第一篇:人教版七年级 有理数加减法
七年级数学(人教版上)同步练习第一章
第三节有理数加减法
一、教学内容:
有理数的加减
1.理解有理数的加减法法则以及减法与加法的转换关系; 2.会用有理数的加减法解决生活中的实际问题. 3.有理数的加减混合运算.
二、知识要点:
1.有理数加法的意义
(1)在小学我们学过,把两个数合并成一个数的运算叫加法,数的范围扩大到有理数后,有理数的加法所表示的意义仍然是这种运算.
(2)两个有理数相加有以下几种情况:
①两个正数相加;②两个负数相加;③异号两数相加;④正数或负数或零与零相加.(3)有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
注意:①有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数的加法涉及运算结果的符号;②有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定用法则中的哪一条;③法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对值”. 2.有理数加法的运算律
(1)加法交换律:a+b=b+a;
(2)加法结合律:(a+b)+c=a+(b+c).
根据有理数加法的运算律,进行有理数的运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运算律,可使运算简便. 3.有理数减法的意义
(1)有理数的减法的意义与小学学过的减法的意义相同.已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法.减法是加法的逆运算.
(2)有理数的减法法则:减去一个数等于加上这个数的相反数.
4.有理数的加减混合运算
对于加减混合运算,可以根据有理数的减法法则,将加减混合运算转化为有理数的加法运算。然后可以运用加法的交换律和结合律简化运算。
三、重点难点: 重点:①有理数的加法法则和减法法则;②有理数加法的运算律.难点:①异号两个有理数的加法法则;②将有理数的减法运算转化为加法运算的过程.(这一过程中要同时改变两个符号:一个是运算符号由“-”变为“+”;另一个是减数的性质符号,变为原来的相反数)
【典型例题】
例1.计算:(1)(-2)+(-5)(2)(-6)+4(3)(-3)+0(4)-3-(-5)
解:(1)(-2)+(-5)(同号两数相加)
=-(2+5)(取________的符号,并把绝对值相加)=-7(2)(-6)+4(异号两数相加)
=-(6-4)(取_____________加数的符号,并用较大的绝对值减去较小的绝对值)=-2(3)(-3)+0(一个数同零相加)=-3(仍得__________)
(4)-3-(-5)(减去一个数)
=-3+5(等于加上这个数的__________)=2 评析:进行有理数的加减运算时,注意先确定结果的符号,再计算绝对值.
例2.计算(-20)+(+3)-(-5)+(-7).
分析:这个式子中有加法,也有减法.可以根据有理数减法法则,把它改写成(-20)+(+3)+(+5)+(-7),使问题转化为几个有理数的加法.
解:(-20)+(+3)-(-5)+(-7)=(-20)+(+3)+(+5)+(-7)=[(-20)+(-7)]+[(+5)+(+3)] =(-27)+(+8)=-19 评析:先将加减混合运算统一成加法,再写成省略加号的形式,形成清晰、条理的解题思路,减少出差错的机会.
例3.有10名学生参加数学竞赛,以80分为标准,超过80分记为正,不足80分记为负,评分记录如下:
+10,+15,-10,-9,-8,-1,+2,-3,-2,+1,问这10名同学的总分比标准超过或不足多少分?总分为多少?
分析:此题用具有相反意义的量来表示各个同学的得分在标准之上还是在标准之下,我们也可以把这些数值相加来表示总分是超出还是不足.
解:(+10)+(+15)+(-10)+(-9)+(-8)+(-1)+(+2)+(-3)+(-2)+(+1)
=[(+10)+(-10)]+[(-1)+(+1)]+[(+2)+(-2)]+(+15)+[(-3)+(-9)+(-8)] =0+0+0+15+(-20)=-5 80×10-5=795(分)
答:这10名同学的总分比标准不足5分,总分为795分.
评析:这10个数中有3对相反数,在运算时我们应先把它们相加,这样可以大大降低运算难度.另外,把实际问题转化为数学问题来解决是学习数学的目的.
评析:灵活运用运算律,使运算简化,通常有下列规律:
(1)互为相反数的两数可先相加;(2)符号相同的两数可以先相加;(3)分母相同的数可以先相加;(4)几个数相加能得到整数的可以先相加.
例5.已知︱a+5︱=1,︱b-2︱=3,求a-b的值.
分析:要求a-b的值,首先必须确定a、b的值.因为绝对值等于一个正数的数有两个,一个正、一个负,并且这两个数互为相反数,即︱x︱=m(m>0),则x=m,或x=-m.也就是说求出的a、b的值分别有两个.
