第一篇:教案1.2 库仑定律1(含答案)
第二节 库仑定律
教学目标:
(一)知识与技能
1.掌握库仑定律,要求知道点电荷的概念,理解库仑定律的含义及其公式表达,知道静电力常量.
2.会用库仑定律的公式进行有关的计算. 3.知道库仑扭秤的实验原理.
(二)过程与方法
通过演示让学生探究影响电荷间相互作用力的因素,再得出库仑定律
(三)情感态度与价值观 培养学生的观察和探索能力 教学重点:掌握库仑定律
教学难点:会用库仑定律的公式进行有关的计算 教学方法:讲授法
教学用具:库仑扭秤(模型或挂图). 教学过程:
(一)复习上课时相关知识
(二)新课教学【板书】----第2节、库仑定律 提出问题:电荷之间的相互作用力跟什么因素有关?
演示:带正电的物体和带正电的小球之间的相互作用力的大小和方向.使同学通过观察分析出结论(参见课本图1.2-1).
【板书】:
1、影响两电荷之间相互作用力的因素:1.距离.2.电量.
2、库仑定律
内容表述:力的大小跟两个点电荷的电荷量的乘积成正比,跟它们的距离的二次方成反比.作用力的方向在两个点电荷的连线上
公式:Fk
q1q2 2r静电力常量k = 9.0×109N·m2/C2
适用条件:真空中,点电荷——理想化模型
介绍:(1).关于“点电荷”,应让学生理解这是相对而言的,只要带电体本身的大小跟它们之间的距离相比可以忽略,带电体就可以看作点电荷.严格地说点电荷是一个理想模型,实际上是不存在的.这里可以引导学生回顾力学中的质点的概念.容易出现的错误是:只要体积小就能当点电荷,这一点在教学中应结合实例予以纠正.
(2).要强调说明课本中表述的库仑定律只适用于真空,也可近似地用于气体介质,对其它介质对电荷间库仑力的影响不便向学生多作解释,只能简单地指出:为了排除其他介质的影响,将实验和定律约束在真空的条件下.
扩展:任何一个带电体都可以看成是由许多点电荷组成的.任意两点电荷之间的作用力都遵守库仑定律.用矢量求和法求合力.
利用微积分计算得:带电小球可等效看成电量都集中在球心上的点电荷. 静电力同样具有力的共性,遵循牛顿第三定律,遵循力的平行四边形定则. 【板书】:
3、库仑扭秤实验(1785年,法国物理学家.库仑)演示:库仑扭秤(模型或挂图)介绍:物理简史及库仑的实验技巧. 实验技巧:(1).小量放大.(2).电量的确定.
【例题1】:试比较电子和质子间的静电引力和万有引力.已知电子的质量m1=9.10×10-31kg,质子的质量m2=1.67×10-27kg.电子和质子的电荷量都是1.60×10-19C. 分析:这个问题不用分别计算电子和质子间的静电引力和万有引力,而是列公式,化简之后,再求解.
解:电子和质子间的静电引力和万有引力分别是
可以看出,万有引力公式和库仑定律公式在表面上很相似,表述的都是力,这是相同之处;它们的实质区别是:首先万有引力公式计算出的力只能是相互吸引的力,绝没有相排斥的力.其次,由计算结果看出,电子和质子间的万有引力比它们之间的静电引力小的很多,因此在研究微观带电粒子间的相互作用时,主要考虑静电力,万有引力虽然存在,但相比之下F1=kQ1Q2m1m2F1kQ1Q2,F=G,=2F2Gm1·m2r2r2F19.0×109×160.×1019×160.×101939=113127=2.3×10F26.67×10×910.×10×167.×10
非常小,所以可忽略不计. 【例题2】:详见课本P9 小结:对本节内容做简要的小结 作业:
1、复习本节课文及阅读科学漫步
2、引导学生完成问题与练习,练习1、2、4,作业3、5
第二篇:1.2库仑定律说课稿
库仑定律
各位老师:大家好!我的说课题目是库仑定律,它是高中物理选修3-1第一章第二节的内容。我将从以下五个环节进行说课。
一、说教材
1本节课在教材中的地位、作用和意义:
本单元教材的核心是库仑定律,它既是电荷间相互作用的基本规律,又是学习电场强度的基础。因此,在本单元教学中对电荷间的相互作用,不仅要求学生定性知道,而且通过库仑定律的教学还要求定量了解,但对库仑定律的解题应用,则只限于真空中两个点电荷间相互作用的一些简单计算。2本节课的教学目标:(1)知识与技能目标
