第一篇:HL的判定教案
三角形全等的判定——斜边直角边
【教学目标】 知识与技能
使学生理解斜边直角边定理的内容,能运用斜边直角边证明三角形全等,进而说明线段或角相等.过程与方法
经历探索直角三角形全等条件H.L.的过程,掌握直角三角形全等的条件,并能运用其解决一些实际问题.情感、态度与价值观
学习事物的特殊、一般关系、发展逻辑思维能力.培养学生善于思考、不断探索的良好习惯.【重点难点】 重点
掌握斜边直角边定理.难点
灵活应用斜边直角边定理解题.【教学过程】
一、创设情景,导入新课
问题:证明一般三角形全等有哪些方法? 我们已经知道,对于两个三角形,如果有“边角边”或“角边角”或“角角边”或“边边边”分别对应相当,那么这两个三角形一定全等.如果有“边边角”分别对应相等,那么能不能保证这两个三角形全等呢?(出示课件)思考:一般三角形不一定全等,对于特殊三角形中的直角三角形呢?让我们一起研究这个问题吧!
二、师生互动,探究新知 【教师活动】
那么在两个直角三角形中,当斜边和一条直角边分别对应相等时,也具有“边边角”对应相等的条件,这时这两个直角三角形能否全等呢?大家一起动手画一画.如图所示,已知两条线段(这两条线段长不相等),以长的线段为斜边、短的线段为一条直角边,画一个直角三角形.大家一起动手来画一画,好吗?画好后与同排比较,它们全等吗? 【学生活动】
动手操作,并用语言叙述这个基本事实.【教师活动】
在同学发言基础上归纳:如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等.简记H.L.(或斜边直角边).此公理的前提是两个三角形是直角三角形,同时满足两个条件(1)斜边相等(2)一条直角边对应相等.斜边、直角边公理(H.L.)推理格式(图略)∵∠C=∠C'=90°,∴在Rt△ABC和Rt△ABC中,AB=AB,BC=BC, ∴Rt△ABC≌Rt△ABC(H.L.)
三、随堂练习,巩固新知 【例】
已知:(如图)AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足.求证:CF=DF.【答案】
证明:连接AC、AD, 在△ABC与△AED中,∴△ABC≌△AED(S.A.S.).∴AC=AD.在Rt△AFC与Rt△AFD中,∴Rt△ACF≌Rt△ADF(H.L.)∴CF=DF.四、典例精析,拓展新知 【例】
如图,AC⊥AD,BC⊥BD,CE⊥CD,AC=BD,求证:DE=CE.证明:∵AC⊥AD,BC⊥BD,∴∠A=∠B=90°, 在Rt△ADC和Rt△BCD中,AC=BD, DC=CD,∴Rt△ADC≌Rt△BCD(HL), ∴∠OCD=∠ODC, ∵OE⊥DC,∴∠OEC=∠OED, 在△DOE和△COE中, ∠ODE=∠OCE,∠OED=∠OEC,OE=OE, ∴△ODE≌△OCE(AAS), ∴DE=CE.【教学说明】
本例主要是灵活选择各种方法证明两个直角三角形全等,教学中应引导学生用分析法寻找证明DE=CE的思路,即DE=CE→△DOE≌△COE→∠ODC=∠OCE→Rt△ADC≌Rt△BCD.五、运用新知,深化理解
如图,AC⊥BC,AD⊥BD,CE⊥AB于E,DF⊥AB于F,求证:CE=DF.【教学说明】
先让学生独立思考,寻找解题思路,再全班交流由学生独立完成.六、师生互动,课堂小结
这节课,你学习了什么?有什么收获?有何困惑?与同伴交流,在同学们交流的基础上教师进行归纳与总结.如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等.简记为H.L.(或斜边直角边).【教学反思】
本节课是在前面已经学习一般三角形的五种判定方法的基础上,研究直角三角形独有判定方法:“H.L.”,整节课按“操作—发现—归纳—运用”程序展开.教学中应将五种一般方法与“H.L.”综合运用,提高学生综合运用知识能力,到此有时证明题中会涉及到两次用全等的方法证明线段(或角)相等,及时帮助同学们归纳总结,提升思维能力.汪丽丽
2017年10月26日
第二篇:最新人教版三角形全等的判定(HL)教案
12.2 三角形全等的判定---HL 班级:807班
授课者:何小军
时间:2015.10.14 教学目标
1.知识与技能
理解并掌握直角三角形全等判定定理-----HL,并能用于解决简单实际问题。2.过程与方法
经历探索直角三角形全等判定定理形成的过程,掌握数学方法,提高合情推理的能力。3.情感、态度与价值观
培养综合分析的几何推理意识,激发学生求知欲,感悟几何思维的内涵。
教学重点
理解并掌握直角三角形全等判定定理-----HL 教学难点
熟练运用直角三角形全等判定定理-----HL解决一些实际问题。培养学生综合分析的几何推理能力
教学过程
一、复习导入
1、口答:我们学过的判定三角形全等的方法哪些?
