.505×10-4m<0.6/400=1.5×10-3m 刚度满足要求。4.4 横向方木强度及刚度验算 4.4.1 横向方木计算模型

横向方木其下立杆间距为60×60cm,横向方木每根长3m,计算模型取五跨等跨连续梁进行验算。

4.4.2 横向方木强度验算

(1)强度验算时荷载组合:

现浇箱梁满堂支架及模板施工方案

q横向方木=(0.125+46.8+0.432+0.144+1.5+2.0)×0.6=30.601KN/m。(2)内力计算:

M=0.105q横向方木l2=0.105×30.601×0.62=1.157 KN.m。

Q= 0.606q横向方木l=0.606×30.601×0.6=11.127KN(3)强度验算:

W=bh2/6=0.12×0.122/6=2.88×10-4m3 σ=M/W=1.157×103×10-6/(2.88×10-4)=4.017MPa<[σ 要求。

τ=3Q/(2×b×h)=3×11.127×103×10-6/(2×0.12×0.12)=1.159MPa<[τ =1.5MPa 抗剪强度满足要求。4.4.3 横向方木刚度验算

对于现浇混凝土模板支架横向方木的刚度进行验算

I=bh3/12=0.12×0.123/12=1.728×10-5m4 ν=0.664×5q横向方木l4/384EI= 0.664×5×30.601×103×0.604/384×9×109×1.728 ×10-5=0.220×10-3m<0.6/400=1.5×10-3m 刚度满足要求。4.5 碗扣式钢管满堂支架立杆的强度及稳定性验算 支架立杆间距为60×60cm,横杆层距(即立杆步距)为120cm,每米重量38.4N。支架在桥纵向每1.8m间距设置剪刀撑;立杆顶部安装可调顶托,立杆底部支立在底托上;底托下设置垫木,以确保基础受力均匀。第三联箱梁C10墩身处支架最高为10.7m,按最不利原则以该处碗扣式钢管满堂支架布设情况来考虑扣件杆件自重: 计算一跨支架的重量

立杆总长:48×40×10.7=20544m 横杆总长:(47×40+48×39)×0.6×9=20260.8m 剪刀撑总长:13×2×8×16×2.16=7188.48m 支架总重量:(20544+20260.8+7188.48)×38.4=1842941.952N 支架荷载:1842941.952/28.2×23.4=2.793KN/m2。4.5.1 立杆荷载计算 立杆间距为60×60cm,单根立杆所受荷载为: j方木w方木]=12MPa抗弯强度满足]

现浇箱梁满堂支架及模板施工方案

P=(0.125+0.432+0.144+2.793+46.8+1.0+2.0)×0.6×0.6=19.186KN。4.5.2 立杆强度验算

分配到每根碗扣式支架立杆荷载:

N=P=19.186KN<[N]=33.1KN 满足步距为120cm的承载力要求。

4.5.3 碗扣式钢管满堂支架立杆稳定性验算

每根立杆承受轴向压力N=P=19.186KN,取横杆层距(即立杆步距)L0=120cm,验算

立杆的稳定,支架立柱采用多层水平、纵向横杆、斜撑杆等构件连接成整体支架体系,碗扣式钢管满堂支架立杆稳定性验算时按照轴心受压构件考虑,即按照σ=N/υA≤[σ钢管]=215MPa进行验算。截面积A=4.89×10-4m2,回转半径i=1.578×10-2m。

λ= L0/i=1.2/1.578×10-2=76.046<[λ]=150 查《路桥施工计算手册》λ=76.0461时,立杆轴心受压构件纵向弯曲系数υ=0.676 σ=N/υA=19.186×103×10-6/(0.676×4.89×10-4)=58.040 MPa≤[σ钢管]=215MPa 满足稳定性要求。

4.6 立杆地基承载力验算

地基承载力根据基础底面积而定,地基容许承载力应满足:P=N/Ab=19.186/0.36=53.3KPa。

根据试验检验报告得知,第三联箱梁地基基础天然状态下抗压强度为50~100KPa。经过对局部软弱地基(如鱼塘、打桩用泥浆池、承台处回填土等)进行换填,以及对满堂支架天然地基进行碾压,采用80cm厚的砂碎石垫层+20cm厚C20混凝土作为支架基础,基础承载力能够满足容许承载力P≥53.3KPa要求。

5、施工时注意事项

碗扣式钢管满堂支架体系受钢管材料质量(如钢管厚度不足、碗扣式支架顶底托不合格、钢管不铅直、锈蚀等)、地基处理情况(如未压实、地基不均匀、积水等)和人为因素(施工时不严格认真、节点未错开、节点未装好等)等不利因素影响较多,因此施工时应加强对支架体系的材料、搭设、验收等环节进行质量控制及现场监督管理,确保工程施工安全。

第二篇:满布碗扣支架现浇箱梁方案.

满布碗扣支架现浇箱梁方案

支架采用满布式碗扣支架。支架的杆件挠度应不大于相应结构跨度的1/400,并且根据砼的弹性和非弹性变形及支架的弹性和非弹性变形设置施工预拱度。箱梁外、底模板均采用支架组合木模贴地板革胶合板,其外、底模的挠度不应超过模板构件跨度的1/400,内模板不应超过1/250跨径。

不承重的侧模,应在砼强度能保证砼表面及棱角不损坏的情况下方可拆除,一般在砼抗压强度达到2.5MPa时就可拆除侧模。承重模板和支架,应在砼强度达到设计强度后方可拆除。

1、地基处理:

现场地势平坦,比较适宜满布式碗扣支架,在墩柱施工时穿插安排地基处理,地基首先用人工配合装载机整平,用压路机碾压平整,在墩柱周边人工配合电夯分层夯实,压实度达到85%以上,对于地基承载力不够的地方,采用洞渣回回填并压实.在处理好地面上填筑10cm厚的C25砼,在支架外50cm挖设纵向排水沟,确保基础不受水流浸。对于地基不够宽的地段,采用临时墩φ430*8的钢管,基础采用桩基础,桩基础的持力层为强风化岩层,其强风化岩层承载力为1500kPa(承载力根据《工程地质勘察报告》)。钢管上面为40#工字钢、20#工字钢、碗扣式满堂支架,12#槽钢、8mm*8mm的方木、1.5cm的竹胶板.2、支架布置及计算说明