解:因为︱a+5︱=1,︱b-2︱=3 所以a+5=1或a+5=-1,b-2=3或b-2=-3 所以a=-4或a=-6,b=5或b=-1 当a=-4,b=5时,a-b=-4-5=-9 当a=-4,b=-1时,a-b=-4-(-1)=-3 当a=-6,b=5时,a-b=-6-5=-11 当a=-6,b=-1时,a-b=-6-(-1)=-5 评析:(1)已知一个数的绝对值,求这个数的时候,要格外注意解有正负两个值,不要漏掉负值.(2)当确定出a、b的值后,求a-b时,应考虑到可能出现的情况,使解题思维严密.
例6.依次排列4个数:2,11,8,9.对相邻的两个数,都用右边的数减去左边的数,所得之差排在这两个数之间得到一串新的数:2,9,11,-3,8,1,9.这称为一次操作,作二次操作后得到一串新的数:2,7,9,2,11,-14,-3,11,8,-7,1,8,9.这样下去,第100次操作后得到的一串数的和是()A.737 B.700 C.723 D.730 分析:根据题意,解决问题的方法有两种:一是作100次操作,得到第100次操作后的一串数字,然后求和;二是经过前几次操作,推测第100次操作后的结果.显然应该用第二种方法.
解:D 评析:一些问题看上去非常复杂,是因为我们没有找到解决问题的办法,多动脑、多思考、找到问题的内在规律才是解决问题的根本方法.
【方法总结】
1.有理数加减法混合运算的方法是:一般先把减法统一成加法,再进行计算,或先把同号的数相加,再把异号的数相加.
2.解决探究型问题的时候不要急于探寻问题的结果,要从最初的条件开始,分析出其中的规律,用这个规律推断出最后的结果.
【模拟试题】(答题时间:45分钟)
一.选择题
1.一个数是3,另一个数比它的相反数大3,则这两个数的和为()A.3 B.0 C.-3 D.±3 2.计算2-3的结果是()
A.5 B.-5 C.1 D.-1
3.哈市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是()
A.-2℃
B.8℃ C.-8℃ D.2℃ 4.下列说法中正确的是()
A.若两个有理数的和为正数,则这两个数都为正数 B.若两个有理数的和为负数,则这两个数都为负数 C.若两个数的和为零,则这两个数都为零
D.数轴上右边的点所表示的数减去左边的点所表示的数的差是正数 *5.如果x<0,y>0,且︱x︱>︱y︱,那么x+y是()
A.正数 B.负数 C.非正数 D.正、负不能确定 *6.若两个有理数的差是正数,那么()
A.被减数是负数,减数是正数 B.被减数和减数都是正数 C.被减数大于减数 D.被减数和减数不能同为负数 **7.当x<0,y>0时,则x,x+y,x-y,y中最大的是()A.x B.x+y C.x-y D.y
二.填空题
1.计算:-(-2)=__________.
2.2/5+(-3/5)=__________;(-3)+2=__________;-2+(-4)=__________. 3.0-(-6)=__________;1/2-1/3=__________;-3.8-7=__________. 4.一个数是-2,另一个数比-2大-5,则这两个数的和是__________. 5.已知两数之和是16,其中一个加数是-4,则另一个加数是__________.
*6.数轴上到原点的距离不到5并且表示整数的只有__________个,它们对应的数的和是__________. *7.已知a是绝对值最小的负整数,b是最小正整数的相反数,c是绝对值最小的有理数,则c+b-a=__________.
**8.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;作第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8,继续依次操作下去,则从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是__________.
三.解答题
1.计算:
(1)-19-19(2)-18-(-18)
(3)26/5-27/3(4)12-(9-10)(5)(5-10)-4
3.已知a是7的相反数,b比a的相反数大3,那么b比a大多少?
4.某检修小组乘汽车检修供电线路,约定前进为正,后退为负.某天自A地出发到收工时,所走路程(单位:km)为+22,-3,+4,-2,-8,+17,-2,-3,+12,+7,-5,问收工时距A地多远?若每千米耗油4L,问从A地出发到收工共耗油多少升? 5.如图所示是某地区春季的气温随时间变化的图象.
请根据上图回答:
(1)何时气温最低?最低气温为多少?
(2)当天的最高气温是多少?这一天最大温差是多少?