2、认识:直角三角形------简写、直角边、斜边符号
3、思考:对于两个直角三角形,除了直角相等这个条件外,还要满足哪两个条件,这两个直角三角形就全等了?
4、导入:设疑----两个直角三角形,如果满足斜边(L)和一条直角边(H)分别相等,这两个直角三角形全等吗?
二、探究新知:
斜边(L)和一条直角边(H)分别相等,这两个直角三角形全等吗?
1、画一画
任意画出一个Rt△ABC,∠C=90°。再画一个Rt△A´B´C´,使得∠C´= 90°,B´C´=BC,A´B´= AB。
步骤
⑴ 作∠MC´N=90°;⑵ 在射线C´M上取段B´C´=BC;⑶ 以B´为圆心,AB为半径画弧,交射线C´N于点A´;⑷ 连接A´B´.2、我发现:()
3、交流归纳:直角三角形全等判定定理---HL()和()分别相等的两个()全等。简写成“(斜边、直角边)”或“(HL)”。
4、建模:
三、学以致用:
1、例题:如图:AC⊥BC,BD⊥AD,垂足分别为C、D,AC=BD.求证:BC=AD.2、变式练习
(1)如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D、E与路段AB的距离相等吗?为什么?
(2)如图,AB=CD,AE ⊥BC,DF ⊥BC,CE=BF.求证:AE=DF.五、课堂总结
六、布置作业
课本第44页
第6、7、8三个题
第三篇:《三角形全等的判定》第四课时(HL)教案
12.2.4三角形全等的判定(4)
【教学目标】:
1、知识与技能:
直角三角形全等的条件:“斜边、直角边”.
2、过程与方法:
1).经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系. 2).掌握直角三角形全等的条件:“斜边、直角边”. 3).能运用全等三角形的条件,解决简单的推理证明问题.
3、情感态度与价值观:
通过画图、探究、归纳、交流使学生获得一些研究问题的经验和方法.发展实践能力和创新精神 【教学情景导入】: 提出问题,复习旧知
1、判定两个三角形全等的方法:、、、2、如图,Rt△ABC中,直角边是、,斜边是
3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)
(4)若AB=DE,BC=EF,AC=DF 则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)/ 4
创设情境,导入新课
如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放课件)
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?(1)[生]能有两种方法.
第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的.
第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等.
可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等. [师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗? 导入新课
[生]这两个三角形都是直角三角形,也许是全等的.因为它还有直角这个特殊条件.
[师]有道理.但科学是严密的,今天我们就来探究“两个直角三角形全等的条件”. 做一做:
已知线段AB=5cm,BC=4cm和一个直角,利用尺规做一个直角三角形,使∠C=•90°,AB作为斜边.做好后,将△ABC剪下与同伴比较,看能发现什么规律?
(学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体课件演示,激发学习兴趣). / 4
作法:
第一步:作∠MCN=90°.
第二步:在射线CM上截取CB=4cm. 第三步:以B为圆心,5cm为半径画弧交射线CN于点A. 第四步:连结AB.