支架采用碗扣式满堂支架,支架计算菏载为:支架模板自重+浇筑段钢筋砼重量+施工人员、机具、材料运输堆放的活荷载。支架布置如图T-

1、图T-2示。

箱梁荷载通过底模及方木、侧模板传递到碗扣支架的立杆顶可调节顶托的槽钢上,然后通过纵向槽钢直接传递给立杆(支架)。

3、计算原理及结果 3.1、荷栽计算

⑴、砼自重:砼自重按26KN/m3计算,腹板及横隔梁处:q1=1.8×26=46.8KN/㎡ 翼板最厚处以及顶底板处:q2=0.5×26=13KN/㎡ 翼板最薄处:q3=0.18×26=4.68KN/㎡

(2)、施工人员、机具、材料运输堆放的活荷载 计算模板及支撑模板的方木时取2.5KN/㎡ 计算槽钢时取3.0KN/㎡ 计算支架立杆时取1KN/㎡

(3)、振捣产生的对水平模板的垂直压力2KN/㎡,对垂直模板的水平压力4KN/㎡

(4)、新浇砼对侧面模板产生的压力: q4=24*1.8=43.2KN/m2(5)、倾倒砼对模板侧面产生的压力:2.0KN/m2(6)、模板支架自重按1.5KN/m2 模板自重按0.5KN/㎡ 3.2、肋板处支架、模板计算

(1)、底模板采用δ=15mm竹胶板,近似接近简支于横向钢管上进行计算,按单跨计算。如图T-3。用作模板的竹胶板按15mm厚1.0m宽验算,模板和木方允许应力[&W]=9.5MPa,弹性模量E=8.5*103MPa。

对于横隔梁和腹板全高均为钢筋砼:方木间距为30cm。碗扣式钢管间距为60cm*60cm。即 模板计算长度L0=0.3m 横向方木计算长度L0=0.6m 纵向槽钢计算长度L0=0.6m(2)、对于底模模板:按单跨梁计算

静荷载Nj=1.2*(46.8+0.5)=57.12KN/m 活荷载Nh=1.4*(2.5+2=6.3KN/m Mmax=(Nj+Nh0.222/8=0.384KNm 应力 δ W=0.384/(1*0.0152/6)=1.02MPa<[&W]=9.5MPa 最大剪力Qmax=ql/2=6.976KN 最大弯矩 Mmax=0.105*57.12*0.252+0.119*6.3*0.252=0.422KNm 弯曲应力 δ W=0.422*103/(1*0.022/6)=6.3MPa<[&W]=9.5MPa 挠度 fmax=5*(Nj+Nh 0.224/384EI=0.08mm<[f]=250/500=0.44mm 符合要求

(3)、横向方木(100mm*100mm)横向跨度60cm,按纵向槽钢的简之梁计算。

计算模板传递给方木的均布荷载q,根据模板上作用的均布荷载大小,有:

静荷载Nj=1.2*(46.8+0.5)*0.3=17.14KN/m 活荷载Nh=1.4*(2.5+2*0.3=1.89KN/m Mmax=(17.14+1.89)*0.62/8=0.856KNm

应力 δ W=0.856*103/(0.1*0.12/6)=5.14MPa<[&W]=9.5MPa 挠度 fmax=5(Nj+NhL4/384EI=0.45mm<[f]=60/500=1.2mm 符合要求

(4)、纵向12#槽钢计算:

纵向12#槽钢计算按作用于立杆顶托上的简支梁计算,计算跨距按立杆间距60cm。

计算钢管方木传给纵向的均布荷载q,根据方木作用在纵向槽钢上的支点荷载大小,有:

静荷载Nj=1.2*(46.8+0.5)*0.3*0.6=10.22KN 活荷载Nh=1.4*(1.5+3.0*0.3*0.6=1.13KN Mmax=(Nj+Nh)L2/8=0.52KNm 应力 δ W=0.51*103/(8.3*10-3)=61.4Mpa< [&W]=215MPa 挠度 fmax=5(Nj+Nh)L3/384EI=0.43mm<[f]=60/500=1.2mm 符合要求

(5)、碗扣式钢管立杆受力: ①碗扣式钢管立杆允许压力: N/ΨF≦[σ]

因此 N=ΨF[σ] N——压杆承载力(KN);

Ψ——杆件纵向挠曲时允许应力折件系数,其值为长细比λ的涵数,其值可查表;

F——无缝钢管横截面净面积,F=Π×(D2-d2)/4=Π×(4.82-4.22)/4=4.24㎝2;

根据《钢结构设计规范》取λ=100,查Ψ=0.6(A3钢; [σ]——A3钢管轴向允许应力140MPa; 那么 N=0.6×4.24×140=35.62KN

0.6*0.6*[1.2*(46.8+1.5)+1.4*(1+2]=22.38KN<[N]=35.62KN 符合要求

②纵横水平钢管步距: 由λ=L0/r 得:L0=λ×r=100×1.59=159㎝ L0——步距(㎝); λ——杆件细长比;

r——杆件截面回旋半径(㎝),r=(D2+d2)1/2/4=1.59㎝; 159cm为最大允许步距,为安全起见步距取90㎝。

3、地基承载力计算

如图T-06示,立杆压力N通过立杆垫座向地基传递,通过10cm厚混凝土基础面层及50cm的洞渣基层后作用在原地基上,传递摩擦角近似按450计算(偏于安全),地基反力近似均布反力计算。

因立杆间距在底板位置纵横向均为60cm,则每根立杆在原地基的扩散面积:A=135*135=18225cm2有前面的计算可知:每根立杆压力N=22.38KN。则原地基应力:

σ=N/A=22.38/1.8225=13KPa。而原地基测得容许承载力为60KPa以上,可见地基承载力可以。

对于地基不够宽的地段,设置临时,基础采用桩基础,基础嵌入强风化岩层50cm,强风化岩承载力为1500KPa。

20#工字钢计算

20#工字钢间距为60cm。设计跨径定位3.5m, 则腹板最大弯矩为Mmax=(46.8KN/m+3KN/m*0.45*3.52/8=33.32KNm

支座剪应力N=(46.8KN/m+3KN/m*0.45*3.5/2=39.22KN

W=Mmax/σ=33.32/170=196cm3 选用20#工钢(W=250cm3)型钢所受最大剪力为39.22KN τ=QmaxS*zmax/Izd=39.22*103/17.2*9*10-5=25.34MPa<[τ]=100MPa 20#工字钢下承重梁跨径设计为4.5米 最大弯矩Mmax=330.918KNm 最大剪力Qmax=147.075KN W=147.075/170=865.1cm3

选取40a工字钢,(I=21714cm,w=1085.7cm3,s=631.2cm3)