①明确点电荷是个理想模型,知道带电体简化为点电荷的条件。
②会用文字描述库仑定律的内容与公式表达,能用库仑定律计算真空中两个点电荷之间的作用力。③了解库仑扭秤实验和库仑对电荷间相互作用的探究 ④初步了解人类对电荷间相互作用的探究过程。(2)过程与方法目标
通过演示让学生探究影响电荷间相互作用力的因素,再得出库仑定律。(3).情感态度与价值观
①培养学生“发现问题,提出假设,并用实验来验证”的探究物理规律的科学方法与思路 ②通过静电力与万有引力的对比,体会自然规律的多样性与统一性。3.教学重点和难点
教学重点: 库仑定律及适用条件。用库仑定律的公式进行有关的计算。教学难点:库伦定律的实验。4.授课时间:1课时
二、说教法和学法
教法:在教学中贯彻让学生经历知识的形成过程为原则,整个教学过程始终围绕教学目标展开,力求做到层次清楚,环节紧凑,并注意引导学生通过观察、实验和操作,突出体现了学生对知识的获取和能力的培养。采用的教学方法:启发讲练式
学法:让学生独立思考,协商讨论,突出主体性。因为学生不是被动接受知识的容器,而是学习的主人。促进学生自主学习,合作探究,形成个性化的知识结构同时变学会为会学,是改革传统教学的重大课题。
三、说教学过程
研究教法和学法是搞好教学的前提和基础,而合理安排教学程序,则是教学成功的关键一环。以求达到事半功倍之效,使学生学有所获,我根据本课教材的特点,将本课划分成三大部分: 1.创设情景,引入新课 演示实验:
(1)利用多媒体动画显示闪电现象(让学生从最常见的生活现象着手,说明电荷之间是存在相互作用力的)
(2)演示实验1:利用手摇静电感应器演示放电现象。(演示结束后教师说明:①这个原理与闪电一样的,将生活中的物理现象拉回到课堂上的物理实验,让学生体会到物理研究的问题来自与现实生活。增加学生的学习兴趣)
(3)演示实验2: 将两个大小相同的泡沫导电小球通过很细的导线分别接到手摇静电感应器的两个小球上,使得小球的电荷能传到两个导电小球上。(手摇的越快细线偏离竖直方向的夹角越大;若将两球靠的越近,则偏角也越大。)引出本课教学目标:通过实验现象的观察,提出本节课的主题是探究电荷间的相互作用力与哪些因素有关,是什么样的关系。猜想与假设
教师引导:通过前面的实验我们发现,电荷间的相互作用力在不同的情况下大小是不同的,你认为带电体间的相互作用力会与哪些因素有关呢?
学生猜想小结:与两带电体的电荷量、距离、形状、体积、质量等有关。2积极主动,探究新知 定性实验的探究
Ⅰ:定性探究一:探力F与距离r之间的定性关系
演示实验3 让带电小球靠近悬挂在丝线上的的带同种电荷的泡沫小球,观察在不同距离时小球偏转角度。让学生观察完现象后问学生:大家是如何判断小球A所受的力F大小的变化的?学生回答:通过偏离竖直方向的角度的大小,角度越大A所受的力就越大。再问学生:偏转角θ与小球A所受的力F是什么样的关系?学生回答: F=mg tgα。带电体间距离越小,偏角α越大,这表明电荷间作用力越大。接下来说:由于在这里我们没法直接测量出力F的大小,而是通过偏转角θ的变化来判断F的变化,这种方法就是测量变换法(间接测量法)。我们有此得出实验结论:电量不变时,改变带电体间距离r,两电荷间的作用力F随距离r的减小而增大。
Ⅱ:定性探究二:F与q之间的定性关系
演示实验4 带电量不同的小球靠近悬挂丝线的带电泡沫小球,观察小球的偏角的变化关系。演示完实验让学生分成三组讨论,再选出代表回答。讨论得到:带电体间作用力还跟带电体所带电量有关。得到实验结论:若距离不变,改变电荷量,两电荷间的作用力随电量的减小而减小。再次猜想::由以上实验,引导学生根据类比由万有引力与静电力的相似之处推测这两种力的其它特性也可能相似,由此猜测静电力数学表达式。定量式实验探究
库仑扭秤实验的验证过程(flash加解说)这个实验要分4部分来讲解。(1)结构简介(用flash课件将实验展示出来)。(2)如何解决力的准确测量?
