第一篇:《决策支持系统》课程讲稿
决策支持系统
课前导入
第一章 决策支持系统概述 第一节 决策支持系统的形成和发展
决策支持系统(DSS)是20世纪70年代初由美国的Scott Morton在《管理决策系统》中首先提出,于20世纪80年代迅速发展起来。
管理信息系统 管理科学/运筹学 决策支持系统
管理科学与运筹学是运用模型辅助决策,体现在单模型辅助决策上,这样以来,对于多模型辅助决策问题,在决策支持系统出现之前要靠人来实现模型间的联合和协调。决策支持系统的出现要解决由计算机自动组织和协调多模型的运行以及数据库中大量数据的存取及处理,达到更高层次的辅助决策能力。
决策支持系统具有以下6个特性: ①用定量方式辅助决策,而不是代替决策 ②使用大量的数据和多个模型 ③支持决策制定过程
④为多个管理层次上的用户提供决策支持 ⑤能支持相互独立的决策和相互依赖的决策 ⑥用于半结构化决策领域 专家系统 专家系统也是一种很有效的辅助决策系统。它是利用专家的知识,特别是经验知识经过推理得出辅助决策结论,专家系统辅助决策的方式属于定性分析。
智能决策支持系统
智能决策支持系统是以决策支持系统为主体,结合人工智能技术形成的系统。除专家系统这种典型的人工智能技术以外,还有神经网络、机器学习、遗传算法以及自然语言理解等多种人工智能技术。
经理信息系统 决策支持系统的发展
决策支持系统的技术进步经历以下四个阶段: ①单模型辅助决策 ②交互建模的DSS ③组合模型的DSS ④智能的DSS 第二节 决策支持系统概念
R.H.Spraque和E.D.Carlson对DSS的定义:
决策支持系统具有交互式计算机系统的特征,帮助决策者利用数据和模型去解决半结构化问题。S.S.Mittra对DSS的定义:
决策支持系统是从数据库中找出必要的数据,并利用数学模型的功能,为用户产生所需要的信息。
DSS是在MIS的基础上发展起来的,都是以数据库系统为基础,都需要进行数据处理,也都能在不同程度上为用户提供辅助决策信息。第三节 新决策支持系统与综合决策支持系统
20世纪90年代中期,兴起了数据仓库、联机分析处理和数据挖掘三项新技术,这三项新技术的结合为决策支持系统开辟了新方向,形成了基于数据仓库的新决策支持系统。
数据仓库中存储着大量辅助决策的数据,它为不同的用户随时提供各种辅助决策的随机查询、综合数据或趋势分析信息。联机分析处理提供了多维数据分析、进行切片、切块、钻取等多种分析手段。数据挖掘是挖掘数据中隐含的信息和知识,让用户在进行决策中使用。 以数据仓库为基础结合联机分析处理和数据挖掘形成了基于数据仓库的新决策支持系统。
新决策支持系统与传统决策支持系统具有以下关系:
①新决策支持系统中数据挖掘获取的知识与传统决策支持系统的知识推理中的知识是不相同的。
②新决策支持系统中没有充分利用模型和模型组合来辅助决策。③决策支持系统的技术还没有完全成熟。
把数据仓库、联机分析处理、数据挖掘、模型库、数据库、知识库结合起来形成的综合决策支持系统是更高级形式的决策支持系统。
决策支持系统的综合部件是由网络上的客户机来完成,即在客户机上编制DSS控制程序,由它来调用或者组合模型服务器上的模型并完成模型计算,调用知识服务器上的知识,完成知识推理以及实现数据仓库的综合信息查询,或用历史数据进行预测。这样,就形成了网络环境的综合决策支持系统。
第二章 决策支持 课前复习
第一节 决策与决策支持
决策
决策自古有之,从宏观讲,决策就是制定政策,从微观讲,决策就是做出决定。
决策是指个人或集体为了达到或实现某一目标,借助一定的科学手段和方法,从若干备选方案中选择或综合成一个满意合理的方案,并付诸实施的过程。
决策过程与决策技术
著名的学者H.A.西蒙认为决策过程由四大步骤组成:
(1)确定决策目标;
(2)拟定各种被选方案;
(3)从各种被选方案中进行选择;
(4)执行方案。决策过程八个阶段
决策过程中四大步骤可以分成更详细的八个步骤:
提出问题;确定目标;价值准则;拟定方案;
分析评估;选定方案;实验验证;普遍实施。决策体系与决策信息
决策体系是指决策整个过程中的各个层次、各个部门在决策活动中的决策权限、组织形式、机构设置、调节机制、监督方法的整个体系。
决策体系由决策系统、参谋(智囊)系统、信息系统、执行系统与监督系统这五大部分组成一个统一整体。
决策支持的概念
在DSS发展历史中,决策支持是一个先导概念,决策支持的概念形成若干年后,才出现决策支持系统。
Keen和Morton认为,决策支持是指用计算机来达到如下的目的:
帮助经理在非结构化任务中作出决策;
支持而不是代替经理的判断能力; 改进决策的效能(Effectiveness),而不是提高决策的效率(Efficiency)。第二节 模型的决策支持
模型及分类
模型反映了实际问题最本质的特征和量的规律,描述了现实世界中有显著影响的因素和相互关系。
按模型的表现可以分为物理模型、数学模型、结构模型和仿真模型 数学模型及建模
数学模型分类:
(1)原理性模型
自然科学中所有定理,公式都是这类模型。
(2)系统学模型
系统学是研究系统结构与功能的一般规律的科学。
按系统的复杂程度把系统分为简单系统和巨系统。
简单系统是指组成系统的元素比较少,它们之间的关系又比较简单的系统。巨系统是指组成系统元素的数目非常庞大的系统。
系统学的模型有:系统动力学、大系统理论、灰色系统、系统辨识、系统控制、最优控制和创造工程学等。
优化模型的决策支持(线性规划实例)第三节 决策方案的决策支持
决策方案及生成
设计的方案要有明确的、清晰的和简洁的表述。决策方案尽量计算机语言描述。并在计算机上通过计算得出方案的结果,以便决策者参考。
管理科学与运筹学所研究的大量数学模型,均是解决实际决策问题时进行抽象、总结的结晶。我们可以在管理科学/运筹学中的大量数学模型的基础上,设计解决当前的决策问题的决策方案。
模型并行组合方案的决策支持
在对一个实际决策问题做方案时,往往会采用对同一问题的多个不同模型进行计算,然后对这些模型的计算结果进行选择或者进行综合,得到一个比较合理的结果。这是一种采用多模型并行组合的决策方案。下面通过一个实例进行说明。
模型串行组合方案的决策支持 第三章 决策支持系统 课前复习
第一节 决策支持系统结构的分析
决策支持系统的结构形式
三部件结构、三系统结构、三库结构、四库结构 决策支持系统的结构比较
决策支持系统有多种结构形式,但主要是两种基本结构形式:(1)以“对话(人机交互)、模型、数据”三部件组成DSS。
(2)以“语言系统(LS)、问题处理系统(PPS)、知识系统(KS)”三系统组成DSS。
“对话、模型、数据”三部件结构的优点 :
①明确了三部件之间关系
