第一篇:等差数列前n项和公式教学案例分析
《等差数列前n项和公式》教学案例分析
教学案例:
一、教学设计思想
本堂课的设计是以个性化教学思想为指导进行设计的。
本堂课的教学设计对教材部分内容进行了有意识的选择和改组,为了体现个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中心,以老师为引导,以小组的合作为主要学习方式。课堂结构个性化,让学生在探究中展现个性,在合作中促进学生的个性发展。
在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
二、学生情况与教材分析
1、学生通过上一节的学习,已经了解了等差数列的定义,基本上掌握了通项公式,会运用等差数列的通项公式进行解题,因此只要简单地回顾上一节课的知识就可引入新课;
2、几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。
3、学习应该是学生积极主动的建构知识的过程,应该与学生熟悉的背景相联系。本课要求学生通过自主地观察、讨论、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。
三、教学目标
1、知识目标
(1)掌握等差数列前n项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n项和公式求和。
2、能力目标
经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。
3、情感目标
通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学心理体验,产生热爱数学的情感,体验在学习中获得成功。
四、教学重点、难点
1、等差数列前n项和公式是重点。
2、获得等差数列前n项和公式推导的思路是难点。
五、教学流程图
六、教学过程
1、引入新课(1)复习
师:上一节课中,我们学习了等差数列的定义及通项公式,知道了“公差d=,通项公式an=”(见黑板)生:(回答黑板上的问题)
(2)故事引入
师:那等差数列的前n项和怎样求?今天,我们主要探讨等差数列的前n项和公式。说起数列求和,我由地想起德国伟大的数学家高斯“神述求和”的故事。高斯在上小学四年级时,老师出了这样一道题“1+2+3、、、、、+99+100”(见课件)高斯稍微想了想就得出了答案。高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。
生:5050 师:看来我们班还是有不少高斯的。继续努力,说不定将来也成了数学家。下面请这位同学说一说是怎样算出来的。
生:(说明如何进行首尾配对进行求和的。)
师:根据等差数列的特点,首尾配对求和的确是一种巧妙的方法。不过,对于以下的题,“例:求等差数列8、5、2、、、、的前20项的和(见课件)”这种方法可就没那么方便了。因此我们非常迫切地需要推导出等差数列的前n项和公式。
2、探究等差数列前n项和公式一
师:下面我们从一个稍稍简单一点的等差数列来推导探讨等差数列的前n项和公式。(学生观察幻灯片上以等差数列逐层排列的一堆钢管。)
师:如何求?
生:利用刚才的方法.(略)师:想一想,除了刚才的首尾配对求和的方法外,还有没有其他的方法呢?
(课件演示:引导学生设想,如果将钢管倒置,能得到什么启示)
生:每一层都和上一层是一样多的。一共有8层,所以为8×(4+11),但一共有两堆,所以为
师:那如果如下图所示共有n层,第一层为a1,第n层为an,请大家来猜想一下这个呈等差数列排列的钢管的总和sn等于多少? 生:
师:这个猜想对不对呢?下面我们用所学过的知识一起来证明一下。
板书:把上式的次序反过来又可以写成
两式相加:
所以
看来,我们的猜想是正确的。下面我们做几道练习来熟悉一下公式。
3、学生合作学习,运用公式一解题,并从练习中探索得到求和公式二。学生练习一:
1、在等差数列{an}中,已知a1=1,a10=8,求s10
2、求正整数列是前1000个数的和; 学生小组合作练习,分组进行交流。
师:看来,大家对公式的掌握还是不错的。下面,我们再来看一道练习。
学生练习二:在等差数列{an}中,已知a1=1,d=-2,求s10;
学生思考,并讨论解答。
学生讲解如何进行求解这题。
师:刚才那道题给出了a1,d和n=10,a10没有给出,但我们一样可以将s10求出,那我们能不能直接由a1,d和n,得到an呢?
