有理数加减法教案

时间:2019-05-13 01:21:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《有理数加减法教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《有理数加减法教案》。

第一篇:有理数加减法教案

教学目标

1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想. 教学建议

(一)重点、难点分析

本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

(二)知识结构

(三)教法建议

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。教学设计示例

有理数的减法

一、素质教育目标

(一)知识教学点

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

3.通过有理数的减法运算,培养学生的运算能力.

(三)德育渗透点

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);

(2)-3+(-7);

(3)-10+(+3);

(4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3).

(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).

(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1(例题1、2)]

例1 计算(1)(-3)-(-5);

(2)0-7;

例2 计算(1)7.2-(-4.8);

(2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;

(2)(+4)-(-7);

(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);

(6)0-5.

2.计算

(1)(-2.5)-5.9;

(2)1.9-(-0.6);

(3)()-;

(4)-().

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第45页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米.

【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略.

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

八、随堂练习

1.填空题

(1)3-(-3)=____________;

(2)(-11)-2=______________;

(3)0-(-6)=____________;

(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;

(8)-4-()=10;

(9)如果,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

(4)方程在有理数范围内无解.()

(5)若,,.()

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

(二)选做题:课本第84页中5、8.

第二篇:有理数加减法教案

有理数的减法

一、素质教育目标

(一)知识教学点

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

3.通过有理数的减法运算,培养学生的运算能力.

(三)德育渗透点

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);

(2)-3+(-7);

(3)-10+(+3);

(4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3).

(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).

(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1(例题1、2)]

例1 计算(1)(-3)-(-5);

(2)0-7;

例2 计算(1)7.2-(-4.8);

(2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;

(2)(+4)-(-7);

(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);

(6)0-5.

2.计算

(1)(-2.5)-5.9;

(2)1.9-(-0.6);

(3)()-;

(4)-().

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第45页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米.

【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略.

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

八、随堂练习

1.填空题

(1)3-(-3)=____________;

(2)(-11)-2=______________;

(3)0-(-6)=____________;

(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;

(8)-4-()=10;

(9)如果,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

(4)方程在有理数范围内无解.()

(5)若,,.()

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

(二)选做题:课本第84页中5、8.

第三篇:有理数加减法教案

教学目标

1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

教学建议

(一)重点、难点分析

本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

(二)知识结构

(三)教法建议

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。教学设计示例

有理数的减法

一、素质教育目标

(一)知识教学点

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

3.通过有理数的减法运算,培养学生的运算能力.

(三)德育渗透点

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);(2)-3+(-7);

(3)-10+(+3);(4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3).(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1(例题1、2)]

例1 计算(1)(-3)-(-5);(2)0-7;

例2 计算(1)7.2-(-4.8);(2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);(6)0-5.

2.计算

(1)(-2.5)-5.9;(2)1.9-(-0.6);

第四篇:有理数加减法教案

一、学情分析

七年级学生性格开朗活波,对新鲜事物比较感兴趣,因此,教学过程中创设的问题情境生动活泼,直观形象,贴近学生生活.由于刚升入初中,学生的智力,基础,学习习惯都存在很大的差异,很多同学会出现符号处理有误,法则选择不灵活等问题.因此,老师要充分发挥情感目标的调控作用,随时收集来自学生方面的信息,及时反馈矫正合作交流.二、教材分析

本章内容是有理数及其运算,在一定意义上讲它是全新的,但必须充分认识到它是小学数学四则运算的继承和发展,就本章内容来看,有理数的减法是建立在刚刚学过的有理数的加法运算的基础上的,这一节课是前面所学知识的继续,又是后面有理数的混合运算的基础,起着承前启后的作用有理数的减法对学生来说是比较难学的初学时,学生的正确率不高,所以,对法则的正确理解尤为重要.三、教学设计

有理数的减法

一、教学目标

(一)知识与技能

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)过程与方法

1.通过有理数减法法则的推导过程,发展学生的发现问题、提出问题、分析问题和解决问题的能力.

2.通过把减法运算转化为加法运算,向学生渗透转化思想.

3.通过有理数的减法运算,培养学生的运算能力.

(三)情感态度与价值观

1.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

2.在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

三、课时安排

1课时

四、教具学具准备

电脑、投影仪.

五、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);(2)(-3)+(-7);

(3)(-10)+(+3);(4)(+10)+(-3).

2.由实物投影显示课本本章引言中的画面,这是北京冬季里的一天,白天的最高气温是3℃,夜晚的最低气温是-3℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:3℃比-3℃高6℃.

师:能不能列出算式计算呢?