明确它们之间的接口关系和集成关系,便于决策支持系统的设计和关键技术的解决。
②便于和其他系统的区别 它和“管理信息系统(MIS)”的区别在于DSS多了模型部件。它和“专家系统(ES)”的区别在于DSS中是以“模型、数据”部件进行数值计算为主体的系统,而ES是以定性知识进行推理为主体的系统。
“LS、PPS、KS”三系统结构的优点:
①突出了问题处理系统(PPS)的重要性。
在设计和开发DSS时,应该重点考虑决策问题的处理。
②明确了语言系统(LS)在人机交互中的作用。
人机交互是要通过语言系统来完成的。决策问题的形式化也要用LS来描述。
③统一了知识的看法。
将数据、模型、规则看成是知识的不同表现形式。
决策支持系统的统一结构形式
三部件结构中的最大弱点,在于“人机交互”部件太简化。该部件应该是三系统中问题处理系统和语言系统、人机交互系统的综合部件。
把“人机交互部件”改为 “综合部件”更合适一些。
它具有对决策问题综合“多模型组合运行,大量数据库的存取,人机交互”为一个整体,形成实际决策支持系统。
“人机交互与问题综合系统(综合部件)”可理解为对实际决策问题的集成处理与人机交互的综合作用。它包含的功能有: 人机交互 控制模型的运行 多模型的组合运行 数值计算 数据处理 决策支持系统的语言系统的功能要求比较高,即它应具有:调用模型运行能力、数据库存取能力、数值运算能力、数据处理能力、人机交互能力等五种综合能力,我们称它为决策支持系统语言(DSS语言)。DSS语言应是两类语言(数值计算语言和数据库语言)的综合。第二节 数据库系统
数据管理技术的发展 人工管理(50年代中期)
数据不保存 没有数据管理软件 文件系统(60年代中期)
数据管理软件——文件管理系统 面向单个应用,冗余度大、独立性差 数据库系统(60年代后期开始)
数据管理软件——数据库管理系统 面向组织,冗余度小、独立性好
1、数据库系统的组成、数据库管理系统
数据库系统一般由四部分组成:-数据库
-数据库管理系统-数据库管理员-用户和应用程序
数据库管理系统有四项主要功能:
1、描述数据库
描述数据的逻辑结构、存储结构等。
2、管理数据库(1)控制整个数据库系统的运行;
(2)进行数据检索、插入、删除和修改操作;
(3)控制用户的并发访问;
(4)检验数据的安全、保密与完整性;
3、维护数据库
(1)控制初始数据的装入;
(2)修改、更新、重组数据库;
(3)恢复出现故障的数据库;
4、数据通信
组织数据的传输
2、数据库应用系统的设计和开发步骤
数据库应用系统的设计过程主要是:
(1)系统需求分析
(2)概念结构设计
(3)逻辑结构设计
(4)物理结构设计
3、数据库应用
4、数据库系统在决策支持系统中的作用 第三节 人机交互与问题综合系统
人机交互系统
人机交互的三个元素: 交互设备
计算机系统的输入输出设备 交互软件
展示各种交互功能的核心 人的因素
用户操作模型
问题综合系统
问题综合系统在决策支持系统的统一结构形式中和人机交互系统结合在一起形成综合部件。
人机交互系统主要实现人机对话和对DSS的控制。
问题综合系统完成的任务是:在决策问题用DSS语言描述(形式化)后,完成对DSS问题的分析和求解。
决策支持系统的综合部件
(1)决策支持系统语言
决策支持系统既要达到综合模型部件和数据部件的作用,又要起到人机交互对话作用,是需要利用功能很强的语言来完成。
(2)综合部件功能 控制模型的运行 多模型的组合运行 人机交互
数值计算和数据处理 第四节 模型库系统
模型库
模型库的概念
模型库的由来(模型应用水平的不断提高)模型程序:即用即编;谁用谁编
模型程序包:结构简单;相互独立;数据不共享 模型库:共享;可重用;可管理;相关 模型库——具有一定组织结构的模型集合 由模型库管理系统进行管理 每个模型都具有辅助决策能力 多个模型能有效地组织成系统
多个模型的连接需要利用共享的数据库 模型库的组织和存储 模型库的存储需求
1个模型对应2~4个文件: 源程序文件 目标程序文件 模型说明文件 数据描述文件 模型库管理系统
模型的存储管理
(1)模型的表示(文件形式)
程序文件(数学模型、数据处理模型)
数据文件(图形、图像等)(2)模型存储的组织结构
模型字典库
模型文件库
(3)模型的查询和维护
查询、增加、删除、修改需要:
模型字典库和文件库同时进行 基本概念
模型库管理系统的功能
模型库管理系统的语言体系 1.模型管理语言MML(1)模型的存储管理-同时完成字典库和文件库的管理(2)模型的查询和维护 2.模型运行语言MRL(1)单模型的调用、运行-用命令语言完成(2)模型的组合运行-用集成语言编制程序控制运行 3.数据接口语言DIL 模型程序通过接口操作数据库 第五节 组合模型的决策支持系统
组合模型辅助决策是决策支持系统研究的内容。 它需要模型库提供共享模型和数据库提供共享数据。 其基础是多模型辅助决策系统。
多模型辅助决策系统
区域发展规划系统:区域发展规划问题是典型的多模型辅助决策系统。 区域:社会、经济、文化、生态环境的地域空间,如县、市、国家等都是区域。
规划:制定未来一定时期的目标、任务及实现方案。
区域发展规划:分析自身的优、劣势,对比其他区域状况,制定快速发展的目标和措施。模型组合技术
模型的组合有多种方式,用逻辑形式表示有: 模型间的关系为“与”(and)关系
例如“模型1 and模型2” 模型间的关系为“或”(or)关系
例如“模型3 or 模型4” 模型间的关系为组合“闭包”(and|or)+ 关系
例如“模型1 and模型2”or“模型3 and 模型4”……
模型组合的程序设计
决策支持系统程序与一般系统程序的比较
1、相同处
DSS的控制程序对模型的调用与一般系统主程序对子程序的调用在程序结构上是相似的。
2、不同处:
(1)DSS中的“模型”是共享资源,同一模型可以被不同DSS程序所调用。
一般系统程序中的子程序(模块)只能被该系统主程序调用,并隶属于它。它不能被别的系统主程序所调用。
(2)DSS中模型程序所使用的语言可以不同于DSS的控制程序。
一般系统的子程序(模块)和主程序的语言是一致的。
结论:DSS程序是利用模型程序和数据两个共享资源组建的。在本质上,DSS程序与一般系统程序是不一样的。
决策支持系统的决策支持
由多个模型组合而成的决策支持系统,在模型组合中,可以选择不同的模型、相同的数据构成不同的决策支持系统方案;
DSS也可以选择相同模型、不同的数据构成不同的决策支持系统方案; DSS还可以选择不同的模型和不同的数据构成不同的决策支持系统方案。
决策支持系统要修改方案,只需修改综合部件中控制的模型名以及该模型发送控制信息的程序地址。
