1.2 有理数 教案

时间:2019-05-13 00:58:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1.2 有理数 教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1.2 有理数 教案》。

第一篇:1.2 有理数 教案

1.2 有理数 教案

以下是查字典数学网为您推荐的 1.2 有理数教案,希望本篇文章对您学习有所帮助。

1.2 有理数

1.掌握有理数的概念;

2.会对有理数按一定的标准进行分类;

3.体检分类.【对话探索设计】

〖复习〗

我们知道,所有的分数都可以写成两个整数的比.有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗? 可以写成两个整数的比吗? 是不是分数?

结论:所有的有限小数和无限循环小数都是分数.〖探索1〗

小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?

结论:正整数﹑零﹑负整数统称整数.〖探索2〗

下列负数哪些是负分数?

-12, ,-0.33, ,-12.03,.〖探索3〗

所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:

1, 0.0708,-700,-,-3.88, 0, , 3.14159265, ,.正整数集合:{ } 负整数集合:{ }

整数集合:{ }

正分数集合:{ } 负分数集合:{ }

(注意:大括号内的省略号表示什么?)

〖探索4〗

为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?

结论:(1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;

(2)分数一定是小数,小数不一定是分数.〖探索5〗

整数和分数统称有理数.在数-100, 70.8,-7, ,-3.8, 0, , , 中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.(友情提示:, 都是小数,但都不是分数,自然也都不是有理数.你答对了吗?)

〖练习〗

P10.练习

【作业】

P18.习题1.【补充作业】

1.列出竖式,把分数 化为小数.(体会分数不可能是无限不循环小数.)

2.把下列小数化为分数:3.14159,.【备选素材】 1.判断:

(1)一个有理数,不是正数,就是负数;

(2)一个有理数,不是整数,就是分数;

(3)一个有理数,是分数,就一定是小数;

(4)一个无限小数,如果不循环,就不是有理数;

(5)小数就是分数;

(6)有理数只能分成两类.(7)负分数不是负数.2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类.3.分数可以分为有限小数和________________两类.4.满足什么条件的小数才是有理数?

5.(1)列出竖式,把分数 化为小数;(体会分数不可能是无限不循环小数.)

(2)有的小数不是分数,你能举出一个例子吗?

(3)说明为什么0.3是分数,而 却不是.6.有理数可以分为整数和分数两类,还可以按符号分为正有理数﹑____和___________三类.7.把下列各数填在相应的集合里:

-|-3|,-(-0.072), ,-3.88, , 3.14, ,.

第二篇:《有理数》教案2

《有理数》教案

教学目标

1、知识目标 :借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.2、能力目标 :能应用正负数表示生活中具有相反意义的量.3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点

重点:理解有理数的意义.难点:能用正负数表示生活中具有相反意义的量.教学过程

一、创设情境、提出问题

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础 分均为0分.两个队答题情况见书上第23页.二、分析探索、问题解决

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题.讲授正数、负数、有理数的定义.用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的 数.三、巩固练习

1、用正数或负数表示下列各题中的数量:

(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

(2)球赛时,如果胜2局记作+2,那么-2表示______;

(3)若-4万表示亏损4万元,那么盈余3万元记作______;

(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

2、下面说法中正确的是().A.“向东5米”与“向西10米”不是相反意义的量;

B.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

C.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

D.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

三、小结回顾、纳入体系

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数.分类:有理数的分类:两种分法.应用:有理数可以用来表示具有相反意义的量.

第三篇:七年级上有理数加法教案2

1.3.1 有理数的加法教案(第二课时)

教学目标 1.知识与技能

①能运用加法运算律简化加法运算.

②理解加法运算律在加法运算中的作用,适当进行推理训练. 2.过程与方法

①培养学生的观察能力和思维能力.

②经历对有理数的运算,领悟解决问题应选择适当的方法. 3.情感、态度与价值观 在数学学习中获得成功的体验. 教学重点难点

重点:如何运用加法运算律简化运算. 难点:灵活运用加法运算律. 教与学互动设计

(一)情境创设,导入新课

思考 在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?