τ=147.075*1085.7/21714/1.05=70.03MPa<[τ]=100MPa 满足使用要求。

临时墩的选用

临时墩采用φ430*8的钢管桩柱,由于旧钢管桩有一定程度锈蚀,为安全起见按φ430*6计算,钢管受力最大为147.075KN。(A=ΠD2(1-α2)/4=79.2cm2,I=ΠD4(1-α4)/64=17451.3cm4,i= D(1+α2)1/2/4=14.9cm

原地面以上静高按11m计算,钢管桩柱按二端铰接计算 λ=1000/14.9=67.1

ψ=0.84(查《钢结构设计规范》(GBJ17-88附录一得或《材料力学》(下册Pg146

σ= f/ A/ψ=147.075/79.2/0.84=2.15MPa<[σ]=170MPa 满足使用要求

按构造要求设置柱间支撑即可

由该桥的《工程地质勘察报告》得知强风化岩层,[σ]=1500KPa 设计桩基直径d=1.0m,则桩基嵌入强风化岩层允许承载力为[N]=[σ]*0.52*3.14=1177.5KN>147.075KN,故满足施工要求,为了施工安全,桩基嵌入强风化岩深度要求为0.5m。

3、翼板处支架、模板计算

(1)、采用δ=15mm竹胶板,取单位板宽(1m)按简支梁计算,竹胶板允许近似接近简支于横向钢管上进行计算,按单跨计算。竹胶板允许弯拉应力取12MPa。计算单位板宽模板上作用的均布荷载q大小:混凝土荷载:

q1=Ar砼=(0.18+0.5/2*1*2.6=8.84KN/m 施工荷载q2=1.5KPa*1=1.5KN/m 振捣砼时产生的荷载:q3=2.0KPa*1m=2.0KN/m 则:q=q1+q2+q3=12.34KN/m 最大剪力Qmax=qL/2=12.34*0.22/2=1.357KN 最大弯矩Mmax=QL2/8=0.0347KN.m 弯曲应力σ=Mmax/W=0.0347/(1*0.0152/6=925.33KPa=0.93MPa<[σ]=12MPa

τmax=1.5*1.375/(1*0.015 =0.14MPa<[τ]=1.9MPa(2横向方木计算

在翼板位置,10*10cm横向间距30cm,按作用于纵向方木上的简之梁计算,计算模板传递方木的均布荷载q,根据模板上作用的均布荷载大小,有:

Q=0.22*12.34=2.72KN/m 则跨中最大弯矩Mmax=qL2/8=2.72*0.32 /8=0.026KN.m 支点最大剪力Qmax= qL/2=2.72*0.3/2=0.344KN

弯曲应力σmax=Mmax/W=0.026/0.13/6=156KPa=0.156MPa<[σ]=12MPa 剪应力τmax=2*1.224/(0.1*0.1 =0.245MPa<[τ]=1.9MPa 可知横向方木受力安全。(3)纵向12#案槽钢计算

纵向槽钢计算按作用在立杆顶托上简支梁计算,计算跨距按立杆间距90cm计算

计算方木传递给纵向槽钢上的均布荷载q,根据方木作用在槽钢上支点荷载大小,有:q=1.224*0.9/0.53=2.08KN/m 则跨中最大弯矩Mmax=qL2/8=2.08*0.92 /8=0.211KN.m 支点最大剪力Qmax= qL/2=2.08*0.9/2=0.9364KN 弯曲应力σmax=Mmax/W=0.211/62.137*10-6=1650KPa=3.4MPa<[σ]=170MPa 应力 δ W=0.51*103/(8.3*10-3)=61.4Mpa< [&W]=215MPa 挠度 fmax=5 *0.936L3/384EI=0.43mm<[f]=900/500=1.8mm 符合设计要求。

(4)、碗扣式钢管立杆受力:

①碗扣式钢管立杆允许压力:

N/ΨF≦[σ] 因此 N=ΨF[σ] N——压杆承载力(KN);

Ψ——杆件纵向挠曲时允许应力折件系数,其值为长细比λ的涵数,其值可查表;

F——无缝钢管横截面净面积,F=Π×(D2-d2)/4=Π×(4.82-4.22)/4=4.24㎝2;

根据《钢结构设计规范》取λ=100,查Ψ=0.6(A3钢;

[σ]——A3钢管轴向允许应力140MPa;

那么 N=0.6×4.24×140=35.62KN

实际立杆受力

N1=0.9*0.6*[(0.18+0.5/2]*2.6=4.77KN 施工荷载N2=1.5KPa*0.9*0.6=0.81KN 振捣荷载N3=2*0.9*0.6=1.08KN

钢管支架及模板自重N4=3.0KN 则N=9.66KN 9.66KN<[N]=35.62KN 符合要求

②纵横水平钢管步距: 由λ=L0/r 得:L0=λ×r=100×1.59=159㎝

L0——步距(㎝);

λ——杆件细长比;

r——杆件截面回旋半径(㎝),r=(D2+d2)1/2/4=1.59㎝;

159cm为最大允许步距,为安全起见步距取90㎝。

3、地基承载力计算

如图T-06示,立杆压力N通过立杆垫座向地基传递,通过10cm厚混凝土基础面层及50cm的洞渣基层后作用在原地基上,传递摩擦角近似按450计算(偏于安全),地基反力近似均布反力计算。如图T-07

因立杆间距在底板位置纵横向均为60cm,由图T-07则每根立杆在原地基的扩散面积:A=135*135=18225cm2有前面的计算可知:每根立杆压力N=22.38KN。则原地基应力:

σ=N/A=22.38/1.8225=13KPa。而原地基测得容许承载力为60KPa以上,可见地基承载力可以。

第三篇:现浇箱梁支架地基处理及承载力验算

现浇箱梁支架地基处理

1、地基处理措施

现浇箱梁支架体系关键部位是桥下地基处理,桥梁施工范围内地基承载力应满足所承受的全部荷载,地基不发生沉陷现象。桥宽范围内先清除表面杂草和废弃垃圾等,基底碾压合格后(密实度90%),做1层5%石灰土(厚20cm)和一层道渣垫层(厚15cm)密实度压至96%以上(重型),个别软弱地段抛填片石,进行加固处理后填筑石灰土;最后浇注15cm厚C20素混凝土作为面层,在桥墩两侧各5米范围内灰土厚度为40cm、道渣厚度为15cm、混凝土厚度为20cm,顶面做好排水处理。(具体的地基处理根据现场试验和实际情况最后确定,地基处理见下图。)

