浅谈有理数加减法的教与学

时间:2019-05-15 01:08:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅谈有理数加减法的教与学》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅谈有理数加减法的教与学》。

第一篇:浅谈有理数加减法的教与学

浅谈有理数加减法的教与学

山东省栖霞市连家庄中学

学生在升入初中后,首先接触的便是正数和负数。在认识了正负数以后马上就要学习有理数的加减法,但他们长期养成的习惯思维认为加减法是分不开的。按照教材上的有理数加减法法则:

一、同号两数相加,取与加数相同的符号,并把绝对值相加。

二、异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减去较小的绝对值。

三、互为相反数的两个数相加得零。

四、减去一个数,等于加上这个数的相反数。这些法则对于规范学生的思维,正确认识有理数的加减法是非常必要的。但我们在教学中发现,学生在做有理数的加减法时还是会出现各种各样的问题。比如-7+8=15,-6-1=-5等等的错误,让人十分头疼。究其原因,还是这个法则过于繁琐,学生难以掌握。从而造成学生在做有理数加减法时无法分清到底什么时候做加法,什么时候做减法。针对这一现象本人结合教学实践进行了一些探索,现就本人的教学实践谈谈几点粗浅的体会。

首先,本人让学生练习小学的加减法运算,如5+7,8-6,11-8,6-2等等,(当然,学生很容易回答),接下来就让学生练习5-7,-5-7,8-11,2-6,-3-4,-5+7,-6+2等等,此时有一部分学生就发生错误了,但是大部分同学还是能够正确回答,然后引导学生观察:+5,+7做加法,-5,-7做加法,-3,-4做加法,+8,-6做减法,-8,+11做减法,+5,-7做减法,+8,-11做减法等等,这时问同学什么时候做加法?什么时候做减法?它们的符号有什么规律?此时学生通过观察就会发现同号做加法,异号做减法。一个简单而又重要的加减法法则便顺理成章出现在我们面前:同号相加,异号相减。于是我便通过这个法则来指导学生完成其他的加减法题目,比如我们再拿上述几道题目来验证这个法则。-6+2是同号还是异号?是做加法还是减法?5-7是同号还是异号?是做加法还是减法?-5-7是同号还是异号?是做加法还是减法?-5+7是同号还是异号?是做加法还是减法?实际上当学生熟练掌握了这个法则以后,在做有理数加减运算时,只需作出两个非常简单的逻辑判断,(1)同号还是异号。(2)结果正或负。从而大大提高了解题的准确性。虽然这个法则并没有涉及到结果的符号问题,但学生的错误主要是出现在分不清加减上,而符号则基本上不容易出现问题。因此相对于教材上的有理数加减法法则,这个法则更为简单明了,便于学生理解和掌握。

其次,在授课时还应注意,学生经过前一段有理数的学习,应该知道加号也可以看成正号,减号也可以看成负号。因此两个有理数相加不一定做加法,而两个有理数相减也并不一定做减法。比如:-7+5,从表面来看是做加法,而实际是做减法。又如:-7-5从表面来看是做减法,而实际是做加法。因此我们在授课时一定要注意:强调符号,淡化加减。因为本人一直认为加减运算本身就是不可分割的统一体。因而在讲解有理数加减法运算时,常常把加减法混在一起,而不把它们人为的分成有理数加法或减

法运算。这样有助于学生在做有理数加减法时认识到符号的重要性。

最后,在讲解有理数加减法时还应注意解题的步骤。第一步,去括号,即去掉有理数的括号。第二步,分类,即把正负数进行分类,同时把正数放在前面,负数放在后面。第三步,做加法,即分别做正数和负数的加法。第四步,做减法,即把正数的和减去负数的和。这样可以培养学生有条不紊地进行有理数的加减运算的习惯,而且不容易出错。通过大量反复的练习,学生很容易掌握有理数的加减法运算规律。同时为下一章学习整式的加减打下坚实的基础。通过几年的教学实践,我所任教的几个班级学生在有理数加减运算方面明显强于其他班级的学生。

综上所述,同号相加,异号相减。本人认为这个法则比书上的法则要更简洁明了,也更容易被学生理解和掌握。因此本人认为它应该成为有理数加减法的新法则,或者它至少应该成为有理数加减法运算的口诀。这样可以帮助我们摆脱教材上繁琐的有理数加减法法则,也可以让学生轻松的学好有理数加减。

第二篇:有理数加减法教与学之浅见

有理数加减法教与学之浅见

学生在升入初中以后,首先接触的便是正数和负数.在认识了正负数以后马上就要学习有理数的加减法,但他们长期养成的习惯思维认为加减法是分开的.按照教材上的有理数加减法法则:

一、同号两数相加,取与加数相同的符号,并把绝对值相加.