那这些加法运算律还适于有理数范围吗?今天,我们一起来探究这个问题.

(二)合作交流,解读探究

体验 1.自己任举两个数(至少有一种是负数),分别填入下列□和○中,•并比较它们的运算结果,你发现了什么? □+○和○+□

发现:对任选择的数,都有□+○=○+□,即小学里学过的加法交换律在有理数范围内仍是成立的.

体验 2.任选三个有理数(至少有一个是负数),分别填入下列□,○,•◇内,并比较它们的运算结果.

(□+○)+◇和□+(○+◇)

发现都有(□+○)+◇=□+(○+◇),这就是说,小学的加法结合律,在有理数范围内都是成立的.

小结 有理数的加法仍满足交换律和结合律.

加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,用式子表示成

(a+b)+c=a+(b+c)

(三)应用过移,巩固提高

例1 说出下列每一步运算的依据

(-0.125)+(+5)+(-7)+(+ =(-0.125)+(+118)+(+2)

=[(-0.125)+(+81)+(+5)+(+2)+(-7)(加法交换律))]+[(+5)+(+2)]+(-7)(加法结合律)=0+(+7)+(-7)(有理数的加法法则)=0(有理数的加法法则)

例2 利用有理数的加法运算律计算,使运算简便.

(1)(+9)+(-7)+(+10)+(-3)+(-9)

(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)

(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)

【答案】(1)0(2)-6.7(3)-1002 例3 某出租司机某天下午营运全是在东西走向的人民大道进行的,•如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?

(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?

解:(1)+15+(+14)+(-3)+(-11)+(+10)+(-12)+4+(-15)+16+(-18)=[15+(-15)]+(14+10+4+16)+[(-3)+(-11)+(-12)+(-18)]=0(2)(│+15│+│+14│+│-3│+│-11│+│+10│+│-12│+│4│+│-15│+•│16│+│-18│)·a =118a 【答案】(1)将最后一名乘客送到目的地,该司机仍在其出发点.

(2)共耗油118a公升.

例4 若│2x-3│与│y+3│互为相反数,求x+y的相反数.

【提示】 两个非负数互为相反数,只有都为0.

解:根据题意,有2x-3=0,y+3=0 则x= 所以x+y的相反数是.

2332,y=-3 x+y=

32+(-3)=-

32.备选例题

(2004·芜湖)小王上周在股市以收盘价/(收市时的价格)每股25•元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)

星期

每股涨跌(元)

根据上表回答问题:

(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价、最低价分别是多少?

(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.•若小王在本周五以收盘价将全部股票卖出,他的收益情况如何? 【答案】(1)星期二收盘价为25+2-0.5=26.5(元/股)

(2)收盘最高价为25+2-0.5+1.5=28(元/股)收盘最低价为25+2-0.5+1.5-1.8=26.2(元/股)

(3)小王的收益为:27×1000(1-5‰)-25×1000(1+5‰)=27000-135-25000-125=1740(元)

∴小王的本次收益为1740元.

(五)总结反思,拓展升华

本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律使运算简便.一般情况下,我们将互相为相反数的相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便. 1.计算112一 +2

二-0.5

三 +1.5

四-1.8

五 +0.8 +123+

134+…+

120032004 【答案】1.

20032004

2.如果│a│=3,│b│=2,且a

(3)这列数字前n个数的和是否随着n的增大而增大?请说明理由.

【答案】(3)不是,当加到第58个数(为1)时,前n个数的和才开始递增.

