第一篇:有理数加减法说课教案
有理数的加减法
一、教材的地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。同时,也为后继学习实数、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值。就本章而言,有理数的加法是本章的一个重点。在有理数范围内:加、减法可以统一成为加法,因此加法运算是本节的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成运算思考方式,关键在于这一节的学习。
二、教学目标
1.掌握有理数加法法则和加法运算律并且能够熟练运用。
2.让学生探索有理数加法法则和运算律的过程,体会总结归纳的学习方法。3.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算,渗透数学中的一个重要思想————转化思想。4.培养学生的观察,比较,归纳及运算的能力。
三、教学重点和难点
教学重点:有理数的加法法则以及加法运算律;
教学难点:异号两数相加的加法法则以及运算律的运用;
四、教学方法
启发式教学,旨在培养学生自主探究的学习意识,为将来的自学打基础。
五、教学过程
教学准备:采用提问或者集中回答的方式回忆正负数、绝对值的概念,小学数学中学的加法交换律和结合律的相关知识。
(一)引入新课
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.
问:两个有理数相加,有多少种不同的情形?(本例体现归纳总结思想)举一个熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.七年级一班在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5. ①
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3. ②
现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; ③
上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; ④
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;
⑤
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2; ⑥ 上半场打平,下半场也打平,全场仍是平局,也就是 0+0=0.
⑦
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.
问:现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加;(同号不变,绝对值相加)
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(异号取值大的号,绝对值相减)
3.一个数同0相加,仍得这个数.
(二)应用举例,变式练习
【例】计算下列算式的结果,并说明理由:
(1)(+4)+(+7);
(2)(-4)+(-7);
(3)(+4)+(-7);
(4)(+4)+(-4);
(5)(-9)+0;(6)0+(+2);
(7)0+0;
学生逐题口答后,教师小结: 进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
全班学生书面练习,学生板演,教师对学生板演进行讲评.
(三)从学生原有认知结构提出问题
【问】1.叙述有理数的加法法则.
2.“有理数加法”与小学里学过的数的加法有什么区别和联系?
答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算.
3.计算下列各题,并说明是根据哪一条运算法则?
(1)(-9.18)+6.18;
(2)6.18+(-9.18);
(3)(-2.37)+(-4.63);
4.计算下列各题:
(1)[8+(-5)]+(-4);(2)8+[(-5)+(-4)];(3)[(-7)+(-10)]+(-11);
(4)(-7)+[(-10)+(-11)];(5)[(-22)+(-27)]+(+27);
(四)共同探索,归纳有理数运算律
通过上面练习,引导学生得出:
交换律——两个有理数相加,交换加数的位置,和不变. 用代数式表示上面一段话:a+b=b+a.
运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.
结合律—三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. 用代数式表示上面一段话:(a+b)+c=a+(b+c). 这里a,b,c表示任意三个有理数. 【例】计算16+(-25)+24+(-32).
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便.
解:16+(-25)+24+(-32)=16+24+(-25)+(-32)
(加法交换律)=[16+24]+[(-25)+(-32)]
(加法结合律)=40+(-57)
(同号相加法则)=-17.
(异号相加法则)
(五)有理数的减法
通过代数和的概念,理解有理数加减法可以互相转化。
比较4+(-3)和 4-3,3-4和3+(-4)的结果,让学生体会出加减法如何转化。
引导学生发现,在本例中,某数加上一个数等于某数减去这个数的相反数;某数减去一个数等于加上这个数的相反数。
课堂练习
1.计算:(要求注理由)(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4); 2.计算:(要求注理由)(1)(-8)+10+2+(-1);
(2)5+(-6)+3+9+(-4)+(-7); 3.当a=-11,b=8,c=-14时,求下列代数式的值:
(1)a+b;
(2)a+c;(3)a+a+a;
(4)a+b+c.
利用有理数的加法解下列各题(第4~8题):
4.飞机的飞行高度是1000米,上升300米,又下降500米,这时飞行高度是多少?
5.存折中有450元,取出80元,又存入150元以后,存折中还有多少钱? 6.一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少?
7.小吃店一周中每天的盈亏情况如下(盈余为正):
128.3元,-25.6元,-15元,27元,-7元,36.5元,98元 一周总的盈亏情况如何?
8.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:
1.5,-3,2,-0.5,1,-2,-2,-2.5 8筐白菜的重量是多少?