①操作方法,力矩平衡:静电力力矩=金属细丝扭转力矩
②思想方法:放大、转化
(3)库仑力F与r2关系的验证。
①设计思想:控制变量法——即控制电荷Q不变
②结果:库仑精确地用他的扭称实验测量了两个带电小球在不同距离下的静电力,证实了自己的猜测。基本上验证了F与r之间的平方反比关系。
(4)如何解决电量测量问题,验证F与Q的关系?
①库仑将两个完全相同的金属小球,一个带电、一个不带电,两者相互接触后电量被两球等分,各自带有原有总电量的一半。这样库仑就巧妙地解决了这个问题,用这个方法依次得到了原来电量的1/2,1/4,1/8 等的电荷,从而顺利的验证得出库仑定律。②思想方法:守恒、对称。(出示库仑扭秤挂图,介绍法国物理学家库仑利用扭秤研究电荷间相互作用力的大小跟电量和距离的关系所用控制变量的科学方法。设计的扭秤成功的解决了用普通测力计无法测量微小作用方法。)
得出库仑定律:在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上。并带领学生总结运用库仑定律所应注意的问题
3例题练习,巩固新知
在前面讲解库仑定律的基础上,进行例题练习,目的是培养学生运用新知识解决问题的能力。练习题的难度由浅入深,并注意从不同角度来强化知识。最后的练习激发学生运用所学知识解决实际问题的兴趣,将课堂教学推向高潮。4精练小结、布置作业:【10分钟】
学生阅读教材内容,我巡视后提问归纳库仑定律然后布置课后作业。板书设计: 库仑定律 1内容:在真空中两个点电荷间的作用力跟它们的电量的乘积成正比 , 跟它们间距离的平方成反比 , 作用力的方向在它们的连线上。2公式:
3适用条件:真空,点电荷 4点电荷的概念:(学生自学并类比质点)
①点电荷同质点一样也是一个理想化模型——带电的几何点。
②若带电体间的距离比它们自身的尺寸大得多,以至带电体的形状和大小对库仑力的影响可以忽略不计,这样带电体就可以看作点
6.课堂巩固与应用分析(学案)
例1:两个带电小球的半径均为R,当两球心间距为50R时,相互间的作用力为F。则:①当两球心间距为100R时,相互间的作用力为多少?
A.4F
B.F/2
C.F/4
D.不能确定
②当两球心间距为5R时,相互间的作用力为多少?
A.100F
B.10F
C.F/1000
D.不能确定
设计说明:目的是为了巩固对库仑定律的理解和对点电荷概念的理解 例2:课本例题1:试比较电子和质子间的静电力和万有引力。
设计说明:正因为例题告诉我们的原因,在研究微观带电粒子相互作用时,经常可以忽略万有引力。但对宇宙天体万有引力却是决定性的,决定了它的运动与演化规律。同时让学生体会到大自然的和谐与统一。例3:课本例题2:多个点电荷对同一点电荷作用力的叠加问题
设计说明:此题一方面巩固对电荷在电场中受力的分析,另一方面也为下一节电场强度的叠加做了铺垫 一:知识小结
1:库仑定律 表达式:适用条件:真空中、点电荷 2.点电荷:
二:物理方法小结
1:研究电荷Q、距离R与库仑力F的关系时采用控制变量法
2:判断力F时(不易测量的物理量时)可以通过判断偏角来实现,运用的是测量变换的思想
第三篇:1.2 库仑定律教案
教学目标:
(一)知识与技能
1.掌握库仑定律,要求知道点电荷的概念,理解库仑定律的含义及其公式表达,知道静电力常量.
2.会用库仑定律的公式进行有关的计算. 3.知道库仑扭秤的实验原理.
(二)过程与方法
通过演示让学生探究影响电荷间相互作用力的因素,再得出库仑定律
(三)情感态度与价值观 培养学生的观察和探索能力
【板书】:
1、影响两电荷之间相互作用力的因素:1.距离.2.电量.