学生根据求和公式一和通项公式导出公式二:
学生练习三:求正整数中前500个偶数的和(用多种方法求解)学生讨论解答此题,并请学生上台讲解。
4、总结
师:今天,大家学得不错。下面我们再来回顾一下本堂课的内容。今天我们主要倒序相加的方法推导了等差数列前n项和公式一,并结合等差数列通项公式二推导出等差数列前n项和公式二,希望同学们在今后的解题要灵活运用这两个公式。
【教学反思】:
综观本节课,存在有特点主要有以下几点:
1、合理地对教材进行了个性化处理,挖掘了教材中可探究的因素,促使学生探究、推导。例如:等差数列前n项和的公式一,是通过具体的例子,引到一般的情况,激励学生进行猜想,再进行论证得出;而第二个公式并不象书本上那样直接给出,而是让学生从习题中进行归纳总结得到的。这样处理教材,使学生的思维得到了很大的锻炼。
2、本节课主要采用观察法、归纳法等教学方法,同时采用设计变式题的教学手段进行教学,通过具体问题的引入,使学生体会数学源于生活,创设情境,重在启发引导,使学生由浅到深,由易到难分层次对本节课内容进行掌握。学生在学习的过程中体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。
第二篇:等差数列前n项和公式说课稿
大家好!今天我说课的题目是《等差数列的前n项和》,所选用的教材为中等职业教育规划教材。
一、教材分析:
1、教材的地位和作用
《等差数列的前n项和》是第一册第五章第二节的内容,本节内容在日常生活中有着广泛的应用,同时与函数、三角、不等式等内容有着密切的联系。它既是等差数列的概念的延续,又为后续研究等差数列的应用提供理论依据。鉴于这种认识,我认为,本节课对于进一步探索、研究等比数列无论在知识上,还是方法上都有很强的启发与示范作用。
2、学情分析
学生在认知方面基本掌握等差数列的通项公式,初步具备运用所学知识解决问题的能力,但数形结合的意识和思维的深刻性需要进一步加强培养,多数学生有积极的学习态度,能主动参与探究,少数学生的主动性,还需要通过营造一定的学习氛围带动。
3、教学重难点
根据以上对教材的地位与作用,以及学情的分析,结合本节内容的特点,我将本节课的重点确定为:等差数列前n项和公式的理解、推导与应用;
难点确定为:获得等差数列前n项和公式推导的思路及公式的简单应用。
二、教学目标分析
在教学中应以知识与技能为主线,渗透情感态度价值观,并把前两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:
1.掌握等差数列求和公式,能较熟练应用等差数列前n项和公式; 2.经历公式的推导,体会数形结合的思想,体验从特殊到一般的研究方法,学会观察、归纳、反思;
3.通过合作交流、主动探究,体会数学的合理性和严谨性,使学生养成积极思考、独立思考的习惯,培养学生团队合作的精神。
三、教学方法分析
学生是学习的主体,教师是学习的组织者,教学的一切活动都必须围绕学生展开。根据这一教学理念,本节课我采用引导发现法、问题驱动教学法,以问题的提出及解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式分析和解决问题,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
在学法方面,主要采用联系学习法,探究式学习法,自主性学习,真正体现学生为主体的教学理念。
四、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节:(一)创设情境,提出问题
给出历史上有名的实例,提出问题,学生进行观察分析,进入思考状态。设计意图:以问题的形式创设情境,激发学生探究新知的欲望,为学习新内容做好准备。
(通过这一环节,学生已经产生强烈的求知欲望,此时将学生带入下一个环节。)
(二)探究讨论,发现问题(本节课的重点)
首先给出探索发现1,在教师的启发引导下,学生通过合作交流的方式,逐步明确解决问题的方法和思路。
设计意图:通过这一环节,让学生体会数形结合的数学思想,同时培养学生的探究及归纳能力。
接着给出探索发现2,由学生通过主动探究和合作交流的方式解决问题2,从而归纳整理出求和公式1。
设计意图:学生通过探索1的解决,已经积累了解决此类问题的经验,此时给出探索2,充分发掘学生的兴趣点,同时顺利解决问题。
最后给出探索发现3,此时提出问题3,学生结合前两个问题的解决方法,从而归纳出求和公式一和二。
设计意图:在本环节中采用问题驱动的教学方法,以循序渐进、层层深入的方式,运用特殊到一般的研究方法,降低了知识的梯度,从而突出重点。(通过前面的学习,学生已经基本把握了本节课所学习的内容,此时他们急于展示自我,体验成功,于是我把学生带入第三个阶段。)
(三)公式应用,加深理解
本环节主要是等差数列求和公式的应用,是本节课的难点。解决引入时候设置的问题,处理方法是引导学生从首项、末项及项数出发,使用公式