(六)小结
这节课,我们从实例出发,经过比较,归纳,得出了有理数的加法法则和有理数的加法运算律,在应用有理数的加法法则时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。对于有理数加法的运算律的应用,我们要注意观察,探究简便运算的特点,让计算更加快捷,简单;对于有理数减法,可以利用加减法转化的办法把减法化成加法后在利用加法法则进行运算。
(七)布置作业
第二篇:有理数加减法教案
教学目标
1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;
2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.
3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想. 教学建议
(一)重点、难点分析
本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.
(二)知识结构
(三)教法建议
1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.
3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.
4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。教学设计示例
有理数的减法
一、素质教育目标
(一)知识教学点
1.理解掌握有理数的减法法则.
2.会进行有理数的减法运算.
(二)能力训练点
1.通过把减法运算转化为加法运算,向学生渗透转化思想.
2.通过有理数减法法则的推导,发展学生的逻辑思维能力.
3.通过有理数的减法运算,培养学生的运算能力.
(三)德育渗透点
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.
(四)美育渗透点
在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.
二、学法引导
1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.
2.学生学法:探索新知→归纳结论→练习巩固.
三、重点、难点、疑点及解决办法
1.重点:有理数减法法则和运算.
2.难点:有理数减法法则的推导.
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片.
六、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.
七、教学步骤
(一)创设情境,引入新课
1.计算(口答)(1);
(2)-3+(-7);
(3)-10+(+3);
(4)+10+(-3).
2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?
教师引导学生观察:
生:10℃比-5℃高15℃.
师:能不能列出算式计算呢?
生:10-(-5).
师:如何计算呢?
教师总结:这就是我们今天要学的内容.(引入新课,板书课题)
【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.
(二)探索新知,讲授新课
1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?
生:(+10)-(+3)=+7.
师:计算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7.
师:让学生观察两式结果,由此得到
(+10)-(+3)=+10)+(-3).
(1)
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?
生:可以.
师:是如何转化的呢?
生:减去一个正数(+3),等于加上它的相反数(-3).
【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.
2.再看一题,计算(-10)-(-3).
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.
教师给另外一个问题:计算(-10)+(+3).
生:(-10)+(+3)=-7.
教师引导、学生观察上述两题结果,由此得到:
(-10)-(-3)=(-10)+(+3).
(2)
教师进一步引导学生观察(2)式;你能得到什么结论呢?
生:减去一个负数(-3)等于加上它的相反数(+3).
教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.
【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.
师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?
学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.
师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)
教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.
【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.
4.例题讲解:
[出示投影1(例题1、2)]
例1 计算(1)(-3)-(-5);
(2)0-7;
例2 计算(1)7.2-(-4.8);
(2)()-.
例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.
例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.
【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.
师:组织学生自己编题,学生回答.
【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.
(三)尝试反馈,巩固练习
师:下面大家一起看一组题.
[出示投影2(计算题1、2)]
1.计算(口答)
(1)6-9;
(2)(+4)-(-7);
(3)(-5)-(-8);
(4)(-4)-9(5)0-(-5);
(6)0-5.
2.计算
(1)(-2.5)-5.9;
(2)1.9-(-0.6);
(3)()-;
(4)-().
学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.
【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.
用实物投影显示课本第45页的画面.
3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?
生答:8848-(-392)=8848+392=9240.
所以两地高度相差9240米.
【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.
(四)课堂小结
提问:通过本节课学习你学到了什么?生答:略.
师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.
八、随堂练习
1.填空题
(1)3-(-3)=____________;
(2)(-11)-2=______________;
(3)0-(-6)=____________;
(4)(-7)-(+8)=____________;
(5)-12-(-5)=____________;(6)3比5大____________;
(7)-8比-2小___________;
(8)-4-()=10;
(9)如果,则的符号是___________;
(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.
2.判断题
(1)两数相减,差一定小于被减数.()
(2)(-2)-(+3)=2+(-3).()
(3)零减去一个数等于这个数的相反数.()
(4)方程在有理数范围内无解.()
(5)若,,.()
九、布置作业
(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.
(二)选做题:课本第84页中5、8.