2、库仑定律
内容表述:力的大小跟两个点电荷的电荷量的乘积成正比,跟它们的距离的二次方成反比.作用力的方向在两个点电荷的连线上
公式:Fkq1q2 2r静电力常量k = 9.0×109N·m2/C2 适用条件:真空中,点电荷——理想化模型
介绍:(1).关于“点电荷”,应让学生理解这是相对而言的,只要带电体本身的大小跟它们之间的距离相比可以忽略,带电体就可以看作点电荷.严格地说点电荷是一个理想模型,实际上是不存在的.这里可以引导学生回顾力学中的质点的概念.容易出现的错误是:只要体积小就能当点电荷,这一点在教学中应结合实例予以纠正.
m1=9.10×10-31kg,质子的质量m2=1.67×10-27kg.电子和质子的电荷量都是1.60×10-19C.
分析:这个问题不用分别计算电子和质子间的静电引力和万有引力,而是列公式,化简之后,再求解.
解:电子和质子间的静电引力和万有引力分别是
F1=kQ1Q2m1m2F1kQ1Q2,F=G,=2F2Gm1·m2r2r2F19.0×109×160.×1019×160.×101939=113127=2.3×10F26.67×10×9.10×10×167.×10
可以看出,万有引力公式和库仑定律公式在表面上很相似,表述的都是力,这是
第四篇:【精品】高中物理(人教版)选修3-1 优秀教案--1.2《库仑定律》
选修3-1第一章 1.2库仑定律教案
一、教材分析
1.库仑定律既是电荷间相互作用的基本规律,又是学习电场强度的基础
不仅要求学生定性知道,而且还要求定量了解和应用。
2、展示库仑定律的内容和库仑发现这一定律的过程,并强调该定律的条件
和远大意义。
二 教学目标
(一)知识与技能
1理解库仑定律的含义和表达式,知道静电常量。了解库仑定律的适用条件,学习用库仑定律解决简单的问题。
2.渗透理想化思想,培养由实际问题进行简化抽象思维建立物理模型的力。
(二)过程与方法
通过认识科学家在了解自然的过程中常用的科学方法,培养学生善用类比方法、理想化方法、实验方法等物理学习方法。
(三)情感态度与价值观
通过对库仑定律探究过程的讨论,使学生掌握科学的探究方法,激发学生对科学的热
三、教学重难点
(一)重点
对库仑定律的理解
(二)难点
对库仑定律发现过程的探讨。
四、学情分析
学生在高一已经学习了万有引力的基本知识,为过渡到本节的学习起着铺垫作用,学生已具备了一定的探究能力、逻辑思维能力及推理演算能力。能在老师指导下通过观察、思考,发现一些问题和解决问题
五、课前准备
学生准备展示学案上预习的情况,老师准备必要的课件
六、教学方法
比较库仑定律与万有引力定律的异同。
七、课时安排 1课时
八、教学过程
1.教师演示1.1-6的实验。
2.学生注意观察小球偏角的变化以及引起这一变化的原因。
3.通过对实验现象的定性分析得到:电荷之间的作用力随电荷量的增大而增大,随距离的增大而减小。
4.法国物理学家库仑,用实验研究了电荷间相互作用的电力,这就是库仑定律。
内容:真空中的两个点电荷之间的作用力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比,作用力的方向在它们的连线上。
表达式:5.介绍点电荷:
①不考虑大小和电荷的具体分布,可视为集中于一点的电荷。②点电荷是一种理想化模型。
③介绍把带电体处理为点电荷的条件:带电体间的距离比它们自身的大小大得多,带电体的形状和大小对相互作用力的影响可以忽略不计时。
6.任意带电体所受的力可以看作是多个点电荷所受力的合力。7.库仑定律与万有引力定律(计算下题)
试比较电子和质子间的静电引力和万有引力。已知电子的质量m1=9.10×10kg,质子的质量m2=1.67×10kg,电子和质子的电荷量都是1.60×10C。
分析:这个问题不用分别计算电子和质子间的静电引力和万有引力,而是列公式,化简之后,再求解。
解:电子和质子间的静电引力和万有引力分别是:-27
31,k叫静电力常量,k=9×10 N·m/C。
922