决策支持系统的决策支持作用很容易在模型组合的控制程序中实现。第四章 智能决策支持系统和智能技术的决策支持 第一节 智能决策支持系统概述 智能决策支持系统的概念
智能决策支持系统(Intelligent Decision Support Systems , IDSS)是:决策支持系统(DSS)与人工智能(Artificial Intelligent , AI)技术相结合的系统。
智能决策支持系统的结构
1、人工智能的决策支持技术
智能决策支持系统中包含了人工智能技术,与决策支持有关的人工智能技术主要有:专家系统、神经网络、遗传算法、机器学习、自然语言理解等。
2.智能决策支持系统结构形式 1)基本结构
智能决策支持系统(IDSS)=决策支持系统(DSS)+人工智能(AI)技术
人工智能技术可以概括为:推理机+知识库 第二节 人工智能基本原理
逻辑推理-形式逻辑
形式逻辑是研究人的思维形式及其规律的科学。它是属“符号处理”范畴。形式逻辑主要研究:形成概念、作出判断、进行推理。
1)概念:概念是反映事物的特有属性和它的取值。2)判断:判断是对概念的肯定或否定。
3)推理:推理是从一个或几个判断推出一个新判断的思维过程。
知识表示与知识推理 命题逻辑 举例: 1)如果a是偶数,那么a2是偶数
2)“人不犯我,我不犯人;人若犯我,我必犯人”
归结原理使用反证法来证明语句。即归结是从结论的非,导出已知语句的矛盾。
利用命题逻辑公式和谓词逻辑公式,把逻辑表达式化成合取范式、前束范式,再化成子句。一子句定义为由文字的析取组成的公式。
逆向推理是从目标开始,寻找以此目标为结论的规则,并对该规则的前提进行判断,若该规则的前提中某个子项是另一规则的结论时,再找以此结论的规则。
重复以上过程,直到对某个规则的前提能够进行判断。按此规则前提判断(“是”或“否”)得出结论的判断,由此回溯到上一个 规则的推理,一直回溯到目标的判断。
搜索技术
搜索技术是人工智能的一个重要研究内容。智能技术体现在减少搜索树中的盲目搜索。
1.执行时间与n,n2,n3等成正比的算法,称为按多项式时间执行。2.执行时间与2n,n!和nn等成正比的算法,称为按指数时间执行。按多项式时间执行的算法,计算机是可以实现的。按指数时间执行的算法,计算机是不可能实现的。
1、基本搜索法
对搜索树的基本搜索法有两种思想,一是按广度优先展开搜索树的搜索方法,叫广度优先搜索法;一是按深度优先展开搜索树的搜索方法,叫深度优先搜索法。
(1)广度优先搜索法。(2)深度优先搜索法。
2、生成测试法。
3、爬山法。
4、启发式搜索。
5、博弈算法。
第三节 专家系统与智能决策支持系统
专家系统原理
专家系统是具有大量专门知识,并能运用这些知识解决特定领域中实际问题的计算机程序系统。
专家系统是利用大量的专家知识,运用知识推理的方法来解决各特定领域中的实际问题。计算机专家系统这样的软件能够达到人类专家解决问题的水平。
产生式规则专家系统
产生式规则的推理机=搜索+匹配(假言推理)
在推理过程中,是一边搜索一边匹配。匹配需要找事实。这个事实一是来自于规则库中别的规则,一是来自向用户提问。在匹配时会出现成功或不成功,对于不成功的将引起搜索中的回溯和由一个分枝向另一个分枝的转移,可见在搜索过程中包含了回溯。
专家系统与决策支持系统的集成
智能决策支持系统IDSS充分发挥了专家系统以知识推理形式解决定性分析问题的特点,又发挥了决策支持系统以模型计算为核心的解决定量分析问题的特点,充分做到定性分析和定量分析的有机结合。
IDSS中DSS和ES的结合主要体现在三个方面: 1.DSS和ES的总体结合。由集成系统把DSS和ES有机结合起来(即将两者一体化)。
2.KB和MB的结合。模型库中的数学模型和数据处理模型作为知识的一种形式,即过程性知识,加入到知识推理过程中去。
3.DB和动态DB的结合。DSS中的DB可以看成是相对静态的数据库,它为ES中的动态数据库提供初始数据,ES推理结束后,动态DB中的结果再送回到DSS中的DB中去。
建模专家系统
智能决策支持系统实例 第四节 神经网络的决策支持
神经网络原理
神经元的学习规则是Hebb规则。
Hebb学习规则:若i与j两种神经元之间同时处于兴奋状态,则它们间的连接应加强,即:
△Wij=SiSj(>0)
这一规则与“条件反射”学说一致,并得到神经细胞学说的证实。
设α=1,当Si=Sj=1时,△Wij=1,在Si,Sj中有一个为0时,△Wij=0。反向传播模型
神经网络专家系统及实例 神经网络专家系统特点: 1.神经元网络知识库体现在神经元之间的连接强度(权值)上。它是分布式存贮的,适合于并行处理。
2.推理机是基于神经元的信息处理过程。它是以MP模型为基础的,采用数值计算方法。
3.神经元网络有成熟的学习算法。感知机采用delta规则。反向传播模型采用误差沿梯度方向下降以及隐节点的误差由输出结点误差反向传播的思想进行的。4.容错性好。由于信息是分布式存贮,在个别单元上即使出错或丢失,所有单元的总体计算结果,可能并不改变。
确定系统框架-完成对神经元网络的拓朴结构设计:(1)神经元个数(2)神经元网络层次(3)网络单元的连接
确定神经元的作用函数和阈值-作用函数用得较多的有两种:(1)阶梯函数(2)S型函数
阈值的选取可为定值如i=0或i=0.5,或者进行迭代计算。神经网络的容错性 第五节 遗传算法的决策支持
遗传算法(Genetic Algorithm,GA)是模拟生物进化的自然选择和遗传机制的一种寻优算法。它模拟了生物的繁殖、交配和变异现象,从任意一初始种群出发,产生一群新的更适应环境的后代。
这样一代一代不断繁殖、进化,最后收敛到一个最适应环境的个体上。遗传算法对于复杂的优化问题无需建模和进行复杂运算,只需要利用遗传算法的算子就能寻找到问题的最优解或满意解。
遗传算法原理 1.群体中个体的编码
如何将问题描述成位串的形式,即问题编码。一般将问题的参数用二进制位(基因)编码构成子串,再将子串拼接起来构成“染色体”位串。
2.适应值函数的确定
适应值函数(即评价函数)是根据目标函数确定的。适应值总是非负的,任何情况下总是希望越大越好。如果目标函数不是取最大值时,需要将它映射成适应值函数。优化模型的遗传算法求解
优化模型的计算是遗传算法最基本的也是最重要的研究和应用领域之一。一般说来,优化计算问题通常带有大量的局部极值点,往往是不可微的、不连续的、多维的、有约束条件的、高度非线性的NP完全问题。
精确地求解优化问题的全局最优解一般是不可能的。获取知识的遗传算法
1980年,Smith采用遗传算法研制了一种分类器系统,这是遗传算法在机器学习中的重要应用系统。他使用单个字符串来表示一条规则。 分类器系统的规则形式如下: IF