第三篇:有理数加减法教案
一、学情分析
七年级学生性格开朗活波,对新鲜事物比较感兴趣,因此,教学过程中创设的问题情境生动活泼,直观形象,贴近学生生活.由于刚升入初中,学生的智力,基础,学习习惯都存在很大的差异,很多同学会出现符号处理有误,法则选择不灵活等问题.因此,老师要充分发挥情感目标的调控作用,随时收集来自学生方面的信息,及时反馈矫正合作交流.二、教材分析
本章内容是有理数及其运算,在一定意义上讲它是全新的,但必须充分认识到它是小学数学四则运算的继承和发展,就本章内容来看,有理数的减法是建立在刚刚学过的有理数的加法运算的基础上的,这一节课是前面所学知识的继续,又是后面有理数的混合运算的基础,起着承前启后的作用有理数的减法对学生来说是比较难学的初学时,学生的正确率不高,所以,对法则的正确理解尤为重要.三、教学设计
有理数的减法
一、教学目标
(一)知识与技能
1.理解掌握有理数的减法法则.
2.会进行有理数的减法运算.
(二)过程与方法
1.通过有理数减法法则的推导过程,发展学生的发现问题、提出问题、分析问题和解决问题的能力.
2.通过把减法运算转化为加法运算,向学生渗透转化思想.
3.通过有理数的减法运算,培养学生的运算能力.
(三)情感态度与价值观
1.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.
2.在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.
二、重点、难点、疑点及解决办法
1.重点:有理数减法法则和运算.
2.难点:有理数减法法则的推导.
三、课时安排
1课时
四、教具学具准备
电脑、投影仪.
五、教学步骤
(一)创设情境,引入新课
1.计算(口答)(1);(2)(-3)+(-7);
(3)(-10)+(+3);(4)(+10)+(-3).
2.由实物投影显示课本本章引言中的画面,这是北京冬季里的一天,白天的最高气温是3℃,夜晚的最低气温是-3℃.这一天的最高气温比最低气温高多少?
教师引导学生观察:
生:3℃比-3℃高6℃.
师:能不能列出算式计算呢?
生:3-(-3).
师:如何计算呢?
教师总结:这就是我们今天要学的内容.(引入新课,板书课题)
【设计说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.
(二)探索新知,讲授新课
1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?
生:(+10)-(+3)=+7.
师:计算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7.
师:让学生观察两式结果,由此得到
(+10)-(+3)=(+10)+(-3).(1)
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.
师:是如何转化的呢?
生:减去一个正数(+3),等于加上它的相反数(-3).
【设计说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试发现问题,自己认识减法可以转化为加法计算.
2.再看一题,计算(-10)-(-3).
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).
生:(-10)+(+3)=-7.
教师引导、学生观察上述两题结果,由此得到:
(-10)-(-3)=(-10)+(+3).(2)
教师进一步引导学生观察(2)式;你能得到什么结论呢?
生:减去一个负数(-3)等于加上它的相反数(+3).教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.
【设计说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己思考、观察、归纳、总结,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生发现问题、分析问题的能力.
师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相互叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.
师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a-b=a+(-b).
【设计说明】结合引入新课中温度计的实例,充分地经历了推导有理数的减法法则的全过程,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.
3.例题讲解:
[出示投影1(例题
4、)]
例4 计算:(1)(-3)-(-5);(2)0-7;
11(3)7.2-(-4.8);(4)(-3)-5 . 24
例4是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.【设计说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例4(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.(3)、(4)两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.师生活动:组织学生四人一组编题,学生相互解答.
【设计说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固所学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和合作参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时反馈.
(三)尝试反馈,巩固练习
师:下面大家一起看一组题.
[出示投影2(计算题1、2)]
1.计算(口答)
(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);
(4)(-4)-9(5)0-(-5);(6)0-5.
2.计算
(1)(-2.5)-5.9;(2)1.9-(-0.6);
7211(3)(-)- ;(4)3 -(-1). 23412
学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.
【设计说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.
用实物投影显示课本第25页的画面.
3.世界最高峰是珠穆朗玛峰,海拔高度是8844米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-415米,两处高度相差多少?
生答:8844-(-415)=8844+415=9259.
所以两地高度相差9259米.
【设计说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.
(四)总结反思,情意发展
1.通过本节课的学习你学到了什么?
2.通过本节课的学习,下一步你还想探究什么问题?
师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.