二、异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减去较小的绝对值.

三、互为相反数的两个数相加得零.

四、减去一个数,等于加上这个数的相反数.这些法则对于规范学生的思维,正确认识有理数的加减法是非常必要的.但我们在教学中发现,学生在做有理数的加减法时还是会出现各种各样的问题.比如-7+8=-15,-6-1=-5等等的错误,让人十分头疼.究其原因,还是这个法则过于繁琐,学生难以掌握.从而造成学生在做有理数加减法时无法分清到底什么时候做加法,什么时候做减法.针对这一现象本人结合教学实践进行了一些探索,现就本人的教学实践谈谈几点粗浅的体会.

首先,本人让学生练习小学的加减法运算,如5+7,8-6,11-8,6-2,等等,(当然,学生很容易回答),接下来就让学生练习5-7,-5-7,8-11,2-6,-3-4,-5+7,-6+2,等等,此时有一部分学生就发生错误了,但是大部分同学还是能够正确回答.然后引导学生观察: +5,+7做加法,-5,-7做加法,-3,-4做加法,+8,-6做减法,-8,+11,做减法,+5,-7做减法,+8,-11,做减法等等,这时问同学什么时候做加法?什么时候做减法?它们的符号有什么规律?此时学生通过观察就会发现同号做加法,异号做减法.一个简单而又重要的加减法法则便顺理成章出现在我们面前:同号相加,异号相减.于是我便通过这个法则来指导学生完成其他的加减法题目.比如我们再拿上述几道题目来验证这个法则.-6+2是同号还是异号?是做加法还是减法?5-7是同号还是异号?是做加法还是减法?-5-7是同号还是异号?是做加法还是减法?-5+7是同号还是异号?是做加法还是减法?实际上当学生熟练掌握了这个法则以后,在做有理数加减运算时,只需作出两个非常简单的逻辑判断,(1)同号还是异号.(2)结果正或负.从而大大提高了解题的正确性.虽然这个法则并没有涉及到结果的符号问题,但学生的错误主要是出现在分不清加减上,而符号则基本上不容易出现问题.因此相对于教材上的有理数加减法法则,这个法则更为简单明了,便于学生理解和掌握.

其次,在授课时还应注意,学生经过前一阶段有理数的学习,应该知道加号也可以看成正号,减号也可以看成负号.因此两个有理数相加不一定做加法,而两个有理数相减也并不一定做减法.比如:-7+5,从表面来看是做加法,而实际是做减法.又如:-7-5从表面来看是做减法,而实际是做加法.因此我们在授课时一定要注意:强调符号,淡化加减.因为本人一直认为加减运算本身就是不可分割的统一体.因而在讲解有理数加减法运算时,常常把加减法混在一起,而不把它们人为的分成有理数加法或减法运算.这样有助于学生在做有理数加减法时认识到符号的重要性.

最后,在讲解有理数加减法时还应注意解题的步骤.第一步,去括号,即去掉有理数的括号.第二步,分类,即把正负数进行分类,同时把正数放在前面,负数放在后面.第三步,做加法,即分别做正数和负数的加法.第四步,做减法.即把正数的和减去负数的和.这样可以培养学生有条不紊地进行有理数的加减运算的习惯,而且不容易出错.通过大量反复的练习,学生很容易掌握有理数的加减法运算规律.同时为下一章学习整式的加减打下坚实的基础.通过几年的教学实践,我所任教的几个班级学生在有理数加减运算方面明显强于其他班级的学生.