151020砼道渣石灰土基 底

2、地基承载力验算

主线桥支架高度按6米计算,单根立杆的支架重量为:5*(0.6+0.9)*5+6*5=67.5kg。(φ48×3.5mm钢管每米自重3.84kg,加上扣件按5kg/m考虑)从支架、模板内力验算过程中得知各段立杆承受由纵梁传递来有荷载N分别为:21.244KN; 21.488 KN ;28.26 KN ;27.000 KN。立杆底托下用厚5cm×宽20cm的木板作垫板。

各段基础底面最大荷载P计算

0#~14#断面:(21.244+67.5*10-3*9.8)/(1.5*0.2)=73.0KN/m2; 14#~20#断面:(21.488+67.5*10-3*9.8)/(1.2*0.2)=92.3KN/m2; 24(27)

#~

26(29)

#断

:(28.26+67.5*10-3*9.8)/(1.2*0.2)=120.5KN/m2;

20#~

3#断

(27.000+67.5*10-3*9.8)/(0.9*0.2)=153.7KN/m2。

基础底面下浇注15cm厚C20素混凝土和填筑15cm厚道渣、20cm厚5%石灰土(道渣按18KN/m3,灰土按17.2KN/m3计算)。

用公式:pcz+pz≤fz,pz =b*p/(b+2Ztgθ)对5%石灰土地基进行验算。

pcz------垫层底面处土的自重压力(KN/m2); pz------垫层底面处的附加压力(KN/m2); fz------垫层底面处土层的地基承载力(KN/m2); b------基础底面的宽度(m);

p------基础底面压力(KN/m2),按最大值153.7(KN/m2)计算。

Z------基础底面下垫层的厚度(m); θ------垫层的压力扩散角,灰土取30°; pz

=b*p/

(b+2Ztg

θ)=0.2*153.7/(0.2+2*0.35*tg30°)=50.87(KN/m2);

pcz =24*0.15+17.2*0.2+18*0.15=9.74(KN/m2); 从地质报告的土层物理力学性质参数表中得知地基承载力荷载fz =95(KN/m2)。

pcz+pz =50.87+9.74=60.61≤fz =95,满足要求。

计算中未考虑面层C20混凝土的影响,如考虑此因素安全系数会更高。

在实际施工中再对5%石灰土进行试验,得出其各项详细参数,并通过用太沙基(K.Terzaghi)公式计算5%石灰土地基极限荷载来进行复核:

pu=0.4γbNγ+1.2cNc+γdNq pu------地基极限荷载,KPa;

γ------基础底面以下地基土的天然重量,KN/m3; c------基础底面以下地基土的粘聚力,KPa; d------基础埋深,m; b------基础边长,m;

Nγ;Nc;Nq------地基承载力系数,均为tgα=tg(45+φ/2)的函数,亦即φ的函数可直接计算或查有关图表确定。

考虑到支架底托直接立在地基表面上,没有埋深,所以: pu=0.4γbNγ+1.2cNc 地基承载力f= pu /K(K---地基承载力安全系数,K≥3.0)。

第四篇:跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书

现浇连续箱梁碗扣式满堂红支架计算书

(一)支架设计概况

现浇箱梁采用碗扣式满堂支架法现浇施工,三跨一联梁段同时施工。支架地基采用石灰土换填,重型压路机分层碾压密实(压实度≥90%),上做碎石底基层和混凝土垫层。地基设1%双向横坡,两侧设排水沟。支架采用WDJ型碗扣式多功能脚手杆搭设。立杆底设12×12cm可调钢板底托,立杆顶端设可调顶托,顶托上方横桥向铺设10#工字钢作主梁,纵桥向铺设10×10㎝方木作小梁。底模、侧模板采用244×122×1.5㎝高强竹胶板并钉于方木上;内模采用244×122×1.5㎝竹胶板,10×10㎝方木横肋、钢管支撑。箱梁混凝土分两次浇筑完成,先浇底板和腹板砼,再浇顶板砼。

(二)计算依据

(1)凌洲路跨宁连高速公路桥梁工程施工图设计文件;(2)《建筑施工计算手册》第二版;

(3)《建筑施工模板安全技术规范》JGJ162-2008;(4)《公路桥涵施工技术规范》JTGT F50-2011;

(5)《建筑施工碗扣式脚手架安全技术规范》JGJ166-2008;(6)《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011;(7)我公司的技术装备、施工技术经验以及类似工程实例。

(三)模板及支架的验算模型

支架:采用腕扣式Φ48*3.5mm钢管支架,支架最高距底面7.7m。立杆间距:腹板、底板部位横桥向为0.6m,翼板部位横桥向为0.9m;纵桥向间距为0.9m,在横梁处加密至0.6m。横杆步距为1.2m。立杆力学模型可视为两端铰接的受压构件,对其扰度及轴向力进行验算。

主梁及小梁:主梁采用10#普通工字钢架设在支架U型顶托上,横桥向布置。横梁部位主梁中心间距0.6m,腹板、底板、翼板部位主梁中心间距0.9m。小梁采用10×10cm的方木架设在主梁上,纵桥向布置。腹板、底板部、翼缘板部位小梁中心间距0.3m,横梁处加密至0.25m。主梁力学模型可视为简支梁,小梁力学模型视为多跨连续梁,分别对其弯曲强度、剪应力及扰度进行验算。计算跨径:主梁在翼板部位为0.9m,腹板、底板、横梁部位为0.6m;小梁在横梁部位为0.6m,腹板、底板、翼缘板部位为0.9m。

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书 模板:底模采用15mm厚优质竹胶板,铺设在小梁上,长边顺桥向布置。底板模板支撑肋中心距为0.3 m,横梁处模板支撑肋中心距0.25m,翼缘板、腹板侧模支撑肋中心距为0.3m。力学模型可视为简支梁进行验算,计算跨径分别为:0.3m、0.25m,考虑小梁方木宽度,实际跨径为0.2m,横梁处为0.15m。

示意图如下:

图一:现浇箱梁断示意面

图二:支架方案图

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书

(四)基本荷载情况

取现浇箱梁最大跨径25m且荷载(浇筑量)最大的第七联中幅进行受力计算,墩高以最高7.7米计,其他桥跨的支架搭设可以此作为计算依据。根据类似工程经验或查表(《建筑施工计算手册》,取以下基本荷载情况:

1、现浇箱梁钢筋混凝土荷载: 新浇钢筋混凝土容重:26KN/m3。

为方便验算和出于安全考虑,按箱梁混凝土全部自重均布在箱梁底面范围,第七联现浇箱梁砼方量:1250m3。

125025.49kPa;

75170.60.351.50.350.20229.38kPa(2)翼板部分面荷载 q1'=263.50.61.67(3)腹板部分底板面荷载 q1''=2643.42kPa

0.630.52(4)横梁部分底板面荷载 q1'''=2646.68kPa

17【横截面S=1.671.58.51.50.60.50.60.351.50.350.20230.52m2】

0.61.67(5)腹板部分侧板面荷载 q1''''=2615.6kPa

1.67(1)箱梁底板面平均荷载 q1=26

2、模板、支架荷载 :

竹胶板自重:9KN/m3;木材(方木)容重:7.5KN/m3;10#工字钢自重112.62N/m。

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书 Φ48*3.5mm钢管立杆、横杆自重60N/m。

按支架设计方案,单位面积内:

(1)模板荷载为q2 0.015×9=0.135kPa;内模取1.26kPa;合计1.395kPa。

(2)小梁方木荷载为q2'

横梁处:0.1×0.1×7.5×(1/0.25)=0.3 kPa 底板处:0.1×0.1×7.5×(1/0.3)=0.25 kPa(3)主梁工字钢荷载为q2''

横梁、底板、腹板处112.62/1000×(1/0.6)=0.188kPa 翼板处112.62/1000×(1/0.9)=0.125kPa(4)钢管自重荷载q2'''

横梁处 [1/(0.6×0.6)×4×7.7+(7.7/1.2)×(0.6+0.6)×2]×60/1000=6.057kPa

底板腹板处[1/(0.6×0.9)×4×7.7+(7.7/1.2)×(0.6+0.9)×2]×60/1000=4.58 kPa 翼板处[1/(0.9×0.9)×4×7.7+(7.7/1.2)×(0.9+0.9)×2]×60/1000=3.667kPa

3、施工荷载(人、料具运输堆放等活载): q3=2.5kPa;

4、混凝土卸料冲击荷载(采用泵送): q4=2.0kPa;

5、其它可能产生荷载(如风载、雪载、养护荷载):q5=1kPa;根据以上参数进行荷载组合,计算强度时以1、2、3、4、5项进行荷载基本组合;验算刚度时以1、2、5项进行荷载标准组合。荷载分项系数,可变荷载取1.4,永久荷载取1.2。

(五)模板验算

1、模板力学性能

(1)弹性模量取E=9.898×103MPa。(查《建筑施工模板安全技术规范》表A.5.1)(2)截面惯性矩:I=bh3/12=100×1.53/12=28.125cm4(取1m板带计算)(3)截面抵抗矩:W= bh2/6=100×1.52/6=37.50cm3(4)截面积:A=bh=100×1.5=150cm2(5)抗弯强度设计值[σ]=35MPa(查《建筑施工模板安全技术规范》表A.5.1)(6)容许扰度[ω]=L/400 模板受力图:

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书

2、模板弯曲强度及挠度验算

模板按简支梁受力,底板模板支撑肋中心距为0.3 m,翼缘板、腹板侧模支撑肋中心距为0.3m,横梁处加密至0.25m,考虑方木宽0.1m,模板实际跨径为:0.2 m、0.15m。

(1)弯曲强度:

①底模板均布荷载设计值:(取腹板处荷载进行验算偏安全)

q''(q1''q2)1.2(q3q4q5)1.4(43.421.395)1.2(2.52.01)1.461.48kPaq=q''×b=61.48×1=61.48KN/m 弯曲强度:σ= ql2/(8W)

=[61.48×0.2 2/(8×37.5×10-6)]×10-3=8.20MPa<[σ]=35MPa。

②横梁部位底模板荷载设计值:

q'''(q1'''q2)1.2(q3q4q5)1.4(46.681.395)1.2(2.52.01)1.465.39kPaq=q'''×b=65.39×1=65.39 KN/m 弯曲强度:σ= ql2/(8W)

=[65.39×0.15 2/(8×37.5×10-6)]×10-3=4.90MPa<[σ]=35MPa。

③翼缘板、腹板侧模均布荷载设计值:

q''''(q1''''q2)1.2(q3q4q5)1.4(15.61.395)1.2(2.52.01)1.428.09kPaq=q''''×b=28.09×1=28.09 KN/m 弯曲强度:σ=ql2/(8W)

=[28.09×0.2 2/(8×37.5×10-6)]×10-3=3.75MPa<[σ]=35MPa。

(2)挠度:

①底模板均布荷载标准值:

q''q1''q2q543.421.395145.82kPa

q= q''×b=45.82×1=45.82KN/m 挠度:ω=5qL4/(384EI)

=[(5×45.82×0.2 4)/(384×0.8×9.898×106×28.125×10-8)]×103=0.43 mm <L/400=0.75mm。

②横梁部位底模板均布荷载标准值:

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书 q'''q1'''q2q546.681.395149.08kPa

q=q'''×b=49.08×1=49.08KN/m 挠度:ω=5qL4/(384EI)

=[(5×49.08×0.15 4)/(384×0.8×9.898×106×28.125×10-8)]×103=0.15 mm <L/400=0.75mm。

③翼缘板、腹板侧模均布荷载标准值:

q''''q1''''q2q515.61.395118.0kPa

q=q''''×b=18.0×1=18.0KN/m 挠度:ω=5×qL4/(384EI)

=[(5×18.0×0.2 4)/(384×0.8×9.898×106×28.125×10-8)]×103=0.17mm <L/400=0.75mm。

结论:弯曲强度、挠度满足要求,15mm厚竹胶板受力满足要求。

(六)横梁验算

1、小梁力学性能

小梁为10×10cm方木,每根长度不小于4米,小梁纵桥向中对中间距为30cm,横梁处加密至0.25m。小梁最大跨距为90cm,横梁处最大跨度为60cm,按三跨连续梁受力进行验算,跨度分别为90cm、60cm。

(1)截面抵抗矩:W=bh2/6=10×102/6=166.67cm3;(2)截面惯性矩:I= bh3/12=10×103/12=833.33cm4;(3)落叶松容许抗弯应力[σ]=11MPa;(4)弹性模量E=9×103MPa;(5)容许扰度[ω]=L/400。小梁受力图:

2、小梁弯曲强度及挠度验算(1)弯曲强度:

①横梁部位小梁均布荷载设计值:

q'''(q1'''q2)1.2(q3q4q5)1.4(46.681.3950.3)1.2(2.52.01)1.465.75kPaq=q'''×b=65.75×0.25=16.44 KN/m 弯曲强度:σ= ql2/(10W)

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书 =[16.44×0.6 2/(10×166.67×10-6)]×10-3=3.55MPa<[σ]=11MPa。

②底板部位小梁均布荷载设计值:

q(q1q2)1.2(q3q4q5)1.4(25.491.3950.25)1.2(2.52.01)1.440.26kPaq=q×b=40.26×0.3 =12.08KN/m 弯曲强度:σ= ql2/(10W)

=[12.08×0.9 2/(10×166.67×10-6)]×10-3=5.87MPa<[σ]=11MPa。

③翼缘板、腹板侧模部位小梁均布荷载设计值:

q''''(q1''''q2)1.2(q3q4q5)1.4(15.61.3950.25)1.2(2.52.01)1.428.39kPaq=q''''×b=28.39×0.3=8.52KN/m 弯曲强度:σ=ql2/(10W)

=[8.52×0.9 2/(10×166.67×10-6)]×10-3=4.14MPa<[σ]=11MPa。

(2)挠度:

①横梁部位小梁均布荷载标准值:

q'''q1'''q2q546.681.3950.3149.38kPa

q=q'''×b=49.38×0.25=12.35 KN/m 挠度:ω=qL4/(150EI)

=[(12.35×0.6 4)/(150×0.8×9×106×833.33×10-8)]×103=0.18 mm <L/400=1.5mm。

②底板部位小梁均布荷载标准值:

qq1q2q525.491.3950.25128.14kPa

q= q×b=28.14×0.3 =8.44KN/m 挠度:ω=qL4/(150EI)

=[(8.44×0.9 4)/(150×0.8×9×106×833.33×10-8)]×103=0.61mm <L/400=1.5mm。

③翼缘板、腹板侧模部位小梁均布荷载标准值:

q''''q1''''q2q515.61.3950.25118.25kPa

q=q''''×b=18.25×0.3=5.48 KN/m 挠度:ω=qL4/(150EI)

=[(5.48×0.9 4)/(150×0.8×9×106×833.33×10-8)]×103=0.40mm <L/400=2.25mm。

结论:弯曲强度、挠度满足要求,横梁受力满足要求。(七)主梁验算

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书

1、主梁力学性能

横桥向采用10#工字钢作分配梁,底板部位碗扣式脚手架按照间距60cm×90cm布置,横梁部位按60cm×60cm布置,翼板部位按照90cm×90cm米布置。按简支梁受力进行验算,计算跨径为60cm。

(1)截面抵抗矩:Wx=49cm3;(2)截面惯性矩:Ix=245cm4;(3)截面面积矩:Sx=28.2cm3;(4)抗弯强度设计值[σ]=205MPa;(5)抗剪强度设计值[fv]=120 MPa;(6)容许扰度[ω]=L/500;(7)弹性模量E=2.06×105 MPa ;(8)X轴塑性发展系数γx=1.05。

主梁受力简图:

2、主梁弯曲强度、剪应力及挠度验算(1)弯曲强度:

①横梁部位主梁集中荷载、均布荷载设计值: F静=(46.68+1.395 +0.3)×0.25×0.6×1.2=8.71KN q静=0.188×0.6×1.2=0.135KN/m F活=(2.52.01)0.250.61.4=1.155KN 弯矩:Mmax=(F静a+F静l/4)+q静l2/8+(F活a+F活l/4)=[(8.71+1.155)×0.05+(8.71+1.155)×0.6/4]+0.135×0.62/8=1.979KN·m 弯曲应力:σ= Mmax /(γx·W)

=1.979/(1.05×49×10-6)×10-3=38.46MPa <[σ]=205MPa。

②底板、腹板部位主梁集中荷载、均布荷载设计值: F静=(43.42+1.395+0.25)×0.3×0.9×1.2=14.6KN q静=0.188×0.9×1.2=0.20KN/m F活=(2.52.01)0.30.91.4=2.08KN 弯矩:Mmax=(F静a+F静l/4)+q静l2/8+(F活a+F活l/4)=[(14.6+2.08)×0.15+(14.6+2.08)×0.6 /4]+0.2×0.6 2/8=5.01KN·m

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书 弯曲应力:σ= Mmax /(γx·W)

=5.01/(1.05×4.9×10-5)×10-3=97.43MPa <[σ]=205MPa。

③翼缘板、腹板侧模部位主梁集中荷载、均布荷载设计值: F静=(15.6+1.395+0.25)×0.3×0.9×1.2=5.59KN q静=0.125×0.9×1.2=0.135KN/m F活=(2.52.01)0.30.91.4=2.08KN

弯矩:Mmax=(F静a+F静l/4)+q静l2/8+(F活a+F活l/4)=[(5.59+2.08)×0.15+(5.59+2.08)×0.9/4]+0.135×0.9 2/8=2.89KN·m 弯曲应力:σ= Mmax /(γx·W)

=2.89/(1.05×4.9×10-5)×10-3=56.17MPa <[σ]=205MPa。

(2)剪应力: ①横梁部位主梁:

剪力:Vmax=1.5F静+q静l/2+1.5F活

=1.5×8.71+0.135×0.6/2+1.5×1.155 =14.84KN 剪应力:τmax= Vmax×Sx/(d×Ix)=14.84×28.2×10-6/(0.0045×245×10-8)×10-3=37.96 MPa <[fv]=120MPa。

②底板、腹板部位主梁: 剪力:Vmax=1.5F静+q静l/2+1.5F活

=1.5×14.6+0.20×0.6 /2+1.5×2.08=25.08KN 剪应力:τmax= Vmax×Sx/(d×Ix)=25.08×28.2×10-6/(0.0045×245×10-8)×10-3=64.15MPa <[fv]=120MPa。

③翼缘板、腹板侧模部位主梁: 剪力:Vmax=2F静+q静l/2+2F活

=2×5.59+0.135×0.9/2+2×2.08=15.4KN 剪应力:τmax= Vmax×Sx/(d×Ix)=15.4×28.2×10-6/(0.0045×245×10-8)×10-3=39.39MPa <[fv]=120MPa。

(3)挠度:

①横梁部位主梁集中荷载、均布荷载标准值:

F静=(q1'''q2)×0.25×0.6=(46.68+1.395 +0.3)×0.25×0.6=7.26KN

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书 q静=q2×0.6=0.188×0.6=0.113KN/m F活=q5×0.25×0.6=10.250.6=0.15KN