遗传规划是建立数学模型(发现公式)的一类遗传算法。
编码采用了层次化形式进行,每个个体都对应一个公式,在设计适应度函数时,应用给定数据对每个公式的误差进行计算,误差小的适应度高,误差大的适应度低。
通过遗传规划算子对群体空间进行操作,通过选择算子,变异算子,交换算子等选择适应度高的个体进入下一代遗传, 最终按照终止原则,输出算法计算的结果,即发现的公式。第六节 机器学习的决策支持
机器学习概述
学习和解决问题是人类最重要的两个智能行为。
机器学习是让计算机模拟和实现人类的学习,获取知识。机器学习也是计算机具有智能的重要标志。(1)R.S.Michalski认为:学习是构造或修改所经历的事物的表示。该观点强调知识的表示。
(2)学习是知识的获取。该观点强调知识获取。
(3)H.A.Simon认为:学习是系统在相似的任务中,做一些适应性变化,使得在下一次类似的任务中,做得更好。该观点强调学习的效果。
机器学习分类
学习过程的本质是学生(学习系统)把教师或环境(如书本)提供的信息转换成能够理解的形式记忆下来,以便将来使用。
当前,国际上流行的机器学习分类方法主要有:
按应用领域分类(专家系统、问题求解、认知模拟);按获取知识的表示分类(逻辑表达式、产生式规则、决策树、框架、神经网络);按推理策略分类(演绎推理和归纳推理);按系统性分类(历史渊源、知识表示、推理策略、应用领域)。
建立模型的发现学习
BACON系统的思想是利用一些算子反复构造一些新的项,当这些项中有一个是常数时,就得到概念:“项=常数”。第五章 数据仓库与数据挖掘的决策支持 第一节 数据仓库、数据仓库系统及应用 1.数据仓库的基本原理
数据仓库的概念、结构,数据集市,元数据
数据仓库是面向主题的、集成的、稳定的,不同时间的数据集合,用于支持经营管理中决策制定过程。
近期基本数据:是最近时期的业务数据,是数据仓库用户最感兴趣的部分,数据量大。历史基本数据:近期基本数据随时间的推移,由数据仓库的时间控制机制转为历史基本数据。
轻度综合数据:是从近期基本数据中提取出的,这层数据是按时间段选取,或者按数据属性(attributes)和内容(contents)进行综合。
高度综合数据层:这一层的数据是在轻度综合数据基础上的再一次综合,是一种准决策数据。
数据仓库工作范围和成本常常是巨大的。开发数据库是代价很高、时间较长的大项目。
提供更紧密集成的数据集市就应运产生。
目前,全世界对数据仓库总投资的一半以上均集中在数据集市上。 数据集市(Data Marts)是一种更小、更集中的数据仓库,为公司提供分析商业数据的一条廉价途径。
Data Marts是指具有特定应用的数据仓库,主要针对某个应用或者具体部门级的应用,支持用户获得竞争优势或者找到进入新市场的具体解决方案。
元数据是数据仓库的重要组成部分。
元数据描述了数据仓库的数据和环境,即关于数据的数据(meta data)元数据包括四种元数据。
2、数据仓库系统
数据仓库系统结构、数据仓库的存储
数据仓库应用是一个典型的客户/服务器(C/S)结构形式。
数据仓库采用服务器结构,客户端所做的工作有:客户交互、格式化查询、结果显示、报表生成等。
服务器端完成各种辅助决策的SQL查询、复杂的计算和各类综合功能等。现在,越来越普通的一种形式是三层C/S结构形式,即在客户与数据仓库服务器之间增加一个多维数据分析(OLAP)服务器。
数据仓库存储采用多维数据模型。
3、简单阐述一下数据仓库在决策支持中的应用 第二节 数据挖掘及其应用
1、数据挖掘的概念
知识发现(KDD):从数据中发现有用知识的整个过程。
数据挖掘(DM):KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式(patterns)。
KDD过程定义:从大量数据中提取出可信的、新颖的、有用的并能被人理解的模式的高级处理过程。
“模式”可以看成是“知识”的雏形,经过验证、完善后形成知识。
2、数据挖掘的方法和技术
(一)归纳学习方法
分为两大类:信息论方法(决策树方法)和集合论方法。
1、信息论方法(决策树方法)
利用信息论的原理建立决策树或者是决策规则树。
(1)ID3方法:Quiulan研制的ID3方法是利用信息论中互信息建立决策树。
(2)IBLE方法:是利用信息论中信道容量,寻找数据库中信息量大的多个字段的取值建立决策
2、集合论方法
(1)粗糙集(Rough Set)方法
对数据库中的条件属性集与决策属性集建立上下近似关系,对下近似集合建立确定性规则,对上近似集合建立不确定性规则(含可信度)。(2)关联规则挖掘
在交易事务数据库中,挖掘出不同商品集的关联关系,即发现哪些商品频繁地被顾客同时购买。
(3)覆盖正例排斥反例方法
它是利用覆盖所有正例,排斥所有反例的思想来寻找规则。
比较典型的有AQ11方法,AQ15方法以及AE5方法。
(二)仿生物技术
仿生物技术典型的方法是神经网络方法和遗传算法。
1、神经网络方法:包括:前馈式网络、反馈式网络、自组织网络等多个神经网络方法。
2、遗传算法:这是模拟生物进化过程的算法。
它由三个基本算子组成:
繁殖(选择)、交叉(重组)、变异(突变)
遗传算法起到产生优良后代的作用,经过若干代的遗传,将得到满足要求的后代(问题的解)。
(三)公式发现
在工程和科学数据库中对若干数据项(变量)进行一定的数学运算,求得相应的数学公式。
1.物理定律发现系统BACON BACON发现系统完成了物理学中大量定律的重新发现。2.经验公式发现系统FDD 我们研制了FDD发现系统,寻找由数据项的初等函数或复合函数组合成的经验公式。
(四)统计分析方法
利用统计学原理通过对总体中的样本数据进行分析得出描述和推断该总体信息和知识的方法。
(五)模糊数学方法
利用模糊集合理论进行数据挖掘,如模糊聚类、模糊分类等。
(六)可视化技术
利用可视化技术分析数据库,找到潜在的有用信息。
3、数据挖掘的知识表示
主要有四种:规则、决策树、浓缩数据、公式。
规则知识由前提条件和结论两部分组成,前提条件由字段项(属性)的取值的合取(与)和析取(或)组合而成。结论为决策字段项(属性)的取值或者类别组成。
4、数据挖掘在决策支持中的应用 数据挖掘的决策支持分类有:
关联分析、时序模式、聚类、分类、偏差检测、预测。
关联分析:
若两个或多个数据项的取值之间重复出现且概率很高时,它就存在某种关联,可以建立起这些数据项的关联规则。
时序模式:
通过时间序列搜索出重复发生概率较高的模式。这里强调时间序列的影响。
聚类:在数据库中找出一系列有意义的子集,即类。分类:对数据库中的类,找出该类别的概念描述规则。偏差检测: 在数据库中找出异常数据。