【试题答案】
一.选择题
1.A 2.D 3.B 4.D 5.B 6.C 7.D 8.A
二.填空题
1.2 2.-0.25,-1,-6 3.6,1/6,-10.8 4.-9 5.20 6.9,0 7.0 8.520
三.解答题
1.(1)-38(2)0(3)-(4)13(5)-9 2.(1)1.25(2)-2(3)-2(4)8(5)-2 3.解:因为a是7的相反数,所以a=-7.因为b比a的相反数大3,所以b-(-a)=3,所以b=3+(-a)=10,所以b-a=10-(-7)=17,即b比a大17. 4.解:收工时距A地的距离是:
(+22)+(-3)+(+4)+(-2)+(-8)+(+17)+(-2)+(-3)+(+12)+(+7)+(-5)
=22+4+17+12+7-3-2-8-2-3-5 =62-(3+2+8+2+3+5)=62-23 =39(千米)
从A地出发到收工时的耗油量应为该车所走过的所有路程的耗油量,即:
(︱+22︱+︱-3︱+︱+4︱+︱-2︱+︱-8︱+︱+17︱+︱-2︱+︱-3︱+︱+12︱+︱+7︱+︱-5︱)×4 =(22+3+4+2+8+17+2+3+12+7+5)×4 =85×4 =340(升)
答:收工时汽车距A地39千米,从A地出发到收工共耗油340升.
5.(1)2时气温最低,最低气温为-2℃(2)当天的最高气温是10℃,这一天最大温差是10-(-2)=12(℃)
第二篇:七年级有理数的加减法计算题
有理数的加减法——计算题练习
1、加法计算(直接写出得数,每小题1分):
(1)(-6)+(-8)=
(4)(-7)+(+4)=
(7)-3+2=
(10)(-4)+6=(2)(-4)+2.5=(5)(+2.5)+(-1.5)=(8)(+3)+(+2)=(3)(-7)+(+7)=(6)0+(-2)=(9)-7-4=(11)31=(12)aa=
2、减法计算(直接写出得数,每小题1分):
(1)(-3)-(-4)=
(4)1.3-(-2.7)=
(7)13-(-17)=
(10)0-6=(2)(-5)-10=(5)6.38-(-2.62)=(8)(-13)-(-17)=(11)0-(-3)=(3)9-(-21)=(6)-2.5-4.5=(9)(-13)-17=(12)-4-2=
11(15)1(13)(-1.8)-(+4.5)=(14)(6.25)=3=434
3、加减混合计算题(每小题3分):
(1)4+5-11;(2)24-(-16)+(-25)-15(3)-7.2+3.9-8.4+12
(4)-3-5+7(5)-26+43-34+17-48(6)91.26-293+8.74+191
(7)12-(-18)+(-7)-15(8)(83)(26)(41)(15)
(9)(1.8)(0.7)(0.9)1.3(0.2)(10)(-40)-(+28)-(-19)+(-24)-(32)
(11)(+4.7)-(-8.9)-(+7.5)+(-6)(12)-6-8-2+3.54-4.72+16.46-5.284、加减混合计算题: 153141(1)15(2)(-1.5)++(+3.75)+353264 676742
21122231(3)551(4)48312 3431341355232(5)321(1.75)(6)34371114543 8248
1511131(8)(7)1.221123153.4(1.2)6624424
(9)1112231111(10)89910133511 979999101
第三篇:七年级数学有理数的加减法教案
株洲大学生家教舒新 http://www.xiexiebang.com电话***
初一同步辅导材料(第9讲)
第一章有理数加减及其混合运算
【知识梳理】
1、有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);
绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 一个数同0相加,仍得这个数.
加法的法则指出,两个有理数相加的结果由两部分构成:
先确定和的符号,再确定两数的绝对值相加或相减,以得到和的绝对值.
在加法运算中,最容易错的就是符号问题,运算时要特别注意符号问题.
【重点难点】
重点:有理数的加法法则和相关的运算律。
难点:运用有理数加法法则和运算律进行简化运算。
【典例解析】
例
1、数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次
共向左移动了几个单位?
解:(-2)+(-4)=-6。
答:这个点共向左移动6个单位。
例
2、计算:
(1)(3)(2
4334134)(2)1.21 527571(3)()(4)(3
4)(31
423
4)(2); 解 :(1)(3)(241)6;
(2)1.21(1.2)(1.2)0;
5
41334151(3)
31225254(4)3(2)(32)。77777()();
说明 严格按法则去做,对异号两数相加,关键是判断出两数的绝对值哪一个大,从而确定和的符号以及哪个数的绝对值减去哪个数的绝对值.