(一)求和;(2)引导学生从首项、项数及公差出发,使用公式
(二)求和。通过两种方法的比较,提示学生应根据信息选择合适的公式。
设计意图:反馈体验,解决引入时候设置的问题,使得学生体会到等差数列前n项和的实用性,突破本节课的难点。
(五)小结归纳,感知深化
为发挥学生的主体作用,从学习的知识、方法、体验三个方面进行归纳,我设计了三个问题。
设计意图:通过三个问题的处理,让学生从整体上把握课堂结构,从而优化认知结构,充分发挥学生的主体作用。
(六)布置作业,拓展升华
以作业的巩固性和发展性为出发点,设计了A和B两种题目,作业A是对本节课内容的一个反馈,作业B是对本节知识的一个延伸。总的设计意图是反馈教学,巩固提高。
板书设计:这样安排版面,使得本节课内容重难点突出,层次分明。
五、教学评价:
这节课的设计体现了以学生为主体,教师为指导的理念,以上几个环节环环相扣,层层深入,充分体现教师与学生的互动,在教师的整体调控下,学生通过动脑思考,对知识的理解逐步深入,使课堂学习效果最优化。
第三篇:等差数列的前n项和公式教案
2.3等差数列的前n项和公式(教案)
一.教学目标:
1.知识与技能目标
了解等差数列前n项和公式,理解等差数列前n项和公式的几何意义,并且能够灵活运用其求和。2.过程与方法目标
学生经历公式的推导过程,体验从特殊到一般的研究方法。
3.情感态度与价值观目标
学生获得发现的成就感,优化思维品质,提高代数的推导能力。
二.教学重难点:
1.重点:等差数列前n项和公式的推导,掌握及灵活运用。2.难点:诱导学生用“倒序相加法”求等差数列前n项和。
三.教法与学法分析:
1.教法分析:采用“诱导启发,自主探究式”学法为主,讲练结合为辅的教学方法。
2.学法分析:采用“自主探究式学习法”和“主动学习法”。
四.课时安排:
1个课时 五.教学过程
(一)导入
我们已经学过等差数列的定义an+1-an=d(n属于正整数),等差数列的通项公式an=a1+(n-1)d,等差数列的等差中项2an=an-1+an+1,还有:若m+n=p+q,则am+an=ap+aq.我们应该怎样求a1+a2+„+an,其中{an}为等差数列,记Sn=a1+a2+„+an
我们知道200多年前高斯的老师给他们出了一道题目,让他们计算1+2+就算出来了„+100=?当时10岁的高斯很快。高斯是怎样做出来的呢?他使用了什么简单高明的方法?
1+2+„+100=(1+100)+(2+99)+„+(50+51)=50*101,所以1+2+„+100=5050,这就是著名的高斯算法,到后来,人们就从高斯算法中得到启发,求出了等差数列1+2+„+n的前n项和的算法
(二)探究新知,发现规律
从高斯算法中,人们怎样求出首项为1,公差为1的等差数列1+2+3+„+n的和? 首先1+2+„+n(1)n+(n-1)+„+1(2)
2Sn=(n+1)+(n+1)+„+(n+1)(n个(n+1))所以 1+2+„+n=n*(n+1)/2 我们把上面的方法称为“倒序相加法”,也就是说高斯当时用的就是“倒序相加法”算出了1+2+„+100的和
然而这个方法可以推广到等差数列的前n项和 定义:一般地,我们把a1+a2+„+an叫做等差数列的前n项和,用Sn表示
即Sn=a1+a2+„+an
从高斯算法中得到的启示,对于一般的等差数列,其中a1是首项,d是公差,我们可以用两种方法来表示
Sn=a1+a2+„+an
=a1+(a1+d)+„++[ a1+(n-1)d](3)Sn=an+ an-1+„+a1
=an+(an-d)+„+[an-(n-1)d](4)两式相加得2Sn=(a1+an)+(a1+an)+„+(a1+an),有n个(a1+an)所以Sn=n(a1+an)/2(5)将an=a1+(n-1)d带入Sn=n(a1+an)/2中即可得到Sn=na1+n(n-1)d/2(6)(5)与(6)区别:第一个公式反映了等差数列的首项与末项之和跟第n项与倒数第n项之和是相等的;第二个公式反映了等差数列的首项与公差d之间的关系,而且是关于n的“二次函数”,可以与二次函数作比较。
联系:将an=a1+(n-1)d带入Sn=n(a1+an)/2中即可得到 Sn=na1+n(n-1)d/2
(三)知识应用,反思,提高强化知识
例1:已知等差数列{an}的通项公式an=2n+3,求Sn 解:因为an=2n+3
所以a1=5, 即Sn=n(a1+an)/2
=n^2+4n 例2:已知等差数列前10项的和是310,前20项的和是1220,求前n项和公式Sn 解:因为S10=10* a1+10*9*d/2=310
S20=20* a1+20*19*d/2=1220 所以Sn=n* a1+n(n-1)d/2
=4n+n(n-1)*6/2 =3n^2+n习题1:设Sn为等差数列{an}的前n项和,若S9=72,求a2+a4+ a9=?