(回答“思考与讨论”)可以看出:万有引力公式和库仑定律公式在表面上很相似,表述的都是力,这是相同之处;它们的实质区别是:首先万有引力公式计算出的力只能是相互吸引的力,绝没有相排斥的力。其次,由计算结果看出,电子和质子间的万有引力比它们之间的静电引力小的很多,因此在研究微观带电粒子间的相互作用时,主要考虑静电力,万有引力虽然存在,但相比之下非常小,所以可忽略不计。
九、板书设计 1库仑定律
a.内容:真空中的两个点电荷之间的作用力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比,作用力的方向在它们的连线上。b.表达式:2.点电荷
a.不考虑大小和电荷的具体分布,可视为集中于一点的电荷。b.点电荷是一种理想化模型。
c.介绍把带电体处理为点电荷的条件:带电体间的距离比它们自身的大小大得多,带电体的形状和大小对相互作用力的影响可以忽略不计时。
十、教学反思
1为突破重难点应讲清库仑定律及适用条件,说明库仑力符合力的特征,遵守牛顿第三定律。2为定性演示库仑定律,应使带电小球表面光滑,防止尖端放电,支架应选绝缘性能好的,空气要干燥。
3说清K的单位由公式中各量单位确定,其数值则由实验确定。
第五篇:库仑定律教案
库仑定律
教学目标:掌握库仑定律的内容,学会用库仑定理解题,了解生活中的静电现象。
教学重点:定性与定量的描述力与距离和电量的关系,库伦定理的内容及适用条件。
教学难点:库仑定理的适用条件,探究力与电量和距离关系的实验。教师:上一节课,我们探究一种新的性质力的产生条件,并对这一条件进行了认识,就是物体必须带有电荷。电荷的种类有哪些?起电方式?它们有什么样的相互作用规律?请同学们一起回顾以上所涉及到的知识。学生:回答
1、探究库仑定理
老师:我们研究一种性质的力,除了研究产生的条件,有时更关心的是它的大小,那么它的大小与哪些因素有关呢?这就是本节课所要学习的内容。
复习了相关知识,我们看几张图片更直观的了解带电体相互作用的性质。看到第一张图片我们可以想到语文中的一个成语,是什么呀?怒发冲冠对不对?只不过这里冲冠的原因是因为受到静电的作用,由于人与带电体都带上了同种电荷,在斥力的作用下,使人的头发竖起来了!我们再来看下一张图片,这是带电的塑料勺子,当靠近细流时,因为同种电荷相吸,使水流的方向发生偏转。我们看一下视频。……神奇吧,静电居然有这样的魔力。那想想,改变水流运动状态的原因是什么? 学生:力
老师:嗯,非常正确。看了以上两张图,结合你们现有的知识,请同学们猜想一下两带电体之间的作用力与哪些因素有关呢?
同学:猜想电量、大小、形状,两电荷间的距离……探究实验好像就只针对电荷量与距离,没有考虑其他因素若他们猜想与质量有关 老师:同学们的猜想各有各的道理,但是其实实验已经以证明,当两个点电荷相距较远时,改变它的质量或体积都不会改变他们之间作用力的大小。那与距离以及电荷量对他们的作用力有何关系呢?
我们看一个动画(FLASH)。注意课本将这个内容的目的大家要认真观察,注意老师是怎么演示的!这是带电的固定小球A,金属小球通过细线悬挂在铁架台上,先后悬挂于P1、P2、P3位置,为了方便我们比较不同位置的偏转角度的大小关系,我们将小球在不同位置的三种状态呈现在同一张图上。同学们观察,此时三个位置的偏转角的变化情况是怎样的? 学生:依次变小。
老师:嗯,对!那我们现在对小球进行受力分析。可以知道,F= 说明了偏转角度越大,它受到的力越(大)。那造成这个小球在不同位置受力大小不同原因是什么呢? 学生:因为他们距带电体的距离不同。
老师:嗯,那是不是说明距离越小,力就越大。现在当老师将带电体靠近金属小球时,大家注意,偏转角度如何变化?学生:越来越小 老师:嗯,对,根据这个式子,说明力也是越来越(小)的!现在我们有一次说明了距离越小力越大,距离越大力越小!
老师:现在我们控制距离不变而去改变带电体的电量,看看会有什么现象?(改变小球电量)同学们,小球是不是在原来的偏转角下变得更(大)了。
老师:同学们,我们同样可以得到随着电荷量的增大力也会变得更大!