株洲大学生家教舒新 http://www.xiexiebang.com 电话***
例
3、计算(1)(15)(20)(8)(6)(2)
(27)(
52)(
127)(2.5)(0.125)(
198)
(2)
解:(1)(15)(20)(8)(6)(2)
(15)(8)(2)(20)(6)(25)(26)1
(2727)(
52)(
12752)(2.5)(0.125)(
198
198)
(2)
(()(
127)(5)(2.5)(20)(
35)(
55)
141414 72
说明:把同分母的分数,互为相反数的数分别结合相加,计算起来就比较方便)0()()
【牛刀小试】
1、计算:(1)
11; 23
(2)(—2.2)+3.8;
(3)4(5)(+2
(7)(—6)+8+(—4)+12;
(9)0.36+(—7.4)+0.3+(—0.6)+0.64;
(10)9+(—7)+10+(—3)+(—9);
+(—5
16);(4)(—5
16)+0;
15)+(—2.2);(6)(—
215)+(+0.8);
(8)1
131
2 73732、用简便方法计算下列各题:
(10)(
57)()()4612
(1)3
919
(0.5)()()9.75
22(2)
185
395
(3)
()()()()()
(4)(8)(1.2)(0.6)(2.4)
(3.5)(
43)(
34)(
72)0.75(
7)
(5)
3、用算式表示:温度由—5℃上升8℃后所达到的温度.
.
4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下: +3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?
5.已知
2a15b40,计算下题:
(1)a的相反数与b的倒数的相反数的和;(2)a的绝对值与b的绝对值的和。
答案:
1、(1)5;(2)1.6;(3)
56
;(4)
5
;(5)0;(6)2 ;
(7)10;(8)0;(9)—6.7;(10)0;
2、(1)6(2)4.25(3)12(4)-12.2(5)
3、-5+8=-3(°C)
4、不足6克;244克
113
第四篇:七年级数学有理数的加减法教案
初一同步辅导材料(第9讲)
第一章
有理数加减及其混合运算
【知识梳理】
1、有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);
绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 一个数同0相加,仍得这个数.
加法的法则指出,两个有理数相加的结果由两部分构成:
先确定和的符号,再确定两数的绝对值相加或相减,以得到和的绝对值. 在加法运算中,最容易错的就是符号问题,运算时要特别注意符号问题.
【重点难点】
重点:有理数的加法法则和相关的运算律。
难点:运用有理数加法法则和运算律进行简化运算。
【典例解析】
例
1、数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次共向左移动了几个单位?
解:(-2)+(-4)=-6。答:这个点共向左移动6个单位。例
2、计算:
(1)(3)(2)1434(2)1.21
151325()
(4)(3)(2); 34771313解 :(1)(3)(2)(32)6;
4444(3)
(2)1.21(1.2)(1.2)0;
1513315()();
34431225254(4)3(2)(32)。
77777
(3)说明 严格按法则去做,对异号两数相加,关键是判断出两数的绝对值哪一个大,从而确定和的符号以及哪个数的绝对值减去哪个数的绝对值.
例
3、计算(1)(15)(20)(8)(6)(2)
251219()()()(2.5)(0.125)()278(2)7
解:(1)(15)(20)(8)(6)(2)
(15)(8)(2)(20)(6)(25)(26)1
251219()()()(2.5)(0.125)()278(2)72125119()()()(2.5)()()77288
105203555()0()()()7214141
4说明:把同分母的分数,互为相反数的数分别结合相加,计算起来就比较方便
【牛刀小试】
1、计算:(1)
(3)4+(—
5(5)(+2
(7)(—6)+8+(—4)+12;
(9)0.36+(—7.4)+0.3+(—0.6)+0.64;
(10)9+(—7)+10+(—3)+(—9);
11;
23
(2)(—2.2)+3.8;
131); 6
(4)(—5
1)+0; 61)+(—2.2);
5(6)(—
2)+(+0.8); 15
(8)141312 7373
2、用简便方法计算下列各题:
101157()()()()4612(1)3919(0.5)()()9.7522(2)1231839()()()()()5255(3)2(4)(8)(1.2)(0.6)(2.4)
4377(3.5)()()()0.75()3423(5)
3、用算式表示:温度由—5℃上升8℃后所达到的温度.
.
4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下: +3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?