就可以得到所想要的Rt△ABC.(如下图所示)
将Rt△ABC剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等.
可以验证,对一般的直角三角形也有这样的规律. 探究结果总结:
斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL”).
[师]你能用几种方法说明两个直角三角形全等呢?
[生]直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、•ASA•、•AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定.
[师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行. 【教学过程设计】:
[例1]如图,AC⊥BC,BD⊥AD,AC=BD.
求证:BC=AD.
分析:BC和AD分别在△ABC和△ABD中,所以只须证明△ABC≌△BAD,•就可以证明BC=AD了. 证明:∵AC⊥BC,BD⊥AD ∴∠D=∠C=90°
在Rt△ABC和Rt△BAD中
ABAB ACBD3 / 4
∴Rt△ABC≌Rt△BAD(HL)∴BC=AD.
[例2]有两个长度相等的滑梯,左边滑梯的高AC•与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?
[师生共析]∠ABC和∠DFE分别在Rt△ABC和Rt△DEF中,•已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看. 证明:在Rt△ABC和Rt△DEF中
BCEF ACDF所以Rt△ABC≌Rt△DEF(HL)∴∠ABC=∠DEF 又∵∠DEF+∠DFE=90° ∴∠ABC+∠DFE=90°
即两滑梯的倾斜角∠ABC与∠DFE互余.
【教学反思】
通过本节学习,我们有如下收获:
1.直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法,•而且还有直角三角形特殊的判定方法──“HL”.
2.两个直角三角形中,由于有直角相等的条件,•所以判定两个直角三角形全等,只须找两个条件(两个条件中至少有一个条件是一对对应边相等)即可. 至此,我们有六种判定三角形全等的方法:
1).全等三角形的定义2).边边边(SSS)3).边角边(SAS)
4).角边角(ASA)5).角角边(AAS)6).HL(仅用在直角三角形中)/ 4
第四篇:三角形全等的判定HL 教学反思
八年级上册数学12.2.4 全等三角形的判定(HL)
教 学 反 思
凉州户镇学校 马小芳
成功之处:
本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法。在教学过程中,我让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力。整节课从“问题情境出发,建立模型、寻求结论、解决问题”,让学生从这一过程中抽象出几何图形,建立模型,研究具体问题,起到了较好的作用,学生也体会到数学与现实的联系,以及学习处理此类问题的方法。作为八年级的学生,他们的抽象思维已有一定程度的发展,具有初步的推理能力,因此,教学中,我把例题进行挖掘,通过几次变式训练让学生感受,促使学生的思维向多层次、多方向发散,帮助学生在问题的解答过程中去寻找解类似问题的思路、方法,有意识地展现教学过程中教师与学生数学思维活动的过程,充分调动学生学习的积极性、主动地参与教学的全过程,培养学生独立分析和解决问题的能力,以及大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。不足之处 :
纵观整个教学,不足主要体现在在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;对学困生的关注还是比较少,导致部分学生的学习兴趣不易集中;在评价学生时,启发性不足,马心成同学的证明方法再往下引导一下就对了,但没有及时鼓励,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会,今后教学还需不断地改进和提高。
第五篇:直角三角形全等的判定(HL)教学反思
直角三角形全等的判定(HL)教学反思
本节数学课教学,主要是让学生在回顾全等三角形判定(除了定义外,已经学了四种方法:SSS、SAS、ASA、AAS、)的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解。在教学过程中,让学生充分体验到实验、观察、比较、猜想、总结、验证的数学方法,一步步培养他们的逻辑推理能力。新课程标准强调“从具体的情景或前提出发进行合情推理,从单纯的几何推理价值转向更全面的几何的教育价值”,为了体现这一理念,设计了几个不同的情景,让学生在不同的情景中探求新知,用直接感受去理解和把握空间关系。
探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程。数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”。
纵观整个教学,不足的方面:第一,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;第二,在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;第三,在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。这些我在今后的教学中会争取改进。
大通民中:强玉琴
2015.10.19