综上所述,同号相加,异号相减.本人认为这个法则比书上的法则要更简洁明了,也更容易被学生理解和掌握.因此本人认为它应该成为有理数加减法的新法则,或者它至少应该成为有理数加减法运算的口诀.这样可以帮助我们摆脱教材上繁琐的有理数加减法法则,也可以让学生轻松的学好有理数加减.

有理数乘方教学反思

教学随笔与反思 2010-01-09 12:56:46 阅读162 评论0 字号:大中小 订阅

有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序。有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。

一、要求学生深刻理解有理数乘方的意义。即一般地n个相同的因数相乘即。a。a。a…a= ,记作。在教学上应该抓住以下几点:

一、乘方是一种运算。相当于“+、-、×、÷”。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与“和、差、积、商”一样。如的结果是8。所以说 的幂是8。与2×4一样,2×4=8.所以不能说8是幂,说成23的幂是8。同时强调具有两种意义,它既表示n个a

相乘。又表示乘方的运算结果。

二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的 任何次幂是正,是0,负数的 正数次幂是负数,负数的 偶数次幂是正数,教师在教学时强调做乘方时先确

定符号再计算,如 =4.三、教有理数综合运算时应该强调运算顺序。即先算乘方,再算乘除,最后算加减,有括号的先算括号,同时注意教学生的书写格式。分清与 的区别。注意–

5的平方与1/2的平方的书写方法。

四、注意讲清有理数乘方中的常见错误。如,的区别。前者是表示2的平方的相反数,后记者是表示–2的平方,写法不同计算的结果不同。同时分清分数的乘方的书写。与分清小数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。同时讲清楚区别与联系

《整式》教学反思

《整式》这节课作为本章起始课显得尤其很重要,核心概念是单项式与多项式的概念,及由此归纳出的整式的的概念.这也是本节课教学重点.通过数与式之间的联系,教材中蕴含的主要数学思想方法有“类比”,及“转化”的思想方法,由单项式与多项式间的关系,体现了数学知识间具体与抽象的内在联系及数学的内在统一性.

在教学中我注意发挥本节内容整式承前启后的作用,在前面的学习中,学生们已经学习了用字母代替数,列代数式来表示简单的数量关系,有了这些基本知识,学生已经对整式具有了一定的感性认识.因此,在引入情境中设置两个用代数式表示的问题,这两个问题的结论中包含数与字母、字母与字母的乘法运算以及乘方运算,还特别使它们的系数有正有负也有分数。然后让同学们去找它们的共同特征,通过自主探究的方式让学生发现单项式的主要特点,然后总结归纳出单项式的概念。然后重点落实单项式的系数和次数,通过一组练习加以巩固,并及时总结判断的方法及注意事项。

在学习了单项式的概念后,通过学生写三个单项式,同桌合作学习的方法即动手又动脑来加深理解,同时也为引出多项式的概念作好准备。就是把这几个单项式相加就很简单地得出多项式的概念。就不用再跟单项式一样去探究,这样就有点重复。另个一点把几个单项式相加时,原来的单项式的符号是不会变化的,也不很好地解决了多项式的项的符号的问题。之后便很方便确定多项式的次数和项的系数。当然这些新出现的概念与名词是本课教学难点:①系数是负数或分数时的情形.系数为圆周率。②多项式的次数和项的次数混淆。③当以分数的形式出现时为注意分解为几个式子和的形式。之后,便得出整式的概念。

本节课堂教学采用“情境问题—探究—归纳—形成新知—巩固—提高”课堂结构,使学生初步在自主探究中体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。通过观察课件的演示,让学生分组讨论、交流、总结,由学生自主发表意见,展现学生的思维过程,充分参与到新的认知的产生过程中来。

关于这节课的几点思考:

1、本节课要落实的概念很多,且有些相近,学生容易互相混淆,应加强练习加以巩固落实。有些认为可以把单项式及相关的概念和多项式及相关的概念放在一起先讲,然后再通过大量的练习加以巩固。如果这样,我个人认为,整个过程缺少自主的探究过程,完全在老师的安排下完成的,学生的参与度不够。可能时间的把握上容易控制,练习也能充分,教学的效果也应该不错。