预测:利用历史数据找出变化规律的模型,并用此模型预测未来。第六章 综合决策支持系统
1.传统决策支持系统的概念 1980年Sprague提出了决策支持系统三部件结构; 1981年Bonczak等提出了决策支持系统三系统结构; 根据以上两种结构的优缺点建立起来的统一的DSS结构;
20世纪90年代初,决策支持系统与专家系统结合起来,形成了智能决策支持系统(IDSS)。DSS的关键技术:
(1)模型库系统的设计和实现。
(2)部件接口。部件接口包括对数据部件的数据的存取,对模型部件的模型的调用和运行,以及对知识部件的知识完成推理。
(3)系统综合集成。通过集成语言完成对各部件的有机综合,形成一个完整的系统。
2.数据仓库与新决策支持系统 数据仓库技术
管理大量数据
数据仓库中的数据量是10GB或100GB级的,数据仓库开发需要满足处理大量数据的需求。
数据的高效装入和数据压缩
装入数据:装入的数据量很大,同时也要装入高效的索引。(2)数据压缩:DW数据量大需要进行数据的压缩。
存储介质的管理
数据仓库中的数据量是10GB或100GB级的,数据仓库开发需要满足处理大量数据存储介质的需求。
元数据管理:没有一个好的元数据来运作的话,DSS分析员的工作就非常困难。
数据仓库语言 数据仓库语言可有效管理数据仓库中的数据和快速、高效地访问数据仓库中的数据。
高效索引
数据仓库不仅能够方便地支持新索引的创建和装入,而且要能够高效地访问这些索引。
数据仓库的特殊管理
(1)复合键码:能够支持复合键码。
(2)变长数据:有效管理变长数据的能力。
(3)快速恢复:快速地恢复数据仓库表。
多维DBMS和数据仓库
多维数据库管理系统(多维DBMS)提供了用多种方法对数据进行切片、分割,动态地考查汇总数据和细节数据的关系,非常适合DSS环境。
数据仓库中的细节数据为多维DBSM提供了数据源,数据要定期从数据仓库中导入到多维DBMS中去,为DSS用户服务。
3.传统决策支持系统与新决策支持系统的比较 传统决策支持系统的特点
(1)用模型和模型的组合来辅助决策
多模型的组合扩大了模型辅助决策的能力。多模型的组合的实现是靠数据或数据处理来完成模型间的连接。
多模型的组合使模型的范围由数学模型扩展为数据处理模型等。
人机交互的手段丰富了多模型组合辅助决策的效果,也为人控制多模型的组合提供了支持手段。
(2)用知识推理进行定性分析
知识推理的专家系统主要是进行定性分析。它结合到决策支持系统中形成智能决策支持系统。实质上完成了定量分析和定性分析相结合的辅助决策方式。
新决策支持系统的特点:
(1)数据仓库和联机分析处理的数据组织方式是多维数据数据仓库的数据组织为空间的多维结构形式。
(2)数据仓库是为决策分析服务的数据仓库可以提供综合信息和时间趋势信息等辅助决策信息。
(3)联机分析处理提供多维分析手段(4)数据挖掘是从数据中挖掘出隐藏知识 4.综合决策支持系统结构和原理
数据仓库(DW)实现对决策主题数据的存储和综合。联机分析处理(OLAP)实现多维数据分析。数据挖掘(DM)能挖掘数据仓库中的知识。
DW+OLAP+DM形成的新决策支持系统是利用数据资源辅助决策的。新决策支持系统主要针对商场、银行、顾客、销售等获取企业外部社会上的信息。
传统决策支持系统是以模型库(MB)和知识库(KB)为基础的。数学模型的优化模型辅助决策的效果很明显。知识推理具有较强的智能性。
传统决策支持系统充分发挥模型资源的辅助决策作用和知识资源辅助决策作用。
两个决策支持系统是完全不同的辅助决策方式,两者不能相互代替,应该是相互结合。
通过两个决策支持系统的结合能充分发挥数据、模型、知识这三种不同的决策资源,获取企业或组织的内部和外部相互补充的信息和知识,才能为决策者提供更全面,更广泛和更有效的辅助决策信息和知识。把数据仓库(DW)、联机分析处理(OLAP)、数据挖掘(DM)、模型库(MB)、数据库(DB)、知识库(KB)结合起来形成的决策支持系统:
将传统决策支持系统和新决策支持系统结合起来的决策支持系统是更高级形式的决策支持系统,称为综合决策支持系统(Synthetic Decision Support System, SDSS)。
综合决策支持系统体系结构包括三个主体: 第一个主体是模型库系统和数据库系统的结合,它是决策支持的基础,它为决策问题提供定量分析(模型计算)的辅助决策信息。
第二个主体是数据仓库和OLAP的结合,它从数据仓库中提取综合数据和信息,这些数据和信息反映了大量数据的内在本质。
第三个主体是知识库与推理机和数据挖掘的结合。5.网络环境下的综合决策支持系统体系 客户/服务器结构与数据库服务器
计算机联网可以使得某些服务在服务器系统上执行,而另一些任务在客户机系统上执行,这种工作任务的划分,形成了客户机/服务器系统。
客户机/服务器(Client/Server, C/S),由服务器提供应用服务,多台客户机进行连接。
当前的实际应用中多数服务器就是一台数据库服务器而客户端就是编写的客户软件,通过ODBC或ADO同数据库服务器通信。组成一个应用系统。
在当前Internet/Intranet领域,“浏览器/服务器”结构是当前非常流行的客户机/服务器结构,简称B/S结构。
Web浏览器只利用鼠标点击某个强调的词语或某个图形按钮,你就会毫不费力地迅速访问到世界各地的计算机。
决策支持系统的综合部件由网络上的客户机来完成。
模型服务器是对用户提供各种模型的服务。模型需要调用数据库服务器存取数据,在模型服务器内完成模型运算,这些模型服务器相对数据库服务器来说是客户端。当模型运算出结果后为用户提供辅助决策信息时,它起到服务器的作用。这种关系形成了三层客户/服务器结构。
在网络环境下形成的决策支持系统结构,既具有客户/模型/数据三层C/S结构,也有客户/数据二层C/S结构,这种组合是一种三角的C/S结构形式。
第七章 决策支持系统的开发
1.决策支持系统开发过程、步骤 DSS系统开发的主要步骤为:
(1)DSS系统分析-包括确定实际决策问题目标,对系统分析论证。(2)DSS系统初步设计-包括对决策问题进行分解成多个子问题以及它们的综合。
(3)DSS系统详细设计-包括各个子问题的详细设计(数据设计和模型设计)和综合设计。数据设计包括数据文件设计和数据库设计,模型设计包括模型算法设计和模型库设计。综合设计包括对各个子问题的综合控制设计。
(4)各部件编制程序-包括①建立数据库和数据库管理系统;②编制模型程序,建立模型库、模型库管理系统;③编制综合控制程序(总控程序),由总控程序控制模型的运行和组合,对数据库数据的存取、计算等处理,设置人机交互等。