生:3-(-3).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【设计说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=(+10)+(-3).(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【设计说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试发现问题,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【设计说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己思考、观察、归纳、总结,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生发现问题、分析问题的能力.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相互叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a-b=a+(-b).

【设计说明】结合引入新课中温度计的实例,充分地经历了推导有理数的减法法则的全过程,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

3.例题讲解:

[出示投影1(例题

4、)]

例4 计算:(1)(-3)-(-5);(2)0-7;

11(3)7.2-(-4.8);(4)(-3)-5 . 24

例4是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.【设计说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例4(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.(3)、(4)两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.师生活动:组织学生四人一组编题,学生相互解答.

【设计说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固所学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和合作参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时反馈.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);(6)0-5.

2.计算

(1)(-2.5)-5.9;(2)1.9-(-0.6);

7211(3)(-)- ;(4)3 -(-1). 23412

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【设计说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第25页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8844米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-415米,两处高度相差多少?

生答:8844-(-415)=8844+415=9259.

所以两地高度相差9259米.

【设计说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)总结反思,情意发展

1.通过本节课的学习你学到了什么?

2.通过本节课的学习,下一步你还想探究什么问题?

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

六、随堂练习

1.填空题

(1)3-(-3)=____________;(2)(-11)-2=______________;

(3)0-(-6)=____________;(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;(8)-4-()=10;

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

七、课后作业

课本第24页复习巩固中1.偶数题,3.偶数题,4.偶数题.【设计说明】通过随堂练习和课后作业,检测知识的掌握情况,为下一节课做准备.八、课后反思

以生活实际中的问题解决入手,能充分调动学生探索、学习的积极性.设计一系列的低台阶、多密度的问题串,适合学生的认知水平,利于学生自主探索,发现问题并提出问题,并逐步引导总结规律、法则,远远高于直接说教告诉的法则记忆深.在探索与尝试应用的过程中,让学生口述或板演,目的是充分暴露学生练习中的问题,更加有针对性的补偿教学.课堂小结让学生来说,更能发现学生的认知程度,教师适时的点拨,使知识的归纳总结又能得到提炼升华.在以后的教学中,应充分考虑学生的认知程度,设计合理的探索性问题,把学习的主动权放给学生,发展学生学会学习的能力比教给他们知识更重要.

第五篇:有理数加减法教案

有理数的加法

1、我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。

于是红队的净胜球为4+(-2){怎样计算4+(-2)}

黄队的净胜球为1+(-1)。

2、这里用到正数与负数的加法,下面我们借助数轴来讨论有理数的加法。看下面的问题:

一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5m记作5m.向左运动5m记作-5m。

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后向右共运动了多少米? 两次运动后物体从起点起向右运动了8米,写成算式就是

5+3=8...........(用数轴表示)

(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后向右共运动了多少米? 两次运动后物体从起点起向左运动了8米,写成算式就是

(-5)+(-3)=-8......(用数轴表示)

这两个运算都可以用数轴来表示,其中假设原点O为运动起点。如果物体先向右运动5m,再向左运动3m,那么两次运动向右运动了多少米?(用数轴表示)

3、练习:利用数轴求以下情况时物体两次运动的结果:

(1)先向右运动3m,再向左运动5m,物体从起点向___运动了___米;

(2)先向右运动5m,再向左运动5m,物体从起点向___运动了___米;

(3)先向左运动5m,再向右运动5m,物体从起点向___运动了___米;

这三种情况运动结果的算式如下:

3+(-5)=-2...........

5+(-5)=0...........④

(-5)+5=0.......⑤

如果物体第一秒向右(或左)运动5米,第二秒原地不动,两秒后物体从起点向右(或左)运动了5米,写成算式就是

5+0=5....⑥或(-5)+0=-5....⑦

考虑有理数的运算结果时,既要考虑它的符号,又要考虑它的____

你能从算式--⑦中发现有理数加法的运算法则吗?

4、有理数的加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

(3)一个数同0相加,仍得这个数。

进行加法运算时,首先要判断两个加数的符号,是同号还是异号,是否有0,然后再确定用哪条法则,总之,要牢记”先符号,后绝对值”。

5、巩固练习:(第12页例1)

思考:我们以前学过加法交换律、结合律,在有理数的加法中它们还适用吗?