课堂跟踪反馈

夯实基础

1.运用加法的运算律计算(+6是(D)A.[(+6 B.[(+6 C.[(+6 D.[(+61313131313)+(-18)+(+4

23)+(-6.8)+18+(-3.2)最适当的)+(423)+18]+[(-18)+(-6.8)+(-3.2)]

23)+(-6.8)+(4)]+[(-18)+18+(-3.2)]

23)+(-18)]+[(+4)+(+4

23)+(-6.8)]+[18+(-3.2)])]+[(-18)+18)]+[(-3.2)+(-6.8)] 2.已知│x│=4,│y│=5,则│x+y│的值为(C)A.1 B.9 C.9或1 D.±9或±1 3.有理数中,所有整数的和等于 0 . 4.(-2)+4+(-6)+8+…+(-98)+100=50. 5.一个加数是绝对值等于3818的负有理数,另一个加数是-

12的相反数,•这两个数的和等于

6.计算题

(1)-1613+2916

1320(2)(+0.65)+(-1.9)+(-1.1)+(-(3)134)+(+5

23)+(-2

13)

+(-6.5)+3)+(-52338+(-1.75)+2

255817)+(-1)+(-1

17(4)(+635)+(4)+(+2)

提升能力

7.小李到银行共办理了四笔业务,第一笔存入120元,第二笔支取了85元,第三笔取出70元,第四笔存入130元.如果将这四笔业务合并为一笔,•请你替他策划一下这一笔业务该怎样做.

【答案】 +120+(-85)+(-70)+(+130)=95(元),所以一次存入95元. 8.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工

时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.

(1)问收工时距A地多远? 【答案】(1)距A41千米

(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?【答案】(2)13.4升

开放探究

把-5,-4,-3,-2,-1,0,1,2,3这些数填入下图的圆圈中,•使得每条直线上数字之和都为0. 【答案】

-4-3-5-23-1201

第四篇:1.4.1有理数的乘法2教案

1.4.1有理数的乘法(2)

石锦东

一、教学目标

(一)、知识与技能

使学生掌握多个有理数相乘的积的符号规律。

(二)、过程与方法

通过学生亲身探索、归纳和验证,体验多个有理数相乘时积的符号的确定方法,培养实践能力和交流能力。

(三)、情感态度与价值观

1、通过观察、思考、探究、发现,激发学生的好奇心和求知欲,让学生获得成功的喜悦。

2、通过探究和思考问题,使学生养成积极自觉的学习习惯。

二、教学重难点

教学重点:乘法的符号规律 教学难点:积的符号的确定

三、教学方法和课型

1、教学方法:合作探究法、讲练结合法

2、课型:新授课

四、教具准备

多媒体

五、教学过程

(一)、创设情境,引入新知

问题1:有理数乘法法则的内容是什么? 教师提出问题,学生思考回答。教师根据学生的回答情况加以补充。问题2:计算:(1)、﹙-2﹚×3 ;

(2)、﹙-2﹚×﹙-3﹚;(3)、4×﹙-½﹚;

(4)、﹙-4﹚×﹙-½﹚.教师提出问题,学生思考回答。

教师根据学生的回答的情况加以订正,并提出问题:上节课主要学的是两个有理数相乘,那多个有理数相乘,积的符号又与什么有关?

设计意图:通过复习有理数的乘法法则,为学习多个有理数相乘的积的符号规律做铺垫。

(二)、观察探究,形成新知

问题3:观察下列各式,它们的积是正的还是负的?(1)、2×3×4×﹙-5﹚;

(2)、2×3×﹙-4﹚×﹙-5﹚;(3)、2×﹙-3﹚×﹙-4﹚×﹙-5﹚;(4)、﹙-2﹚×﹙-3﹚×﹙-4﹚×﹙-5﹚.思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系? 学生思考,发表见解。

教师巡视,引导学生观察上面各题的计算结果,找一找积的符号与什么有关?

师生共同归纳得出:

几个不是0的数相乘,负因数的个数是偶数时,积是正数,负因数的个数是奇数时,积是负数。(简称:奇负偶正)

设计意图:通过这一组问题不仅让学生巩固上节课学习的乘法法则,而且让学生观察到随着负因数的逐渐增加,积的符号和负号的个数有关,从而培养学生观察问题、归纳结论的习惯。

(三)、应用新知,加深理解

问题4: 例3:计算:(1)、﹙-3﹚×5/6×﹙-9/5﹚×﹙-1/4﹚;(2)、﹙-5﹚×6×﹙-4/5﹚×1/4;

做题前让学生先思考:多个不是0的数相乘,先做哪一步,再做 哪一步?