老师:我们定性地得出了力的大小的影响因素,是带电体之间的距离以及它们的电量。但是怎样得到他们之间的定量关系呢?关于这个问题,科学家们刚开始也不是很快明白的。其实对于任何一个物理规律探索的过程中,都不是一蹴而就的!是有很多物理学家不断地做实验,然后总结归纳,最后才走到成功的!同样库仑定理的发现亦如此!对库仑定理有贡献的首先是富兰克林。他做了一个空罐实验,有一个带电的金属桶,当以用细线悬挂的金属软木球靠近在金属外表面,会受到引力作用。但若将软木球放在桶内,不管软木球置于何处,都不受到电的吸引作用。当时,富兰克林百思不得其解。大约过了十年,富兰克林写信告诉他英国的朋友普利斯特里。普利斯特里核实了富兰克林的实验,并以非凡的洞察力领悟到通过这个实验可以得到电力反平方定律,因为当软木球放在很深的带电金属桶内时,没有电力作用在这个球上,这个事实是与没有万有引力作用于物质球壳内部的质点上这个事实相类似的。由于万有引力服从反平方定律,也许电力也服从反平方定律。
在上述实验事实和推测的启发下,库仑通过实验定量的测出电荷间作用力与距离、电荷量的关系,并最终得到库仑定律。
从库仑定律的发现历程中,我们可以看到,类比推理在科学研究中所起的作用是很大的。如果不是先有万有引力定律的发现,并利用类比推理进行合理猜想,单靠具体实验数据的积累,不知何年才能得到严格的库仑定律表达式。那同学们此时应该会问:库仑当年是如何定量的得出力与距离和电荷量的关系的呢?我们一起来看一下当年库仑做实验的装置——库仑扭秤。这个装置与当年卡文迪许测量引力常量的装置十分类似。
2、库仑的实验(学生自学,观看相关实验教学视频)
老师:首先我们来介绍库仑扭秤装置。纽秤的结构如图。在细银丝下悬挂一根绝缘棒,棒的一端是一个带电的小球A,另一端是一个不带电的球B,B与A所受的重力平衡,现在从容器正上方放入一固定小球C。为了研究带电体之间的作用力,先使A、C各带同种电荷,这时秤杆会因A端受力而偏转。此时银丝就会产生一个扭转力矩。那么悬丝的扭力矩等于施于小球A上电力的力矩。根据力矩平衡原理,可以知道在此距离下A、C之间的作用力。这就是扭秤装置的原理。那现在如果老师让同学们自己利用已有的知识来设计一个实验,你们又该如何得出力与距离以及电荷量的关系呢?设计实验,首先要确定的是用什么研究方法!那有多个变量影响的情况下,用什么方法?是不是与我们之前探究加速度与力和质量的关系所用的方法是一样的,是(控制变量法)。现在给大家两分钟思考一下。大家应该都有了自己的想法,只要合理就是可以的。现在我们给出一种方案,大家在看在看这个视频的时候,与自己的设计进行对比。如果有更好的,下课后和老师同学分享。这个视频中的实验在库困扭秤的基础上,对装置进行了改进,用杠杆平衡的方法,最终也定量的测出了力与距离、半径的关系。(我们先一起来认识一下这个实验装置。这是微量天平,这是滑道,滑道的右侧有一标尺,有两个完全相等的带电小球,一个装在微量天平的右侧,另一个装在滑道上,他可以在滑道上上下移动来改变两球的距离,距离的大小从标尺上读出。微量天平的左侧有一游码,可以左右移动,来维持衡量的水平。这个实验员操作是相当规范的,他将绝缘小球通过与人体接触,是之不带电。再让它和与它相同的小球相碰,从而使带电小球的电量减半。)看了这个视频,我们一起来回忆一下。先保持电量不变,改变两球之间的距离r,得出力与距离的平方成正比;然后控制距离不变,改变两球的带电量,得出力与电量的乘积成反比。而库仑当年也得到了这样的结论。
3、分析库仑定律内容 老师:阅读教材,库仑定律的内容是怎样叙述的。大家一起来阅读一遍。根据库仑定理内容,我们得出了其表达式。我们要明确每个字母所代表的物理意义。K值是静电力常量,大小为……请问K常量有没有单位?如果有,又给如何得出它的单位?通过表达式得出。我们来看一下应用库仑定律时应该注意哪些问题。同学们都知道电荷具有正负,但在计算力的大小时,为了避免出错,我们一般只带电荷的绝对值进行计算。至于力的方向,就直接通过同种电荷相互排斥异种电荷相互吸引来判断。