挠度:ω=[F静l3/(48EI)+ F静a(3l2-4a2)/(24EI)]+ 5q静l4/(384EI)+[F活l3/(48EI)+ F活a(3l2-4a2)/(24EI)]

=[(7.26+0.15)×0.63/(48×2.06×108×245×10-8)+(7.26+0.15)×0.05×(3×0.62-4×0.052)/(24×2.06×108×245×10-8)] ×103+5×0.113×0.62/(384×2.06×108×245×10-8)×103=0.10 mm<L/500=1.2mm。②底板、腹板部位主梁集中荷载、均布荷载标准值:

F静=(q1''q2)×0.3×0.9 =(43.42+1.395 +0.25)×0.3×0.9 =12.17KN q静=q2×0.6 =0.188×0.9 =0.169KN/m F活=q5×0.3×0.9 =10.30.9=0.27 KN

挠度:ω=[F静l3/(48EI)+ F静a(3l2-4a2)/(24EI)]+ 5q静l4/(384EI)+[F活l3/(48EI)+ F活a(3l2-4a2)/(24EI)]

=[(12.17+0.27)×0.6 3/(48×2.06×108×245×10-8)+(12.17+0.27)×0.15×(3×0.6 2-4×0.152)/(24×2.06×108×245×10-8)] ×103+5×0.169×0.6 2/(384×2.06×108×245×10-8)×103=0.26 mm<L/500=1.2mm。③翼缘板、腹板侧模部位主梁集中荷载、均布荷载标准值:

F静=(q1'''q2)×0.3×0.9 =(15.6+1.395 +0.25)×0.3×0.9 =4.66KN q静=q2×0.9 =0.125×0.9 =0.113KN/m F活=q5×0.3×0.9 =10.30.9=0.27 KN

挠度:ω=[F静l3/(48EI)+ F静a(3l2-4a2)/(24EI)]+ 5q静l4/(384EI)+[F活l3/(48EI)+ F活a(3l2-4a2)/(24EI)]

=[(4.66+0.27)×0.9 3/(48×2.06×108×245×10-8)+(4.66+0.27)×0.15×(3×0.9 2-4×0.152)/(24×2.06×108×245×10-8)] ×103+5×0.113×0.9 2/(384×2.06×108×245×10-8)×103=0.29mm<L/500=1.2mm。

结论:弯曲强度、挠度满足要求,纵梁受力满足要求。(八)支架强度及稳定性验算

采用Φ48*3.5mm钢管的腕扣式支架。立杆纵桥向间距l2=90cm,横梁处立杆纵桥向间距加密至60cm;横桥向间距l1=60cm, 翼缘板处横桥向间距l1=90cm;大横杆步距h=120cm。

1、钢管力学性能

(1)截面抵抗矩:W= 5.08cm3;(2)截面惯性矩:I=12.19cm4;(3)抗弯强度设

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书 计值[σ]=205MPa;(4)弹性模量E=2.05×103MPa;(5)回转半径i=15.78mm;(6)容许扰度[f]=L/400;(7)长细比[λ]=150;(8)钢管支架容许荷载[N]=30KN;(9)截面积A=4.89cm2。立杆受力图:

2、立杆稳定性及刚度验算(1)不组合风载时

①横梁部位立杆均布荷载设计值:

q'''(q1'''q2)1.2(q3q4q5)1.4(46.681.3950.30.1886.057)1.2(2.52.01)1.473.24kPa

每根立杆的受力为:

N=0.6×0.6×q'''=0.6×0.6×73.24=26.37KN<[N]=30KN ②底板部位立杆均布荷载设计值:

q(q1q2)1.2(q3q4q5)1.4(25.491.3950.250.1884.58)1.2(2.52.01)1.445.98kPa

每根立杆的受力为:

N=0.6×0.9×q=0.6×0.9×45.98=24.83KN<[N]=30KN ③翼缘板部位立杆均布荷载设计值:

q'(q1'q2)1.2(q3q4q5)1.4(9.381.3950.250.1253.667)1.2(2.52.01)1.425.48kPa

每根立杆的受力为:

N=0.9×0.9×q' =0.9×0.9×25.48=20.64KN<[N]=30KN 长细比λ=l/i=1200/15.78=76<[λ]=150,刚度满足要求。查《建筑施工计算手册》得υ=0.74,则[N]=υA[б]=0.74 ×489×205=74181N=74.2KN。

结论:由N<[N]得:抗压强度(稳定性)满足要求,支架立杆间距满足应力要求。(2)组合风载时

抗风稳定性验算,按《建筑施工扣件式钢管脚手架安全技术规范》公式计算风荷

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书 载标准值k(KN/m2):k =µZµS W0

式中:µZ---风压高度变化系数,查《建筑结构荷载规范》表7.2.1:按B类地面粗糙度,离地面高度7m时,取µZ =1.0;

µS---脚手架风荷载体形系数,应查《建筑结构荷载规范》表7.3.1,取µS =0.8; W0---基本风压,查《建筑结构荷载规范》附表D.4全国各城市50年一遇雪压和风压,按江苏省连云港市n=10,取W0=0.65 KN/m2;

代入上式得:k=0.7×1.0×0.8×0.65 =0.364 KN/m2。

由风荷载产生的立杆段弯矩设计值按《建筑施工扣件式钢管脚手架安全技术规范》Mw=0.9×1.4klah2/10=0.9×1.4×0.364×0.6×1.22/10=0.040(KN·m)

式中:la---立杆纵距,为0.6m;

h---横杆步距,为1.2m;

考虑风荷载效应时,立杆稳定性按下式进行验算:

N/(ΦA)+ Mw/W=26370/(0.74 ×489)+40×103/(5.08×103)=80.75 MPa <[σ]=205MPa 结论:由σ<[σ]得:抗弯强度满足要求,支架抗风稳定性满足要求。

(九)地基承载力验算

每根立杆的轴向受力N=26.37KN。

立杆底部钢垫板边长为0.12 m,底部砼混凝土垫层厚度以0.20 m计, 基础按扩散角45°计算地基的承载面积为:Ab=(0.12+0.2 *tg(45°)*2)2=0.270 m2。

p=N/Ab=26.37KN/0.270m2=97.67Kpa 考虑安全系数为1.3,则所需地基承载力为97.67×1.3=126.97Kpa≤[б] =130Kpa。