5.已知2a15b40,计算下题:
(1)a的相反数与b的倒数的相反数的和;(2)a的绝对值与b的绝对值的和。
答案:
1、(1);(2)1.6;(3);(4)5;(5)0;(6);(7)10;(8)0;(9)—6.7;(10)0;
511
2、(1)6
(2)4.25
(3)12
(4)-12.2(5)3 565616233、-5+8=-3(°C)
4、不足6克;244克
第五篇:有理数加减法练习题
有理数加减法练习题
一、选择
1.下列说法正确的个数是()①两数的和一定比其中任何一个加数都大;②两数的差一定比被减数小
③较小的有理数减去较大的有理数一定是负数;④两个互为相反数的数的商是-1 ⑤任何有理数的偶次幂都是正数 A.1个 B.2个 C.3个 D.4个
2.下列关于“一个正数与一个负数的和”的说法正确的是()A.可能是正数 B.可能是0 C.可能是负数 D.以上都有可能 3.下列说法正确的是()A.两个有理数相加等于它们的绝对值相加;B.两个负数相加等于它们的绝对值相减 C.正数加负数,和为正数;负数加正数,和为负数;D.两个正数相加,和为正数;两外负数相加,和为负数 4.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数
③两个有理数的和为正数时,这两个数都是正数 ④两个有理数的和为负数时,这两个数都是正数 A.1个 B.2个 C.3个 D.4个 5.两个数相加,如果和小于每一个加数,那么().A.这两个加数同为正数 B.这两个加数同为负数 C.这两个加数的符号不同 D.这两个加数中有一个为零 6.下列计算正确的是()A.(+30)+(-40)=10 B.(-51)+(-30)=-21 C.(-10)+(+10)=0 D.(+3.9)+(3.1)=0.8 7.两个数相加,如果它们的和小于其中一个加数,而大于另一个加数,那么()A.这两个加数的符号都是负数 B.这两个加数的符号不能相同 C.这两个加数的符号都是正的 D.这两个加数的符号不能确定 8.下列说法不正确的是()A.一个数与零相加,仍得这个数;B.互为相反数的两个数相加,其和为零 C.两个数相加,交换加数的位置,和不变;D.异号两数相加,结果一定大于零 9.不能使式子│-32.6+()│=│-32.6│+│()│成立的数是()A.任意一个数 B.任意一个正数;C.任意一个负数 D.任意一个非负数
10.两个数的差是负数,那么被减数一定是()
A.正数或负数 B.负数 C.非负数 D.以上答案都不对 11.下列说法正确的个数是()
①较大的数减去较小的数的差一定是正数;②较小的数减去较大的数的差一定是负数
③两个数的差一定小于被减数;④互为相反数的两个数的差不会是负数 A.1个 B.2个 C.3个 D.4个
12.若x和y表示两个任意有理数,则下列式子正确的是()
A.│x-y│=│y-x│;B.│x-y│=0;C.│x-y│=-(x-y);D.│x-y│=x-y 13.225的相反数与绝对值为235的数的差为()A.-15;B.5;C.15或5;D.15或-5
14.下列说法不正确的个数是().①两数相减,差不一定比被减数小;②减去一个数,等于加上这个数
③零减去一个数,仍然等于这个数;④互为相反数的两个数相减得零 A.0个 B.1个 C.2个 D.3个
15.若a<0,那么a和它的相反数的差的绝对值等于()A.0 B.a C.2a D.-2a 16.若x<0,那么x-│x│的值为()A.零 B.正数 C.非正数 D.负数 17.下列说法正确的是()
A.一个数减0,等于这个数的相反数 B.一个数减0,其结果一定大于零 C.一个数减0,等于这个数本身 D.一个数减0,其结果一定小于零 18.下列说法正确的是()
A.若x+y=0,则x与y互为相反数 B.若x-y>0,则x
19.如图所示,a,b,c表示数轴上的三个有理数,则下列各式不成立的是()A.a-b<0 B.b-c<0;C.c-a<0 D.a-(-c)<0
(1)下列计算正确的是
A.7-(-7)=0;B.0-3=-3;C.