解:因为S9=9a1+8*9*d/2=9a1+36d=9(a1+4d)=72
所以a1+4d=8
又因为a2+a4+a9=a1+d+a1+2d+a1+8d
=3a1+12d =3(a1+4d)=3*8 =24
(四)归纳总结
对Sn=n(a1+an)/2 与 Sn=na1+n(n-1)d/2两个公式的熟练运用:注:已知条件不同时,公式的选择要依据已知条件,有利于很快的解决问题。
(五)作业布置
P45,1,2
第四篇:yuanhong 《等差数列的前n项和公式》教学设计
《等差数列的前n项和》教学设计
教材分析: 《等差数列的前n项和》是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义、通项公式后,对等差数列知识的进一步学习。学情分析:
学生通过对等差数列基本概念和通项公式的学习,对等差数列有了一定的了解。但是由于学生是第一次接触到数列的求和,缺乏相关经验,因此,需要借助几何直观学习和理解。教学目标 :
1、情感态度与价值观
(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。
2、过程与方法
(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
3、情感态度与价值观
(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数
推理的能力。
(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。教学重点、难点 :
1、等差数列前n项和公式是重点。
2、获得等差数列前n项和公式推导的思路是难点。设计理念 :
在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,由浅入深,层层深入,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。教学资源:
现代教育多媒体技术 教学过程:
(一)创设问题情境
1.故事引入:德国伟大的数学家高斯“神述求和”的故事。高斯在上小学四年级时,老师出了这样一道题“1+2+3„„+99+100”高斯稍微想了想就得出了答案。高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。
高斯的方法:
首项与末项的和:1+100=101 第2项与倒数第2项的和:2+99=101
第3项与倒数第3项的和:3+98=101 ……
第50项与倒数第50项的和:50+51=101 ∴前100个正整数的和为:101×50=5050 2.故事引入:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,奢靡之程度,可见一斑。你知道这个图案一共花了多少宝石吗?图案中,第1层到第21层一共有多少颗宝石?
在知道了高斯算法之后,同学们很容易把本题与高斯算法联系起来,也就是联想到“首尾配对”摆出几何图形,将两个三角形拼成平行四边形.让学生初步形成数形结合的思想,这是在高中数学学习中非常重要的思想方法.借助图形理解逆序相加,也为后面公式的推导
打下基础.因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。上述故事归结为 1.这是求等差数列1,2,3,„,100前100项和
2.求等差数列1,2,3,„,21前21项和
(二)等差数列求和公式
一般地,称用表示,即
为等差数列的前n项的和,1、思考:受高斯的启示,我们这里可以用什么方法去求和呢?思考后知道,也可以用“倒序相加法”进行求和。
我们用两种方法表示
:
① ②
由①+②,得
由此得到等差数列的前n项和的公式
对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。
2、除此之外,等差数列还有其他方法吗?当然,对于等差数列求和公式的推导,也可以有其他的推导途径。例如:
===
=
代入
这两个公式是可以相互转化的。把中,就可以得到
引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。第二个公式反映了等差数列的前n项和与它的首项、公差之间的关系,这两个公式的共同点都有四个量,都有三求一”,不同点是第一个公式还需知道
和n,都可以“知,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。
(三)公式运用,变式训练 例1.求和: 1、101+100+99+98+97; 2、2+2+4+6+8+„„+2n;(结果用n表示)3、2+4+6+8+„„+(2n+4);(结果用n表示)
例2、2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通知》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?
如果开始时有1.275亿元可以支配,那么按照上面的方法划拨经费,可以再持续多少年?