2、本节课的教学主要是通过启发示教学让学生在自主探究发现共同点,在练习在后自主总结归纳发现注意点。充分发挥了学生的主动参与性,让学生成为整节课的主导者,能培养学生的思维与自主学习的能力。

3、存在的问题(1)过与注重学生的启发式教学,很多问题可以直接得出结论,导致最后时间不够,很多很好的能锻炼学生思维的提高练习没有完成。

(2)分析重复,如填一填中的单项式的系数与多项式的项的系数方法一样,可以不作分析,这也是导致时间不够的一方面原因。另外就是有些分析不够深入,如得出多项式的概念后分析多项式的项时,原本设计是由单项式相加得出,很自然顺畅的,由于时间的原因,有点乱,没有达到预设的效果。

(3)练习题意不明确。(2)关于y的四次五项式,使奇数次项的系数是1,偶数次项的系数是-1。(次数不能相同)原先没有加次数不能相同的条件,致有先学生写出的答案不好评判。

总的来说,这一节课教学目标明确,重难点突出,设计的问题,能激发学生学习兴趣,引导学生开展积极主动的数学思维;如何根据学生实际提供适度的学习指导;如何安排变式训练和知识应用,巩固知识,加深对数学本质的理解;如何安排反思活动,引导学生归纳、总结并概括本堂课的学习内容.本节课容量偏大,给学生思考时间应适当。

第三篇:有理数加减法练习题

有理数加减法练习题

一、选择

1.下列说法正确的个数是()①两数的和一定比其中任何一个加数都大;②两数的差一定比被减数小

③较小的有理数减去较大的有理数一定是负数;④两个互为相反数的数的商是-1 ⑤任何有理数的偶次幂都是正数 A.1个 B.2个 C.3个 D.4个

2.下列关于“一个正数与一个负数的和”的说法正确的是()A.可能是正数 B.可能是0 C.可能是负数 D.以上都有可能 3.下列说法正确的是()A.两个有理数相加等于它们的绝对值相加;B.两个负数相加等于它们的绝对值相减 C.正数加负数,和为正数;负数加正数,和为负数;D.两个正数相加,和为正数;两外负数相加,和为负数 4.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数

③两个有理数的和为正数时,这两个数都是正数 ④两个有理数的和为负数时,这两个数都是正数 A.1个 B.2个 C.3个 D.4个 5.两个数相加,如果和小于每一个加数,那么().A.这两个加数同为正数 B.这两个加数同为负数 C.这两个加数的符号不同 D.这两个加数中有一个为零 6.下列计算正确的是()A.(+30)+(-40)=10 B.(-51)+(-30)=-21 C.(-10)+(+10)=0 D.(+3.9)+(3.1)=0.8 7.两个数相加,如果它们的和小于其中一个加数,而大于另一个加数,那么()A.这两个加数的符号都是负数 B.这两个加数的符号不能相同 C.这两个加数的符号都是正的 D.这两个加数的符号不能确定 8.下列说法不正确的是()A.一个数与零相加,仍得这个数;B.互为相反数的两个数相加,其和为零 C.两个数相加,交换加数的位置,和不变;D.异号两数相加,结果一定大于零 9.不能使式子│-32.6+()│=│-32.6│+│()│成立的数是()A.任意一个数 B.任意一个正数;C.任意一个负数 D.任意一个非负数

10.两个数的差是负数,那么被减数一定是()

A.正数或负数 B.负数 C.非负数 D.以上答案都不对 11.下列说法正确的个数是()

①较大的数减去较小的数的差一定是正数;②较小的数减去较大的数的差一定是负数

③两个数的差一定小于被减数;④互为相反数的两个数的差不会是负数 A.1个 B.2个 C.3个 D.4个

12.若x和y表示两个任意有理数,则下列式子正确的是()

A.│x-y│=│y-x│;B.│x-y│=0;C.│x-y│=-(x-y);D.│x-y│=x-y 13.225的相反数与绝对值为235的数的差为()A.-15;B.5;C.15或5;D.15或-5