从库仑定律内容的表述中,我们看到该定理成立是有条件的。请你们画出库仑定理的条件。学生:阅读并画关键词。
老师:你们画出的关键词汇有哪些?***,你起来回答一下。学生:真空、静止、点电荷。
老师:嗯,也善于把握定理的条件。我们一起来理解一下。真空:库仑定律的适用条件是在真空,为什么其他介质不行呢?因为放在任何一个介质,在电荷的作用下都会被极化,产生的极化电荷会对我们带电物质的作用力产生影响。同学们也可以这样理解,不同的介质具有不同的k值,前面K的大小是在真空中的大小,对于其他介质,比如玻璃,K值就已经不是那么大了。所以不能用真空中的库仑定律公式来求其他介质中的静电力。现在观察库仑扭秤装置,他将带电体放在圆柱体的容器中,我们应该发现,库仑已经注意到减小空气方面的影响。前面看的那个视频,实验是在空气中做的。所以在空气中,高中阶段我们依然使用库仑定律的近似处理。
静止:当同学们深入学习就会明白,如果带电体具有相对运动,那运动的电荷会产生磁场,那他不仅会受到电场力,还会受到磁场力,所以库仑定律不再使用。
点电荷:这个请同学们自己来分析,怎样的带电体可以看做点电荷?点电荷类似力学中的质点,那怎样的物体可以看成质点呢? 学生:当物体的形状大小相对于所研究的问题可以忽略是就可以看成质点。
老师:同样的道理,通过类比,我们知道在研究带电体间的相互作用时,如果带电体自身的大小远小于它们之间的距离.以至带电体自身的大小、形状及电荷分布状况对我们所讨论的问题影响甚小,相对来说可把带电体看作一带电的点,叫做点电荷。也就是说,点电荷和质点一样也是一种理想化的物理模型。
分析了库伦定理的的适用条件,应该对该定理有了更深的理解。其实任何规律的成立,都有其成立的特定条件。所以,在以后使用这些规律分析问题时,千万要注意:所研究问题是否与所使用规律的条件相符。同学们,如果有两个带点的小球不断靠近,力会不会变得无穷大呢?若学生说不会,那我应该问为什么呢?因为此时已经不能再看做点电荷了……对,也就是说不满足库伦定理的适用条件,所以不能再用表达式计算库仑力的大小。问题提问方式,不要自己不断解释(当他们的大小与两者间的距离相比不能忽略时,是不是此时就不满足库伦定理的适用条件了,因为此时在力的作用下改变了带点球体上的电荷分布,电荷不再均匀分布在带电体表面。在这种情况下,电荷就不能看成是集中在球心的点电荷。所以不能用公式计算力的大小。)删掉这段内容
下面我们来看一个例题,检验同学们掌握的情况……()通过这道例题,同学们在应用库仑定律时应该会小心很多。同学们,普利斯特利从空罐实验的现象,受到了万有引力平方反 比定理的启发,进而猜想到库仑力的影响因素。物理学家们在探究的过程就一直认为库仑定律与万有引力定律有相似之处。而自然规律既具有多样性,又具有统一性,我们一起总结一下它们两者的不同点与相同点。你们觉得有哪些地方不同点呢?
学生:回答(公式、适用范围、影响力大小的因素、不同点)我们一起比较了万有引力定律与库仑定律,同学们在学习过程中,也要对各个知识点进行总结归纳以及对比。这样我们可以加深对所学知识的理解。我们知道任何有质量的两个物体之间都存在万有引力,那想想电荷间是不是既受到万有引力也受到静电力呢?那在研究微观带点力的相互作用力时,是否两者都要算呢?
下面我们来看一道题。左边的一组同学算万有引力,右边的同学算库仑力。告诉老师你们计算的结果。万有引力的大小?库仑力的大小?那我们将这两个力比一下,得出了库仑力比万有引力大得多!所以在研究微观带电粒子(电子、质子、离子、原子核等等)的相互作用时,由于微观粒子间的万有引力远小于库仑力,通常可以忽略微观粒子间的万有引力。
库仑定律内容中描述的是两个点电荷,那如果换成三个及三个以上的点电荷,库仑定律是否还适用?那又如何求力的大小呢?我们知道,两个点电荷之间的作用力不因第三个点电荷的存在而有所改变。因此三个或三个以上点电荷之间的静电力,可以先分别求出各个点电荷的作用力大小,利用平行四边行法则进行矢量合成,就可以所受到的合力了。那我们来看书本上的一个例题。