六、随堂练习
1.填空题
(1)3-(-3)=____________;(2)(-11)-2=______________;
(3)0-(-6)=____________;(4)(-7)-(+8)=____________;
(5)-12-(-5)=____________;(6)3比5大____________;
(7)-8比-2小___________;(8)-4-()=10;
2.判断题
(1)两数相减,差一定小于被减数.()
(2)(-2)-(+3)=2+(-3).()
(3)零减去一个数等于这个数的相反数.()
七、课后作业
课本第24页复习巩固中1.偶数题,3.偶数题,4.偶数题.【设计说明】通过随堂练习和课后作业,检测知识的掌握情况,为下一节课做准备.八、课后反思
以生活实际中的问题解决入手,能充分调动学生探索、学习的积极性.设计一系列的低台阶、多密度的问题串,适合学生的认知水平,利于学生自主探索,发现问题并提出问题,并逐步引导总结规律、法则,远远高于直接说教告诉的法则记忆深.在探索与尝试应用的过程中,让学生口述或板演,目的是充分暴露学生练习中的问题,更加有针对性的补偿教学.课堂小结让学生来说,更能发现学生的认知程度,教师适时的点拨,使知识的归纳总结又能得到提炼升华.在以后的教学中,应充分考虑学生的认知程度,设计合理的探索性问题,把学习的主动权放给学生,发展学生学会学习的能力比教给他们知识更重要.
第四篇:有理数加减法教案
有理数的加法
1、我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。
于是红队的净胜球为4+(-2){怎样计算4+(-2)}
黄队的净胜球为1+(-1)。
2、这里用到正数与负数的加法,下面我们借助数轴来讨论有理数的加法。看下面的问题:
一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5m记作5m.向左运动5m记作-5m。
(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后向右共运动了多少米? 两次运动后物体从起点起向右运动了8米,写成算式就是
5+3=8...........(用数轴表示)
(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后向右共运动了多少米? 两次运动后物体从起点起向左运动了8米,写成算式就是
(-5)+(-3)=-8......(用数轴表示)
这两个运算都可以用数轴来表示,其中假设原点O为运动起点。如果物体先向右运动5m,再向左运动3m,那么两次运动向右运动了多少米?(用数轴表示)
3、练习:利用数轴求以下情况时物体两次运动的结果:
(1)先向右运动3m,再向左运动5m,物体从起点向___运动了___米;
(2)先向右运动5m,再向左运动5m,物体从起点向___运动了___米;
(3)先向左运动5m,再向右运动5m,物体从起点向___运动了___米;
这三种情况运动结果的算式如下:
3+(-5)=-2...........
5+(-5)=0...........④
(-5)+5=0.......⑤
如果物体第一秒向右(或左)运动5米,第二秒原地不动,两秒后物体从起点向右(或左)运动了5米,写成算式就是
5+0=5....⑥或(-5)+0=-5....⑦
考虑有理数的运算结果时,既要考虑它的符号,又要考虑它的____
你能从算式--⑦中发现有理数加法的运算法则吗?
4、有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
(3)一个数同0相加,仍得这个数。
进行加法运算时,首先要判断两个加数的符号,是同号还是异号,是否有0,然后再确定用哪条法则,总之,要牢记”先符号,后绝对值”。
5、巩固练习:(第12页例1)
思考:我们以前学过加法交换律、结合律,在有理数的加法中它们还适用吗?
(1)计算:30+(-20),(-20)+30(可以换几个加数试一试)
由此可得我们小学学过的运算律在有理数范围内仍然适用,在有理数的加法中,两个数相加,交换加数的位置,和不变(加法交换律:)
(2)计算:[8+(-5)]+(-4),8+[(-5)+(-4)]两次所得的结果相同吗?换几个加数再试试
有理数的加法中,三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=计算16+(-25)+24+(-35)上式中是怎样使计算简化的?这样做的根据是什么?利用加法交换律、结合律可以使运算简化,认识运算律对于理解运算有很重要的意义,通常有下列规律:
(1)互为相反数的两个数,可以先相加;(2)符号相同的数可以先相加
(3)分母相同的数可以先相加(4)几个数相加能得到整数可以先相加。
有理数的减法
1、实际问题中有时还要涉及有理数的减法。例如,某地一天的气温是-3℃--4℃,这天的温差(最高气温减最低气温)就是4-(-3),这里用到正数与负数的减法,我们知道减法是与加法相反的运算,计算4-(-3),就是要求出一个数x,使得x与-3相加得4,因为7与-3相加得4,所以x应该是7:
2、即4-(-3)=7.......
3、另一方面,我们知道4+(+3)=7.........