14.下列说法不正确的个数是().①两数相减,差不一定比被减数小;②减去一个数,等于加上这个数

③零减去一个数,仍然等于这个数;④互为相反数的两个数相减得零 A.0个 B.1个 C.2个 D.3个

15.若a<0,那么a和它的相反数的差的绝对值等于()A.0 B.a C.2a D.-2a 16.若x<0,那么x-│x│的值为()A.零 B.正数 C.非正数 D.负数 17.下列说法正确的是()

A.一个数减0,等于这个数的相反数 B.一个数减0,其结果一定大于零 C.一个数减0,等于这个数本身 D.一个数减0,其结果一定小于零 18.下列说法正确的是()

A.若x+y=0,则x与y互为相反数 B.若x-y>0,则xy

19.如图所示,a,b,c表示数轴上的三个有理数,则下列各式不成立的是()A.a-b<0 B.b-c<0;C.c-a<0 D.a-(-c)<0

(1)下列计算正确的是

A.7-(-7)=0;B.0-3=-3;C.

141212;D.(-5)-(-6)=-1(2)如图2—11所示,a、b在数轴上的位置分别在原点的两旁,则|a-b|化简的结果是

A.a-b B.b-a C.-(a-b)D.-(b-a)

图2—11(3)如果a+b=c,且a>c则

A.b一定是负数;B.a一定小于b;C.a一定是负数;D.b一定小于a(4)如果|a|-|b|=0,那么

A.a=b B.a、b互为相反数;C.a和b都是0;D.a=b或a=-b(5)如果a的绝对值大于-5的绝对值,那么有

A.a>-5 B.a<-5 C.|a-(-5)|=a-(-5)D.以上均不对(6)若3

A.4 B.-4 C.10-2x D.2x-10(7)若a>0,b<0,|a|=4,|b|=a-2,则a-b的值是

A.2 B.-2 C.6 D.-6(8)若有理数a满足a|a|=1时,那么a是 A.正有理数 B.负有理数 C.非负有理数 D.非正有理数

1、如果□+2=0,那么“□”内应填的实数是()(A)-(B)12

(C)12

(D)2

2.若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为()

(A)4-22=-18(B)22-4=18(C)22-(-4)=26(D)-4-22=-26 3.下列说法正确的是()

A.两个数之差一定小于被减数 B.减去一个负数,差一定大于被减数 C.减去一个正数,差一定大于被减数 D.0减去任何数,差都是负数 4.下列交换加数的位置的变形中,正确的是()

A、1454144

5B、1311131134644436

12342143 D、4.51.72.51.84.52.51.81.75、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是()(A)20

(B)119

(C)120

(D)319

6、若x>0,y<0,且|x|<|y|,则x+y一定是()

(A)负数

(B)正数

(C)0

(D)无法确定符号

7、.若a<0,b>0,且|a|>|b|,则a与b的和用|a|、|b|表示为()(A)|a|-|b|

(B)-(|a|-|b|)

(C)|a|+|b|

(D)-(|a|+|b|)

8、下列计算结果中等于3的是()

A.74 B.74 C.74 D.74

9、将6372中的减法改成加法并写成省略加号的代数和的形式应是()

A、6+3+7-2

B、6-3-7-2

C、6-3+7-2

D、6-3-7+2

10、已知m是6的相反数,n比m的相反数小2,则mn等于()

A、-1

B、3

C、2

D、-10

1.下列说法中正确的是

()(A)两个数的和必定大于每一个加数;

(B)如果两个数的和是正数,那么这两人数中至少有一个正数;(C)两个数的差一定小于被减数;

(D)0减去任何数,仍得这个数.2.下列说法中正确的是

()(A)两个有理数相加,等于它们的绝对值相加;(B)两个负数相加取负号并把绝对值相减;(C)两个相反数相减,差为0;(D)两个负数相加,和一定为负数.3.两个有理数的和为负数,那么这两个数一定

()

(A)都是负数;

(B)至少有一个负数;

(C)有一个是0;

(D)绝对值不相等.4.7和6的差为

()

(A)13;(B)1;

(C)1;

(D)13.1.下列说法正确的是()

A.两个有理数相加,和一定大于每一个有理数 B.两个非零有理数相加,和可能等于零

C.两个有理数的和为负数,这两个有理数都是负数 D.两个负数相加,把绝对值相加

2.两数相加,如果和小于任一加数,那么这两数()