教师引导学生思考,归纳得出:先确定符号,再把各个乘数的绝对值相乘,作为积的绝对值。

教师引导学生,共同完成计算。

设计意图:学生既巩固了有理数的乘法运算,又可以熟悉多个有理数相乘的运算方法。

(四)、自主学习,探索新知

问题6:你能看出下式的结果吗?如果能,请说明理由。7.8×﹙-8.1﹚×0×﹙-19.6﹚.学生思考回答。

教师引导学生根据已有的知识进行解答,得出几个数相乘,其中有一个因数为0的特殊规律。

学生填空:几个数相乘,如果其中有因数为0,积等于0.设计意图:使学生在巩固多个有理数相乘的基础上,能够从含有0因数的特殊性出发,得出结果为0.(五)、练习巩固

教科书第32页练习题 学生独立完成计算。

教师找三位同学到黑板板演。师生一起讲评。

设计意图:巩固所学新知。

(六)、归纳小结,布置作业

师生共同归纳:

1、多个有理数相乘的积的符号规律:

几个不是0的数相乘,负因数的个数是偶数时,积是正数,负因数的个数是奇数时,积是负数。(简称:奇负偶正)

几个数相乘,如果其中有因数为0,积等于0.2、多个有理数相乘的解题步骤: 第一步:是否有因数0; 第二步:奇负偶正; 第三步:绝对值相乘。作业:

教科书第38页习题1.4第7题(1)、(2)、(3)

设计意图:巩固本节课的知识,使学生加深印象,对知识脉络有更清晰地 认识,并纳入自己的知识结构中。

(七)教学反思:

让学生主动参与学习,让学生在快乐中获取知识,我觉得本节课还是达到了预期的教学目标,学生的参与率比较高,课堂气氛较活跃,学生的思维在围着本节课的内容转,从学生回答问题、总结法则和板演的情况看,效果也较好。

这节课在我看来是比较成功的也是比较顺利的一节课,成功的原因在于课前我对学生已有的知识经验分析透彻。可见,我们的教学只有建立在学生的认知水平和已有的知识经验基础之上才能高效率的完美的进行。总结归纳时,学生往往更注重归纳本节课的知识体系,这个时候我告诉学生几个地方要求同学们合作完成学习任务的时候,大部分同学还没有一种这样的意识,合作不是很好,告诫同学们不管在学习上还是在今后的生活工作中,善于与人合作是很重要的,希望同学们今后朝这方面努力,并且表扬几个合作交流的比较好的同学,让大家学有榜样。

不足:课堂气氛有待提高,给学生解释负因数的概念,讲解要简洁清楚,不要重复。

第五篇:2.7.2有理数的乘法2教案

第二章 有理数及其运算 7.有理数的乘法

(二)时间 2017年10月10日 备课组:数学组

一、学习目标:

1、经历探索有理数的乘法运算律的过程,发展观察、归纳、猜想、验证等能力。

2、学会运用乘法运算律简化计算的方法,并会用文字语言和符号语言表述乘法运算律。

二、学习重点

探索发现有理数长法的运算律。

三、学习难点

会运用运算律简化运算过程。

四、课前准备 课件

五、学习过程设计

1、创设问题,情景导入

(1)有理数加法法则和乘法法则各是什么?

(2)如何进行有理数乘法运算?乘法运算符号如何规定?(3)在小学学过哪些运算律?