例3.根据下列各题的条件,求相应等差数列的未知数(1)a1=3,an=2n+1,sn=195,求d,n;(2)a2+a6=16,s6=39,求d,an 例4.已知一个等差数列的前10项的和是310,前20项的和是1220,由此可以确定求其前n项和的公式吗?
(五)随堂练习
1、求等差数列13,15,17,„81的各项和
2、已知等差数列, a1=3 且满足 an+1=an+2 ,求的前n项和。
(六)课后小结
1.经历了等差数列前n项和公式推倒的过程 2.学习了等差数列的前n项和公式:
snn(a1an)n(n1)与snna1d用推导的两个公式灵活解题。2
2(七)课外作业 P49:13、、15、1417
第五篇:说课—《等差数列前n项和的公式》
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
说课—《等差数列前n项和的公式》
自己收藏的 觉得很有用 故上传到百度 与大家一起分享!
说课-《等差数列前n项和的公式》 教学目标
A、知识目标:
掌握等差数列前n项和公式的推导方法;掌握公式的运用
B、能力目标:
(1)通过公式的探索、发现
在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力
(2)利用以退求进的思维策略 遵循从特殊到一般的认知规律
让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式
培养学生类比思维能力
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
(3)通过对公式从不同角度、不同侧面的剖析 培养学生思维的灵活性
提高学生分析问题和解决问题的能力
C、情感目标:(数学文化价值)
(1)公式的发现反映了普遍性寓于特殊性之中 从而使学生受到辩证唯物主义思想的熏陶
(2)通过公式的运用 树立学生“大众教学”的思想意识
(3)通过生动具体的现实问题 令人着迷的数学史 激发学生探究的兴趣和欲望 树立学生求真的勇气和自信心 增强学生学好数学的心理体验 产生热爱数学的情感
教学重点:等差数列前n项和的公式
教学难点:等差数列前n项和的公式的灵活运用
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
教学方法:启发、讨论、引导式
教具:现代教育多媒体技术
教学过程
一、创设情景 导入新课
师:上几节
我们已经掌握了等差数列的概念、通项公式及其有关性质 今天要进一步研究等差数列的前n项和公式 提起数列求和
我们自然会想到德国伟大的数学家高斯“神速求和”的故事 小高斯上小学四年级时
一次教师布置了一道数学习题:“把从1到100的自然数加起来 和是多少?”年仅10岁的小高斯略一思索就得到答案5050 这使教师非常吃惊
那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算
那你们就是二十世纪末的新高斯(教师观察学生的表情反映 然后将此问题缩小十倍)
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
我们来看这样一道一例题
例1 计算:1+2+3+4+5+6+7+8+9+10.这道题除了累加计算以外
还有没有其他有趣的解法呢?小组讨论后 让学生自行发言解答
生1:因为1+10=2+9=3+8=4+7=5+6 所以可凑成5个11 得到55
生2:可设S=1+2+3+4+5+6+7+8+9+10 根据加法交换律
又可写成S=10+9+8+7+6+5+4+3+2+1
上面两式相加得2S=11+10+......+11=10×11=110
10个
所以我们得到S=55
即1+2+3+4+5+6+7+8+9+10=55
师:高斯神速计算出1到100所有自然数的各的方法
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
和上述两位同学的方法相类似
理由是:1+100=2+99=3+98=......=50+51=101 有50个101 所以1+2+3+......+100=50×101=5050 请同学们想一下
上面的方法用到等差数列的哪一个性质呢?