A.同为正数 B.同为负数

C.一正数一负数 D.一个为0,一个为负数 3.已知有理数a,b,c在数轴上的位置如图2-1所示,则下列结论错误的是()A.a+b<0 B.b+c<0 C.a+b+c<0 D.|a+b|=a+b 4.一个数加-3.6,和为-0.36,那么这个数是()

A.-2.24 B.-3.96 C.3.24 D.3.96 5.下列结论正确的是()

A.有理数减法中,被减数不一字比减数大 B.减去一个数,等于加上这个数 C.零减一个数,仍得这个数 D.两个相反数相减得0 6.-2的倒数与绝对值等于 的数的差是()

A. B.

C.-1或0 D.0或1 7.下列计算正确的是()

A.7-(-7)=0 B.

C.0-4=-4 D.-6-5=-1 8.下列各式中,其和等于4的是()

A. B. C. D. 9.如果|x|=4,|y|=3,则x-y的值是()

A.±7 B.±1 C.±7或±1 D.7或1 10.已知:a<0,b>0,用|a|与|b|表示a与b的差是()

A.|a|-|b| B.-(|a|-|b|)C.|a|+|b| D.-(|a|+|b|)11.如果a<0,那么a和它的相反数的差的绝对值等于()

A.-2a B.-a C.0 D12.1997个不全相等的有理数之和为零,则这1997个有理数中()A.至少有一个为零 B.至少有998个正数

C.至少有一个是负数 D.至少有1995个负数

.a

第四篇:有理数加减法教案

教学目标

1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想. 教学建议

(一)重点、难点分析

本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

(二)知识结构

(三)教法建议

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。教学设计示例

有理数的减法

一、素质教育目标

(一)知识教学点

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

3.通过有理数的减法运算,培养学生的运算能力.

(三)德育渗透点

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);

(2)-3+(-7);

(3)-10+(+3);

(4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3).

(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).

(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1(例题1、2)]

例1 计算(1)(-3)-(-5);

(2)0-7;

例2 计算(1)7.2-(-4.8);

(2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;

(2)(+4)-(-7);

(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);

(6)0-5.

2.计算

(1)(-2.5)-5.9;

(2)1.9-(-0.6);

(3)()-;

(4)-().

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第45页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米.

【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略.

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

八、随堂练习

1.填空题

(1)3-(-3)=____________;

(2)(-11)-2=______________;

(3)0-(-6)=____________;

(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;

(8)-4-()=10;

(9)如果,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

(4)方程在有理数范围内无解.()

(5)若,,.()

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

(二)选做题:课本第84页中5、8.

第五篇:有理数加减法教案

一、学情分析

七年级学生性格开朗活波,对新鲜事物比较感兴趣,因此,教学过程中创设的问题情境生动活泼,直观形象,贴近学生生活.由于刚升入初中,学生的智力,基础,学习习惯都存在很大的差异,很多同学会出现符号处理有误,法则选择不灵活等问题.因此,老师要充分发挥情感目标的调控作用,随时收集来自学生方面的信息,及时反馈矫正合作交流.二、教材分析

本章内容是有理数及其运算,在一定意义上讲它是全新的,但必须充分认识到它是小学数学四则运算的继承和发展,就本章内容来看,有理数的减法是建立在刚刚学过的有理数的加法运算的基础上的,这一节课是前面所学知识的继续,又是后面有理数的混合运算的基础,起着承前启后的作用有理数的减法对学生来说是比较难学的初学时,学生的正确率不高,所以,对法则的正确理解尤为重要.三、教学设计

有理数的减法

一、教学目标

(一)知识与技能

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)过程与方法

1.通过有理数减法法则的推导过程,发展学生的发现问题、提出问题、分析问题和解决问题的能力.

2.通过把减法运算转化为加法运算,向学生渗透转化思想.

3.通过有理数的减法运算,培养学生的运算能力.

(三)情感态度与价值观

1.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

2.在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

三、课时安排

1课时

四、教具学具准备

电脑、投影仪.

五、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);(2)(-3)+(-7);

(3)(-10)+(+3);(4)(+10)+(-3).