(5)三部件集成为DSS系统-包括解决部件接口问题,由总控程序的运行实现对模型部件和数据部件的集成,形成DSS系统。
2.决策支持系统设计 设计思想 决策支持系统的系统结构是由综合部件、模型部件、数据部件三大部件组成。
决策支持系统设计主要是决策支持系统总体结构设计,它包括运行结构设计和管理结构设计。
运行结构是对实际决策问题用决策支持系统原理设计的程序结构。
管理结构是完成模型库管理和数据库的管理,达到多模型的共享和大量数据的共享。
运行结构的关键是综合部件。
3.决策支持系统开发技术 建立模型概述
系统建模目的主要在于:
(1)分析和设计实际系统
(2)预测或预报实际系统的未来发展趋势。(3)对系统实行最优控制。建立模型步骤
(1)建立模型的数学结构,即建立模型中变量之间的方程形式。(2)确定模型的参数,它包括模型中变量的数目、方程的个数、变量的系数等。
DSS的建模技术
DSS建模的主要问题是如何选择多个模型组合形成解决实际问题的方案。也可以认为该方案是解决实际问题的大模型。每个具体的小模型又涉及所需要的数据。多模型的组合表现为用模型资源和数据资源来组合成实际问题方案。决策支持系统就是利用模型库(模型资源)和数据库(数据资源),通过问题综合来组合多模型和大量数据形成解决实际问题的方案,方案可以是一个或者多个,通过方案的计算和比较,达到辅助决策的作用。 模型部件和综合部件存取数据库的接口
模型程序一般采用数值计算语言编制。不具有数据库操作功能。而数据库语言对数组运算等数值计算功能很弱,故数据库语言不适合于编制数值计算类型的模型程序。决策支持系统又需要把数值计算和数据处理二者结合起来。有效的途径是解决好模型存取数据库的接口。
决策支持系统中,把所有公用的数据都放入数据库中,这便于数据库共亨,又便于数据的统一管理。模型程序用到数据时,需要通过这个接口去存取所需数据。
综合部件对模型的接口
综合部件对模型的控制运行以及多模型的组合。一般采用“顺序、选择、循环”结构以及嵌套组合结构形式来组合模型。 综合部件的集成技术
综合部件要真正达到控制单模型运行以及多模型的组合运行,控制大量的数据库的存取,实现DSS的系统集成。
综合部件需要利用一种计算机语言,针对具体的决策问题,编制或者自动生成决策问题的总控程序,将所需要的模型库、数据库进行集成,形成一个实际的决策支持系统。 系统快速原型开发技术
快速原型开发技术用于决策支持系统的主要任务是:按决策问题处理过程,快速生成对多模型的组合以及大量数据库数据的存取并进行集成的决策支持系统。快速原型方法是根据系统的需求能迅速的产生出系统的原型,该原型能表现出系统的功能、行为特性,但不一定符合其全部要求。当用户对原型运行结果不满意时,能迅速修改原型,经过几次反复,将可得到用户满意的应用系统。
快速原型法的实现是需要一个很好的支撑环境来保证软件原型的快速生成。
4.决策支持系统的开发
综合部件的总控程序开发从DSS总控程序的设计中可知它要完成的工作为:
(1)控制模型程序的运行;
(2)存取数据库的数据;
(3)进行数据处理;
(4)进行数值计算;
(5)完成人机交互。
总控程序既要有数值计算能力又要有数据处理能力,还需要有很强的人机交互能力。可见它是一个集成语言。
第二篇:决策支持系统--教学大纲
决策支持系统(教学大纲)
Decision Support System
课程编码:05405090 学分: 2 课程类别: 专业方向课 计划学时:32 其中讲课:32 实验或实践:0 上机:0 适用专业:信息管理与信息系统 推荐教材:
陈文伟,决策支持系统教程(第2版)清华大学出版社;第2版(2010年10月1日)参考书目:
《决策支持系统》,张鹏翥,上海交通大学出版社,2009年。《决策支持系统》,陈文伟,清华大学出版社,2009年。《计算机决策支持系统》,孟波编著,武汉大学出版社,2010年。
《决策支持系统(DSS)理论.方法.案例(第三版)》,高洪深著,清华大学出版社,2010年。
课程的教学目的与任务
决策支持系统是一门年轻的学科,又是集自然科学与社会科学于一体的交叉学科,也是一门应用科学。本科程是管理信息系统专业的一门重要的专业课,目的与任务在于是使学生掌握决策支持系统的理论基础、基本结构、发展方向及其应用,重点是决策的基本原理、决策过程建模、决策支持系统的基本构成、决策支持系统的实施过程。
课程的基本要求
1、正确认识课程的性质、任务及其研究对象,全面了解课程的体系、结构,对决策支持系统有一个总体的把握。
2、通过本课程的学习,要求学生应能够充分理解决策分析、决策支持系统的基本概念。
3、通过本课程的学习,要求学生应能够针对不同的决策问题,通过使用计算机软件或编制计算机程序的手段,设计和开发决策支持系统。
各章节授课内容、教学方法及学时分配建议
第一章:决策支持系统综述 建议学时:4学时
[教学目的与要求] 通过本节90分钟的教学,使学生对决策支持系统的产生和发展进行了解,知道决策支持系统的概念和基本应用领域,对系统的演变有所了解。
[教学重点与难点] 决策支持系统的产生和发展
[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅。[授 课 内 容] 1.1 决策支持系统的形成 1.1.1 管理信息系统 1.1.2 管理科学/运筹学 1.1.3 决策支持系统 1.1.4 专家系统
1.1.5 智能决策支持系统
1.1.6 基于数据仓库的决策支持系统 1.1.7 综合决策支持系统
1.1.8 网络环境的综合决策支持系统 1.2 决策支持系统概念
1.2.1 决策问题的结构化分类 1.2.2 决策支持系统的定义
1.2.3 决策支持系统与管理科学/运筹学的关系 1.2.4 决策支持系统与管理信息系统的关系 1.2.5 几个典型的决策支持系统 1.3 决策科学与决策支持系统 1.3.1 决策与决策科学
1.3.2 决策过程与决策支持系统 1.3.3 决策体系与决策支持系统 1.3.4 决策支持系统的技术基础
第二章:决策资源与决策支持 建议学时:6学时
[教学目的与要求] 通过对本章内容的学习,使学生对决策资源与决策支持的概念有所了解,知道决策资源分类及其特点,了解模型实验的决策支持和模型组合方案的决策支持。
[教学重点与难点] 决策资源分类及其特点,模型实验的决策支持和模型组合方案的决策支持的应用。
[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅。[授 课 内 容] 2.1决策资源
2.1.1 数据资源 2.1.2 模型资源 2.1.3 知识资源 2.2 决策支持