(1)计算:30+(-20),(-20)+30(可以换几个加数试一试)

由此可得我们小学学过的运算律在有理数范围内仍然适用,在有理数的加法中,两个数相加,交换加数的位置,和不变(加法交换律:)

(2)计算:[8+(-5)]+(-4),8+[(-5)+(-4)]两次所得的结果相同吗?换几个加数再试试

有理数的加法中,三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=计算16+(-25)+24+(-35)上式中是怎样使计算简化的?这样做的根据是什么?利用加法交换律、结合律可以使运算简化,认识运算律对于理解运算有很重要的意义,通常有下列规律:

(1)互为相反数的两个数,可以先相加;(2)符号相同的数可以先相加

(3)分母相同的数可以先相加(4)几个数相加能得到整数可以先相加。

有理数的减法

1、实际问题中有时还要涉及有理数的减法。例如,某地一天的气温是-3℃--4℃,这天的温差(最高气温减最低气温)就是4-(-3),这里用到正数与负数的减法,我们知道减法是与加法相反的运算,计算4-(-3),就是要求出一个数x,使得x与-3相加得4,因为7与-3相加得4,所以x应该是7:

2、即4-(-3)=7.......

3、另一方面,我们知道4+(+3)=7.........

由我们可以得到4-(-3)=4+(+3).....

从式能看出减-3相当于加哪个数吗?

把4换成0,-1,-5,用上面的方法考虑

0-(-3);(-1)-(-3);(-5)-(-3)

这些数减-3的结果与它们加+3的结果相同吗?

4、计算: 9-8;9+(-8);15-7,15+(-7)从中又能有新发现吗?[换几个数试试]

归纳:有理数的减法可以转化为加法来进行。有理数减法法则:减去一个数,就等于加上这个数的相反数。

有理数减法法则也可以表示成:a-b+a+(-b)

计算:(讲第13页例3)练习:

思考:以前只有在a大于或等于b时,我们会做减法a-b(例如2-1,1-1),现在你会在a小于b时做减法a-b(例如1-2,-1-0)吗?小数减大数所得的差是什么数?

5、下面我们研究怎样进行有理数的加减混合运算。

例6 计算(-20)+(+3)-(-5)-(+7)

分析:这个式子中有加法,也有减法,可以根据有理数减法法则,把它改写为

(-20)+(+3)+(+5)+(-7)

使问题转化为几个有理数的加法。

=[(-20)+(-7)]+[(+5)+(+3)](这里使用了哪些运算律)

归纳:引入相反数后,加减混合运算可以统一为加法运算a+b-c=a+b+(-c)__

式子(-20)+(+3)+(+5)+(-7)是-20,3,5,-7这四个数的和,为书写简单,可以省略式中的括号和加号;

把它写为-20+3+5-7这个式子可以读作“负20、正

3、正

5、负7的和”,或读作“负20加3加5减7”所以运算过程也可以简单地写为

(-20)+(+3)-(-5)-(+7)

=—20+3+5-7

=-20-7+3+5

=-27+8

=19

下载有理数加减法教案word格式文档
下载有理数加减法教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数加减法公开课教案

    有理数加减法公开课教案 上课人:武兰云 时间:2009.9.14 一.教学目标 1.知识与技能 (1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算; (2)在......

    有理数加减法教案(答案)

    有理数的加减法 教师寄语:你越努力,运气就越好。 【学习目标】 1、会用有理数的加减法的运算法则进行有理数的加减法运算; 2、会用用有理数的加减法的交换律与结合律使运算简......

    有理数的加减法教案

    1.3.1 有理数的加法(1) 第一课时 授课人:张显刚 授课时间:2017年9月19日 授课地点:701班三维目标一、知识与技能 理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数......

    有理数加减法说课教案

    有理数的加减法 一、教材的地位和作用 有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。同时,也为后继学习实数、方程、不等......

    有理数加减法练习题

    有理数加减法练习题 一、选择 1.下列说法正确的个数是 ①两数的和一定比其中任何一个加数都大;②两数的差一定比被减数小③较小的有理数减去较大的有理数一定是负数;④......

    七年级数学有理数的加减法教案

    株洲大学生家教舒新 http://www.xiexiebang.com电话*** 初一同步辅导材料(第9讲) 第一章有理数加减及其混合运算 【知识梳理】 1、有理数的加法法则: 同号两数相加,取相......

    七年级数学有理数的加减法教案

    初一同步辅导材料(第9讲) 第一章有理数加减及其混合运算 【知识梳理】 1、有理数的加法法则: 同号两数相加,取相同的符号,并把绝对值相加. 异号两数相加,绝对值相等时和为0(即互为相......

    绝对值和有理数的加减法

    绝对值和有理数的加减法【学习目标】 一、绝对值 要求理解绝对值的概念,会求一个数的绝对值,已知一个数的绝对值会求这个数,首次学习不易过难,在后续的学习中慢慢体会其中分类讨......