2.由实物投影显示课本本章引言中的画面,这是北京冬季里的一天,白天的最高气温是3℃,夜晚的最低气温是-3℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:3℃比-3℃高6℃.

师:能不能列出算式计算呢?

生:3-(-3).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【设计说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=(+10)+(-3).(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【设计说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试发现问题,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【设计说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己思考、观察、归纳、总结,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生发现问题、分析问题的能力.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相互叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a-b=a+(-b).

【设计说明】结合引入新课中温度计的实例,充分地经历了推导有理数的减法法则的全过程,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

3.例题讲解:

[出示投影1(例题

4、)]

例4 计算:(1)(-3)-(-5);(2)0-7;

11(3)7.2-(-4.8);(4)(-3)-5 . 24

例4是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.【设计说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例4(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.(3)、(4)两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.师生活动:组织学生四人一组编题,学生相互解答.

【设计说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固所学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和合作参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时反馈.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);(6)0-5.

2.计算

(1)(-2.5)-5.9;(2)1.9-(-0.6);

7211(3)(-)- ;(4)3 -(-1). 23412

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【设计说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第25页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8844米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-415米,两处高度相差多少?

生答:8844-(-415)=8844+415=9259.

所以两地高度相差9259米.

【设计说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)总结反思,情意发展

1.通过本节课的学习你学到了什么?

2.通过本节课的学习,下一步你还想探究什么问题?

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

六、随堂练习

1.填空题

(1)3-(-3)=____________;(2)(-11)-2=______________;

(3)0-(-6)=____________;(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;(8)-4-()=10;

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

七、课后作业

课本第24页复习巩固中1.偶数题,3.偶数题,4.偶数题.【设计说明】通过随堂练习和课后作业,检测知识的掌握情况,为下一节课做准备.八、课后反思

以生活实际中的问题解决入手,能充分调动学生探索、学习的积极性.设计一系列的低台阶、多密度的问题串,适合学生的认知水平,利于学生自主探索,发现问题并提出问题,并逐步引导总结规律、法则,远远高于直接说教告诉的法则记忆深.在探索与尝试应用的过程中,让学生口述或板演,目的是充分暴露学生练习中的问题,更加有针对性的补偿教学.课堂小结让学生来说,更能发现学生的认知程度,教师适时的点拨,使知识的归纳总结又能得到提炼升华.在以后的教学中,应充分考虑学生的认知程度,设计合理的探索性问题,把学习的主动权放给学生,发展学生学会学习的能力比教给他们知识更重要.

下载浅谈有理数加减法的教与学word格式文档
下载浅谈有理数加减法的教与学.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数加减法教案

    有理数的加法 1、 我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球......

    有理数加减法教案

    教学目标1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭......

    人教版七年级 有理数加减法

    七年级数学(人教版上)同步练习第一章 第三节有理数加减法 一、教学内容: 有理数的加减 1. 理解有理数的加减法法则以及减法与加法的转换关系; 2. 会用有理数的加减法解决生活中......

    有理数加减法教学设计

    《有理数的加法与减法 》教学设计 【教学目标】 1.会进行有理数加法运算. 2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.3.会将有理数的减法运算转换成加法......

    有理数加减法计算题3

    有理数的加减混合运算练习(一) 有理数的加减法 1.有理数的加法法则 ⑴同号两数相加,取相同的符号,并把绝对值相加; ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较......

    《有理数的加减法》选择题

    《有理数的加减法》选择题1.在1,-1,-2这三个数中,任意两数之和的最大值是() A.1B.0C.-1D.-32.绝对值大于5且小于9的所有整数的和是() A.-14B.14C.0D.153.如果两个有理数的和是正数,那么这......

    有理数加减法公开课教案

    有理数加减法公开课教案 上课人:武兰云 时间:2009.9.14 一.教学目标 1.知识与技能 (1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算; (2)在......

    有理数加减法教案(答案)

    有理数的加减法 教师寄语:你越努力,运气就越好。 【学习目标】 1、会用有理数的加减法的运算法则进行有理数的加减法运算; 2、会用用有理数的加减法的交换律与结合律使运算简......