141212;D.(-5)-(-6)=-1(2)如图2—11所示,a、b在数轴上的位置分别在原点的两旁,则|a-b|化简的结果是
A.a-b B.b-a C.-(a-b)D.-(b-a)
图2—11(3)如果a+b=c,且a>c则
A.b一定是负数;B.a一定小于b;C.a一定是负数;D.b一定小于a(4)如果|a|-|b|=0,那么
A.a=b B.a、b互为相反数;C.a和b都是0;D.a=b或a=-b(5)如果a的绝对值大于-5的绝对值,那么有
A.a>-5 B.a<-5 C.|a-(-5)|=a-(-5)D.以上均不对(6)若3 A.4 B.-4 C.10-2x D.2x-10(7)若a>0,b<0,|a|=4,|b|=a-2,则a-b的值是 A.2 B.-2 C.6 D.-6(8)若有理数a满足a|a|=1时,那么a是 A.正有理数 B.负有理数 C.非负有理数 D.非正有理数 1、如果□+2=0,那么“□”内应填的实数是()(A)-(B)12 (C)12 (D)2 2.若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为() (A)4-22=-18(B)22-4=18(C)22-(-4)=26(D)-4-22=-26 3.下列说法正确的是() A.两个数之差一定小于被减数 B.减去一个负数,差一定大于被减数 C.减去一个正数,差一定大于被减数 D.0减去任何数,差都是负数 4.下列交换加数的位置的变形中,正确的是() A、1454144 5B、1311131134644436 12342143 D、4.51.72.51.84.52.51.81.75、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是()(A)20 (B)119 (C)120 (D)319 6、若x>0,y<0,且|x|<|y|,则x+y一定是() (A)负数 (B)正数 (C)0 (D)无法确定符号 7、.若a<0,b>0,且|a|>|b|,则a与b的和用|a|、|b|表示为()(A)|a|-|b| (B)-(|a|-|b|) (C)|a|+|b| (D)-(|a|+|b|) 8、下列计算结果中等于3的是() A.74 B.74 C.74 D.74 9、将6372中的减法改成加法并写成省略加号的代数和的形式应是() A、6+3+7-2 B、6-3-7-2 C、6-3+7-2 D、6-3-7+2 10、已知m是6的相反数,n比m的相反数小2,则mn等于() A、-1 B、3 C、2 D、-10 1.下列说法中正确的是 ()(A)两个数的和必定大于每一个加数; (B)如果两个数的和是正数,那么这两人数中至少有一个正数;(C)两个数的差一定小于被减数; (D)0减去任何数,仍得这个数.2.下列说法中正确的是 ()(A)两个有理数相加,等于它们的绝对值相加;(B)两个负数相加取负号并把绝对值相减;(C)两个相反数相减,差为0;(D)两个负数相加,和一定为负数.3.两个有理数的和为负数,那么这两个数一定 () (A)都是负数; (B)至少有一个负数; (C)有一个是0; (D)绝对值不相等.4.7和6的差为 () (A)13;(B)1; (C)1; (D)13.1.下列说法正确的是() A.两个有理数相加,和一定大于每一个有理数 B.两个非零有理数相加,和可能等于零 C.两个有理数的和为负数,这两个有理数都是负数 D.两个负数相加,把绝对值相加 2.两数相加,如果和小于任一加数,那么这两数() A.同为正数 B.同为负数 C.一正数一负数 D.一个为0,一个为负数 3.已知有理数a,b,c在数轴上的位置如图2-1所示,则下列结论错误的是()A.a+b<0 B.b+c<0 C.a+b+c<0 D.|a+b|=a+b 4.一个数加-3.6,和为-0.36,那么这个数是() A.-2.24 B.-3.96 C.3.24 D.3.96 5.下列结论正确的是() A.有理数减法中,被减数不一字比减数大 B.减去一个数,等于加上这个数 C.零减一个数,仍得这个数 D.两个相反数相减得0 6.-2的倒数与绝对值等于 的数的差是() A. B. C.-1或0 D.0或1 7.下列计算正确的是() A.7-(-7)=0 B. C.0-4=-4 D.-6-5=-1 8.下列各式中,其和等于4的是() A. B. C. D. 9.如果|x|=4,|y|=3,则x-y的值是() A.±7 B.±1 C.±7或±1 D.7或1 10.已知:a<0,b>0,用|a|与|b|表示a与b的差是() A.|a|-|b| B.-(|a|-|b|)C.|a|+|b| D.-(|a|+|b|)11.如果a<0,那么a和它的相反数的差的绝对值等于() A.-2a B.-a C.0 D12.1997个不全相等的有理数之和为零,则这1997个有理数中()A.至少有一个为零 B.至少有998个正数 C.至少有一个是负数 D.至少有1995个负数 .a