生3:数列{an}是等差数列 若m+n=p+q 则am+an=ap+aq.二、教授新课(尝试推导)
师:如果已知等差数列的首项a1 项数为n 第n项an 根据等差数列的性质
如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导 并请一位学生板演
生4:Sn=a1+a2+......an-1+an也可写成 Sn=an+an-1+......a2+a1
两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
n个
=n(a1+an)
所以Sn=(I)
师:好!如果已知等差数列的首项为a1 公差为d 项数为n 则an=a1+(n-1)d代入公式(1)得 Sn=na1+ d(II)
上面(I)、(II)两个式子称为等差数列的前n项和公式 公式(I)是基本的 我们可以发现
它可与梯形面积公式(上底+下底)×高÷2相类比 这里的上底是等差数列的首项a1 下底是第n项an 高是项数n 引导学生总结:这些公式中出现了几个量?(a1 d n an Sn)
它们由哪几个关系联系?[an=a1+(n-1)d Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
要知道其中任意三个就可以求另外两个了 下面我们举例说明公式(I)和(II)的一些应用
三、公式的应用(通过实例演练 形成技能)
1、直接代公式(让学生迅速熟悉公式 即用基本量观点认识公式)例
2、计算:
(1)1+2+3+......+n
(2)1+3+5+......+(2n-1)
(3)2+4+6+......+2n
(4)1-2+3-4+5-6+......+(2n-1)-2n
请同学们先完成(1)-(3)并请一位同学回答
生5:直接利用等差数列求和公式(I)得
(1)1+2+3+......+n=
(2)1+3+5+......+(2n-1)=
(3)2+4+6+......+2n==n(n+1)
师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
那应如何解答?小组讨论后 让学生发言解答
生6:(4)中的数列共有2n项 不是等差数列 但把正项和负项分开 可看成两个等差数列 所以
原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)
=n2-n(n+1)=-n
生7:上题虽然不是等差数列 但有一个规律 两项结合都为-1 故可得另一解法:
原式=-1-1-......-1=-n
n个
师:很好!在解题时我们应仔细观察 寻找规律
往往会寻找到好的方法 注意在运用Sn公式时 要看清等差数列的项数 否则会引起错解
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
例
3、(1)数列{an}是公差d=-2的等差数列 如果a1+a2+a3=12 a8+a9+a10=75 求a1 d S10
生8:(1)由a1+a2+a3=12得3a1+3d=12 即a1+d=4
又∵d=-2 ∴a1=6
∴S12=12 a1+66×(-2)=-60
生9:(2)由a1+a2+a3=12 a1+d=4
a8+a9+a10=75 a1+8d=25
解得a1=1 d=3 ∴S10=10a1+=145
师:通过上面例题我们掌握了等差数列前n项和的公式 在Sn公式有5个变量 已知三个变量
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
可利用构造方程或方程组求另外两个变量(知三求二)请同学们根据例3自己编题 作为本节的课外练习题 以便下节课交流
师:(继续引导学生 将第(2)小题改编)
①数列{an}等差数列 若a1+a2+a3=12 a8+a9+a10=75 且Sn=145 求a1 d n
②若此题不求a1 d而只求S10时 是否一定非来求得a1 d不可呢?引导学生运用等差数列性质 用整体思想考虑求a1+a10的值
2、用整体观点认识Sn公式
精心收集
精心编辑
精致阅读 如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
例4 在等差数列{an}(1)已知a2+a5+a12+a15=36 求S16;(2)已知a6=20 求S11(教师启发学生解)
师:来看第(1)小题
写出的计算公式S16==8(a1+a6)与已知相比较 你发现了什么?
生10:根据等差数列的性质 有a1+a16=a2+a15=a5+a12=18 所以S16=8×18=144
师:对!(简单小结)这个题目根据已知等式是不能直接求出a1 a16和d的
但由等差数列的性质可求a1与an的和 于是这个问题就得到解决 这是整体思想在解数学问题的体现
师:由于时间关系
我们对等差数列前n项和公式Sn的运用一一剖析 引导学生观察当d≠0时
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
Sn是n的二次函数
那么从二次(或一次)的函数的观点如何来认识Sn公式后 这留给同学们课外继续思考
最后请大家课外思考Sn公式(1)的逆命题:
已知数列{an}的前n项和为Sn 若对于所有自然数n 都有Sn= 数列{an}是否为等差数列 并说明理由
四、小结与作业
师:接下来请同学们一起来小结本节课所讲的内容
生11:
1、用倒序相加法推导等差数列前n项和公式
2、用所推导的两个公式解决有关例题 熟悉对Sn公式的运用
生12:
1、运用Sn公式要注意此等差数列的项数n的值
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
2、具体用Sn公式时
要根据已知灵活选择公式(I)或(II)掌握知三求二的解题通法
3、当已知条件不足以求此项a1和公差d时 要认真观察
灵活应用等差数列的有关性质 看能否用整体思想的方法求a1+an的值
师:通过以上几例 说明在解题中灵活应用所学性质
要纠正那种不明理由盲目套用公式的学习方法 同时希望大家在学习中做一个有心人 去发现更多的性质 主动积极地去学习
本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等
数学思想:类比思想、整体思想、方程思想、函数思想等
精心收集
精心编辑
精致阅读
如需请下载!