2.2.1 决策支持概念 2.2.2 决策资源的决策支持 2.2.3 决策方案的决策支持 2.3 模型实验的决策支持
2.3.1 模型的建立与what-if分析 2.3.2 模型组的决策支持 2.4 模型组合方案的决策支持
2.4.1 经济优化方案的决策支持 2.4.2 产品优化方案的决策支持 2.4.3 多模型辅助决策系统
第三章:决策支持系统 建议学时:6学时
[教学目的与要求] 通过对本章内容的学习,使学生对决策系统的结构有所了解,知道数据库系统的开发应用,了解模型库系统的概念、组织和存储。了解决策支持系统的实际应用。
[教学重点与难点] 数据库系统的开发应用,模型库系统的组织和存储 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅。[授 课 内 容]
3.1 决策支持系统结构
3.1.1 决策支持系统结构形式 3.1.2 决策支持系统的结构比较 3.1.3 决策支持系统的统一结构形式 3.2 数据库系统
3.2.1 数据库系统开发与应用
3.2.2 数据库系统在决策支持系统中的作用 3.3 人机交互与问题综合系统
3.3.1 人机交互系统 3.3.2 问题综合系统
3.3.3 决策支持系统的综合部件 3.4 模型库系统
3.4.1 模型库
3.4.2 模型库的组织和存储 3.4.3 模型库管理系统 3.5 组合模型的决策支持系统
3.5.1 模型组合技术 3.5.2 模型组合的程序设计 3.5.3 决策支持系统的决策支持 3.6 决策支持系统实例
3.6.1 物资申请和库存的计划汇总 3.6.2 制定物资的分配方案 3.6.3 物资调拨预处理 3.6.4 制定物资运输方案 3.6.5 制定物资调拨方案
3.6.6 物资分配调拨决策支持系统结构与决策支持
第四章:人工智能的决策支持和智能决策支持系统 建议学时:4学时
[教学目的与要求] 通过对本章内容的学习,使学生掌握人工智能的基本原理,知道专家系统的决策支持的应用,掌握神经网络的决策支持原理。了解机器学习的决策支持的相关知识。了解智能决策支持系统。
[教学重点与难点] 专家系统的决策支持的应用,神经网络的决策支持原理。[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅。[授 课 内 容] 4.1 人工智能基本原理
4.1.1 逻辑推理 4.1.2 知识推理 4.1.3 搜索技术 4.2 专家系统的决策支持
4.2.1 专家系统原理 4.2.2 产生式规则专家系统 4.2.3 建模专家系统 4.3 神经网络的决策支持
4.3.1 神经网络原理 4.3.2 反向传播模型
4.3.3 神经网络专家系统及实例 4.3.4 神经网络的容错性 4.4 遗传算法的决策支持
4.4.1 遗传算法原理
4.4.2 优化模型的遗传算法求解 4.4.3 获取知识的遗传算法 4.5 机器学习的决策支持
4.5.1 机器学习综述 4.5.2 机器学习分类 4.5.3 建立模型的发现学习4.6 智能决策支持系统
4.6.1 智能决策支持系统概念 4.6.2 智能决策支持系统结构 4.6.3 专家系统与决策支持系统的集成 4.6.4 智能决策支持系统实例
第五章:基于数据仓库的决策支持系统 建议学时:4学时
[教学目的与要求] 通过对本章内容的学习,使学生掌握数据仓库的基本原理,掌握联机分析处理的概念、数据组织以及决策支持,掌握数据仓库的决策支持以及数据挖掘的概念。了解基于数据仓库的决策支持系统。
[教学重点与难点] 联机分析处理的数据组织以及决策支持,数据仓库的决策支持以及数据挖掘。[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅。[授 课 内 容] 5.1 数据仓库的基本原理
5.1.1 数据仓库概念 5.1.2 数据仓库结构 5.1.3 数据集市 5.1.4 元数据 5.1.5 数据仓库存储 5.1.6 数据仓库系统 5.2 联机分析处理
5.2.1 基本概念 5.2.2 OLAP数据组织
5.2.3 OLAP的决策支持: 多维数据分析 5.2.4 OLAP的应用实例 5.3 数据仓库的决策支持
5.3.1 查询与报表
5.3.2 多维分析与原因分析 5.3.3 预测未来 5.3.4 实时决策 5.3.5 自动决策 5.4 数据挖掘
5.4.1 知识发现与数据挖掘概念 5.4.2 数据挖掘方法和技术 5.4.3 数据挖掘的知识表示 5.5 数据挖掘的决策支持 5.5.1 数据挖掘的决策支持分类
5.5.2 决策树与决策规则树的挖掘及其应用 5.3.3 关联规则及应用 5.6 基于数据仓库的决策支持系统
5.6.1 基于数据仓库的决策支持系统的原理和结构 5.6.2 基于数据仓库的决策支持系统简例 5.6.3 基于数据仓库的决策支持系统实例
第6章 综合决策支持系统 建议学时:4学时
[教学目的与要求] 通过对本章内容的学习,使学生掌握基于模型库与知识库的传统决策支持系统,掌握基于数据仓库的新决策支持系统和综合决策支持系统,了解网络环境的综合决策支持系统。[教学重点与难点] 基于数据仓库的新决策支持系统和综合决策支持系统。[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅。[授 课 内 容] 6.1 基于模型库与知识库的传统决策支持系统
6.1.1 传统决策支持系统概念 6.1.2 传统决策支持系统的进展
6.1.3 传统决策支持系统的关键技术和开发的困难 6.2 基于数据仓库的新决策支持系统
6.2.1 新决策支持系统与商业智能 6.2.2 数据仓库关键技术 6.2.3 数据仓库开发的困难 6.3 综合决策支持系统
6.3.1 传统决策支持系统与新决策支持系统的比较 6.3.2 数据仓库与数学模型
6.3.3 综合决策支持系统原理、结构和定义 6.4 网络环境的综合决策支持系统
6.4.1 客户机/服务器结构与数据库服务器 6.4.2 网络环境的决策支持系统
6.4.3 网络环境的综合决策支持系统体系
第7章 决策支持系统的开发与实例 建议学时:4学时
[教学目的与要求] 通过对本章内容的学习,使学生掌握传统决策支持系统设计与开发,掌握各种传统决策支持系统开发工具,掌握新决策支持系统的开发的开发方法。
[教学重点与难点] 传统决策支持系统开发工具,新决策支持系统的开发的开发方法。[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅。[授 课 内 容] 7.1 传统决策支持系统设计与开发