根据地质资料,现浇箱梁桥址区表层为50cm耕植土,下层为粘土,含水量大,层厚1.7~2.2m,容许承载力[б]= 80Kpa,不能满足要求。支架基础采用60cm厚8%石灰土分层压实处理,上做10cm厚碎石底基层,浇筑20cm厚C20砼垫层。在支架搭设、砼垫层浇筑前地基承载力应按浅层平板载荷试验或标准贯入试验确定地基承载力特征值。地基处理后承载力达130Kpa以上。

结论:地基承载力满足要求。

(十)稳定性加固:

支架的四边与中间纵、横向立杆由底至顶连续闭合设置竖向剪刀撑,其间距不大

*****跨高速公路大桥现浇连续箱梁碗扣式满堂红支架计算书 于4.5米,竖向剪刀撑斜杆与地面的倾角为45°~60°,以确保整体稳定。支架高度大于4.8米,在竖向剪刀撑顶部和底部交点平面设置水平剪刀撑;中间水平剪刀撑设置间距不超过4.8米;墩柱周边的支架设置连墙杆,以增加整体稳定。

综上所验算,该现浇支架及模板均满足设计要求。

第五篇:某桥现浇箱梁钢管支架预压方案.

(2×50+25)m箱梁钢管支架预压方案

一、概述: 对(2×50+25)m现浇箱梁钢管支架进行预压以便获取支架弹性变形和非弹性变形量及地基沉降量,为连续箱梁底模设置预抬值提供依据。现浇箱梁断面图

现浇箱梁钢管支架预压荷载断面图 砂袋砂袋 砂袋砂袋

现浇箱梁钢管支架预压平面位置及测点的布置图

断面图

断面图

二、加载及卸载顺序:

按荷载总重的0→50%→100%→50%→0进行加载及卸载,并测得各级荷载下的测点的变形值;

三、预压时间:

荷载施加100%后,观测次数一般为加载前、加载完毕、加载12小时、加载24小时、加载48小时和卸载完毕共6次(卸载必须在支架不再变形原形后进行)。施工时按时、准确、认真地测量数据,最后综合分析这些数据,删除不合理的值,为施工预拱度提供准确可靠原数据。

四、观测方法:

在箱梁底板的腹板位置设测点,5米一个断面,每断面三个测点。测点选择在钢管立柱上(测点布置见图);按照加载及卸载步骤分别测的各级荷载下的模板下沉量及地面下沉量,并在卸载后全面测得个测点的回弹量。

五、加载荷载计算:

采取分幅分跨预压,预压时腹板1米范围内所压荷载为=0.5m×2.8m×2.6(吨/立方米)×1.2=4.36吨/每延米长。底板5米范围内所压荷载=5m×0.5m× 2.6(吨/立方米)×1.2=7.8吨/每延米长。翼缘板3.75米范围内所压荷载为=3.75m×0.3m×2.6(吨/立方米)×1.2=3.51吨/每延米长。顶板部位重量折入底板预压重量。单幅25m跨荷重取不少于963吨(查施工图中的材料数据,对单幅25m跨长进行计算得到的钢筋混凝土理论重量),单幅50m跨荷重取不少于1927吨(查施工图中的材料数据,对单幅50m跨长进行计算得到的钢筋混凝土理论重量)。箱梁混凝土重量计算时,比重取2.6吨/每立方米。

故预压时腹板位置以砂袋进行等重预压,底板以砂袋堆围堰加水加压,假设每袋重80Kg。

腹板纵向每1米长位置需54.5袋砂石料。

底板纵向每1米长位置需97.5袋砂石料。翼缘板纵向每1米长位置需43.9袋砂石料。

堆载时必须对称加载,先加腹板部位,再加底板部位。

六、安全注意事项:

1、所有工作人员必须戴安全帽。

2、严禁人员进入试压区。

3、现场试压人员及机具由负责人统一指挥。

4、加载时逐步加载,禁止加载物冲击承重平台。

5、发现异常情况,应立即停止作业;经检查分析处理后方可继续进行。

下载现浇箱梁碗扣式钢管支架体系验算.(推荐5篇)word格式文档
下载现浇箱梁碗扣式钢管支架体系验算.(推荐5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    箱梁碗扣式脚手架专项安全方案

    箱梁碗扣式脚手架专项安全方案一、工程概况四流路跨线桥梁设计全长987米,共8联29孔箱梁。在跨中处为等截面单箱四室箱梁,墩柱两侧为变截面单箱四室结构,在墩柱上端为实心横梁,梁......

    水中现浇箱梁支架搭设方案

    支架搭设方案 (水中现浇箱梁) 中铁二十局一处苏州市 官渎里立交工程项目经理部 二OO二年四月十七日目 录 一、工程概况 二、施工方法及施工方案 1、临时支墩布设 2、贝雷梁......

    现浇箱梁满堂支架施工技术探讨

    现浇箱梁满堂支架施工技术探讨 [摘 要]满堂支架法是目前桥梁上部现浇连续箱梁采用最多的、最普遍的施工方法。本文结合工程实例,对现浇箱梁满堂支架的施工技术作一些探讨。[......

    碗扣式钢管脚手架施工方案

    欣隆〃湖滨半岛工程 编制单位:新七建设集团有限公司编 制 人:审 核 人:审 批 人:编制日期: 碗 扣 式 钢 管 脚 手 架 施 工 方 案 二零一零年十一月 新七建设集团有限公司......

    浅谈碗扣式支架在现浇混凝土箱梁施工中的应用[5篇范例]

    浅谈碗扣式支架在现浇混凝土箱梁施工中的应用 摘 要:佛山市禅西大道塱沙大桥跨铁路桥梁墩高为9.0-15.0m,上部结构为连续箱梁,采用落地碗扣式钢管满堂支架施工。为保证施工安全......

    现浇箱梁支架地基与基础处理?

    ①当采用满堂支架施工方案时,必须对支架范围内的泥浆池进行彻底清理和换填;原地面处理采用清除杂草、地基触探、回填碎石类土进行分层碾压、高出原地表30cm以上,最后在其上铺筑......

    预应力混凝土现浇连续箱梁支架拆除方案

    厦门市××大道××××××××桥 预应力混凝土现浇连续箱梁 支架拆除方案 厦门×××××项目部 二○一三年十月十五日 一、工程概况: B匝道桥共设置4联,采用[(3×30)+(30+45......

    满堂支架现浇箱梁施工作业专题安全应急预案

    满堂支架现浇箱梁施工作业专题安全应急预案 1、基本情况 本工程K49+600~K76+422.57路段是×××至×××高速公路终点路段。位于×××东北部×××街至×××市内八步区××......