由我们可以得到4-(-3)=4+(+3).....
从式能看出减-3相当于加哪个数吗?
把4换成0,-1,-5,用上面的方法考虑
0-(-3);(-1)-(-3);(-5)-(-3)
这些数减-3的结果与它们加+3的结果相同吗?
4、计算: 9-8;9+(-8);15-7,15+(-7)从中又能有新发现吗?[换几个数试试]
归纳:有理数的减法可以转化为加法来进行。有理数减法法则:减去一个数,就等于加上这个数的相反数。
有理数减法法则也可以表示成:a-b+a+(-b)
计算:(讲第13页例3)练习:
思考:以前只有在a大于或等于b时,我们会做减法a-b(例如2-1,1-1),现在你会在a小于b时做减法a-b(例如1-2,-1-0)吗?小数减大数所得的差是什么数?
5、下面我们研究怎样进行有理数的加减混合运算。
例6 计算(-20)+(+3)-(-5)-(+7)
分析:这个式子中有加法,也有减法,可以根据有理数减法法则,把它改写为
(-20)+(+3)+(+5)+(-7)
使问题转化为几个有理数的加法。
=[(-20)+(-7)]+[(+5)+(+3)](这里使用了哪些运算律)
归纳:引入相反数后,加减混合运算可以统一为加法运算a+b-c=a+b+(-c)__
式子(-20)+(+3)+(+5)+(-7)是-20,3,5,-7这四个数的和,为书写简单,可以省略式中的括号和加号;
把它写为-20+3+5-7这个式子可以读作“负20、正
3、正
5、负7的和”,或读作“负20加3加5减7”所以运算过程也可以简单地写为
(-20)+(+3)-(-5)-(+7)
=—20+3+5-7
=-20-7+3+5
=-27+8
=19
第五篇:有理数加减法教案
教学目标
1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;
2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.
3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.
教学建议
(一)重点、难点分析
本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.
(二)知识结构
(三)教法建议
1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.
3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.
4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。教学设计示例
有理数的减法
一、素质教育目标
(一)知识教学点
1.理解掌握有理数的减法法则.
2.会进行有理数的减法运算.
(二)能力训练点
1.通过把减法运算转化为加法运算,向学生渗透转化思想.
2.通过有理数减法法则的推导,发展学生的逻辑思维能力.
3.通过有理数的减法运算,培养学生的运算能力.
(三)德育渗透点
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.
(四)美育渗透点
在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.
二、学法引导
1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.
2.学生学法:探索新知→归纳结论→练习巩固.
三、重点、难点、疑点及解决办法
1.重点:有理数减法法则和运算.
2.难点:有理数减法法则的推导.
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片.
六、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.
七、教学步骤
(一)创设情境,引入新课
1.计算(口答)(1);(2)-3+(-7);
(3)-10+(+3);(4)+10+(-3).
2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?
教师引导学生观察:
生:10℃比-5℃高15℃.
师:能不能列出算式计算呢?
生:10-(-5).
师:如何计算呢?
教师总结:这就是我们今天要学的内容.(引入新课,板书课题)
【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.
(二)探索新知,讲授新课
1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?
生:(+10)-(+3)=+7.
师:计算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7.
师:让学生观察两式结果,由此得到
(+10)-(+3)=+10)+(-3).(1)
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.
师:是如何转化的呢?
生:减去一个正数(+3),等于加上它的相反数(-3).
【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.
2.再看一题,计算(-10)-(-3).
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).
生:(-10)+(+3)=-7.
教师引导、学生观察上述两题结果,由此得到:
(-10)-(-3)=(-10)+(+3).(2)
教师进一步引导学生观察(2)式;你能得到什么结论呢?
生:减去一个负数(-3)等于加上它的相反数(+3).
教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.
【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.
师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.
师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.
【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.
4.例题讲解:
[出示投影1(例题1、2)]
例1 计算(1)(-3)-(-5);(2)0-7;
例2 计算(1)7.2-(-4.8);(2)()-.
例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.
例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.
【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.
师:组织学生自己编题,学生回答.
【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.
(三)尝试反馈,巩固练习
师:下面大家一起看一组题.
[出示投影2(计算题1、2)]
1.计算(口答)
(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);
(4)(-4)-9(5)0-(-5);(6)0-5.
2.计算
(1)(-2.5)-5.9;(2)1.9-(-0.6);