2、符号表达,知识升华

用投影片展示一组等式,请同学们判定等式成立的依据是哪条运算律,并口述对应运算律的内容。下列等式成立吗?为什么?(1)(-765)×4=4×(-765);(2)[7×(-8)] 3=7 ×[(-8)×3];(3)(-5)×[1/2+(-1/3)]=(-5)×1/2+(-5)×(-1/3).(2)思考:如何用字母来表示乘法运算律。

有理数乘法的交换律:ab=ba 有理数乘法的结合律:(ab)c=a(bc)有理数乘法的分配律:a(b+c)=ab+ac

3、整体感知,双边互动 例1计算:(1)(-0.25)×(-)×(-4)

1(2)(-8)×(-6)×(-0.5)×

316例2计算(-24)×(-++例3,计算:

⑴(-5÷6+3÷8)×(-24)

⑵(-7)×(-4÷3)×5÷14

4、课堂练习

1、计算:

⑴ 0×(-5÷6);

⑵3×(-1÷3);

⑶(-3)×0.3 ;

⑷(-1÷6)×(-6÷7); 2、计算:

⑴(-3÷4)×(-8);

⑵30×[(-1÷2)-(1÷3)]; ⑶(0.25-2÷3)×(-36); ⑷8×(-4÷5)×1÷16

5、课堂小结,知识归纳

六、布置作业

1、必做题:教科书第79页知识技能1,联系拓广1、2。

2、选做题:基础训练

七、板书设计 2334112)

课题

1、乘法运算律

3、例2

2、例1

4、练习

四、教学反思

1、要关注学生对有理数运算法则和运算律的理解水平,对法则和运算的学习评价,不应单纯考查记忆和具体计算,而应对运算的评价重点放在学生对算理的理解上,考察学生能否根据实际问题的特点选择合理简便的算法,2、学生的解答和理解有很大的差异,既增添批改的难度,又出现一些思维上的负面影响,所以对今后的作业布置,一定要区别对待,有所选择。

3、本节课的设计中,教师是以组作者,引导者的身份出现在每一个环节,在这个过程中培养了学生观察、归纳、验证的能力。并通过用自己的语言描述运算律,培养了学生的语言表达能力,用符号的语言描述运算律,发展了学生的符号感。在学习活动中,学生获得了成功的体验,增强了自信。

下载1.2 有理数 教案word格式文档
下载1.2 有理数 教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数的除法2

    吉岘九年制学校七年级数学讲学稿(NO.15) 1.4.2有理数的除法(2) 课型:新授课 主备:张灵旭审核:七年级数学备课组 时间:2010.9 班级 姓名 学习目标: 1、学会用计算器进行有理数的除法......

    有理数乘方第2课时 教案3

    ! 2.5 有理数乘方(第2课时) 【教学目标】 知识目标:1.学生掌握科学记数法,会用科学记数法来表示一个数; 2.了解乘方在生活实际中的简单应用,初步学会对含有较大数字的信息作出合理......

    有理数的乘法2教案(小编推荐)

    学科:数学 教学内容:有理数的乘法 重点难点提示 1.会进行有理数的乘法运算; 2.能运用乘法运算性质简化乘法运算。 3.有理数的乘法 (1)有理数的乘法法则是:两数相乘,同号得正,异号得负,并......

    有理数的乘除法教案2(合集五篇)

    有理数的乘法教案 教学目标 1.知识目标:掌握有理数的乘法法则进行熟练的运算并联系实际解决简单的的实际问题,能利用乘法运算律简化运算. 2.能力目标:培养学生的发展、观察、归......

    (教案)1.7 有理数的除法课时2

    有理数的除法(课时2) [定标自学] 1.自学目标: 进一步理解有理数乘法和除法的法则,熟练进行有理数乘除混合运算。 2.学习重点:有理数的乘除混合运算 3.学习难点:处理结果的符号 4.学习......

    有理数加减法教案(精选合集)

    有理数的减法 一、素质教育目标(一)知识教学点 1.理解掌握有理数的减法法则. 2.会进行有理数的减法运算.(二)能力训练点 1.通过把减法运算转化为加法运算,向学生渗透转化思想. 2.通过有......

    有理数加减法教案

    教学目标1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭......

    第一章有理数教案

    课题:1.1正数和负数(第1课时) 一、教学目标 1.让学生经历从实际问题中抽象负数概念的过程,初步知道正数和负数的意义,培养学生抽象能力. 2.会读写正数和负数. 二、教学重点和难点......