7.1.1 决策支持系统开发过程 7.1.2 决策支持系统设计 7.1.3 决策支持系统的关键技术 7.2 传统决策支持系统开发工具
7.2.1 决策支持系统开发技术与方法 7.2.2 系统快速原型开发方法 7.2.3 决策支持系统的开发实践 7.2.4 专家系统开发工具与实例 7.3 新决策支持系统的开发
7.3.1 数据仓库开发过程 7.3.2 数据抽取、转换和装载
7.4 基于客户机/服务器的决策支持系统快速开发平台CS-DSSP 7.4.1 CS-DSSP开发平台综述 7.4.2 客户端交互控制系统 7.4.3 广义模型服务器系统 7.4.4 CS-DSSP决策支持方式 7.5 基于客户机/服务器的决策支持系统实例 7.5.1 全国农业投资决策问题
7.5.2 全国农业投资空间决策支持系统 7.6 网络环境的决策支持系统的对比分析
7.6.1 网络环境的决策支持系统的技术进步
7.6.2 网络环境的决策支持系统的决策支持效果的提升
撰稿人:刘鹏 审核人:
第三篇:决策支持系统实验3
决策支持系统
实验名称:回归分析实验
实验地点:
专业班级:信管
学生姓名:
学生学号:
指导教师:
成 绩:
2016年X月X日
一、实验目的1.了解Microsoft
Office
Excel
2003
提供的数据分析工具
2.掌握Microsoft
Office
Excel
2003
提供的三种回归方法
3.掌握通过回归分析进行预测的方法
二、实验内容
1.掌握Excel2003提供的分析工具库
2.使用数据分析方法进行回归分析
3.使用函数方法进行回归分析,包括直线回归函数,预测函数,指数曲线趋势函数
三、实验内容及步骤
7.1数据分析对话框
图7.2参数设置示意图
图7.3部分分析结果
图7.5斜率和Y轴截距数据
图7.6
图7.7
图7.8
图7.9
图7.10
图7.12
图7.13
图7.14
图7.15
图7.16
图7.17
图7.18
图7.19
练习
数据分析
预测函数
指数曲线预测函数
四、实验总结
通过本次实验,我熟悉了Excel提供的分析工具库,并能使用“数据分析”方法进行回归分析,使用直线回归函数,使用预测函数,使用指数曲线趋势函数,用趋势线进行回归分析,并能通过回归分析进行预测。也让我懂得回归分析对我们生活有很大的作用,回归分析是将一系列影响因素和结果进行一个拟合,拟合出一个方程,然后通过将这个方程应用到其他同类事件中,可以进行预测通过回归可以找出哪些影响因素及对结果的影响规律。
第四篇:智能审计决策支持系统
智能审计决策支持系统
审计决策支持系统(Audit Decision Support System,ADSS)是辅助审计人员通过数据、模型和知识,以人机交互方式进行半结构化或非结构化决策的计算机应用系统。目前,ADSS被应用于会计师事务所的审计决策支持活动,并承担审计信息的收集、处理和传递功能,为审计人员提供分析问题、建立模型、模拟决策过程和方案的环境,调用各种信息资源和分析工具,帮助提高决策水平和审计质量。
智能审计决策支持系统(Inteligent Audit Decision Support System,IADSS)通常简称为智能审计系统,是在传统ADSS的基础上结合审计专家系统(Audit Expert System,AES)和数据挖掘系统(Data Mining System,DMS)而形成的软件系统。ADSS能够借助定量化的决策支持模型辅助审计人员进行决策,但智能性不足;AES能模拟审计专家思维来解决非结构性的问题,但审计专家知识获取和转化困难,而且不具备自我学习的功能;以神经网络为代表的DMS具有良好的自组织、自学习和自适应能力,但不能对自身的结论进行解释。这三种系统的优缺点恰好互补,若相互融合,则可构建一个IADSS。
一、审计决策支持系统(ADSS)
1、ADSS的特征。ADSS是支持审计人员进行非程序性决策的一种信息系统,具有如下三个特征:(1)以处理非程序性决策为主。(2)对审计人员进行支持而不是代替。(3)系统本身要求具有灵活性,采用联机对话方式,以便利用审计人员的经验和系统提供的信息来分析解决问题。
2、ADSS的构建。按照(国家经济信息系统设计应用标准化规范)中的“三库一体化理论”,ADSS由数据库、模型库和方法库组成,它们彼此独立,用户系统通过三库控制系统与“三库”发生联系。(1)数据库子系统是存储、管理、提供与维护用于审计决策支持的审计数据的ADSS基本部件,是支撑模型库子系统及方法库子系统的基础。数据库子系统由数据库、数据析取模块、数据字典、数据库管理系统及数据查询模块等部件组成。(2)模型库是ADSS中最复杂和最难实现的部分,通常可直接用于制定审计决策的模型是应用结构性比较好的问题,其处理算法有明确规定,其参数值是已知的。对于非结构化的决策问题,有些参数值并不知道,需要运用数理统计等方法估计这些参数值。模型库管理系统的主要功能是模型的利用和维护,模型的利用包括决策问题的定义和概念模型化,从模型库中选择恰当的模型或单元模型构造具体问题的决策支持模型,以及运行模型;模型的维护包括模型的联结、修改和增删等。模型库子系统是在与ADSS其他部件交互过程中发挥作用的,与数据库子系统的交互可获得各种模型所需的数据,实现模型输入、输出和中间结果存取自动化;与方法库子系统的交互可实行目标搜索、灵敏度分析和仿真运行自动化等。更主要的交互则是在人机对话子系统之间,模型的使用和维护实质上是审计人员通过人机对话子系统予以控制与操作。(3)方法库子系统是存储、管理、调用及维护ADSS要用到的通用算法、标准函数等方法的部件,方法库中的方法一般用程序方式存储。它通过对描述外部接口的程序向ADSS提供合适的环境,是计算过程实行交互式的数据存取,从数据库选择数据,从方法库选择算法,然后将数据和算法结合起来进行计算,以清晰地呈现方式输出结果,供决策者使用。
3、ADSS的思路。ADSS解决问题的过程是沿着“审计人员根据当前环境提出问题→审计专家与审计人员交互理解问题→审计专家抽象出数学模型→依据数学模型编制或调用求解软件→软件运行求解问题”这一思路进行。在该思路中,问题的求解由“模型驱动”,问题求解模型随着问题环境的变化而变化,由于变化而重新构造模型时离不开审计专家的辅助,这使原本的审计人员在决策支持系统辅助下求解变成了在审计专家辅助下求解,用户在求解问题的多数环节仍离不开审计专家。ADSS应用中出现这种问题,其主要原因是系统的智能性不足,不能根据问题的变化作出适应性的自主调整。
二、审计专家系统(AES)
1、AES的功能。ADSS借助计算机强大的运算能力与审计人员(专家)灵活的分析和判断能力交互写作,为解决审计中的半结构化与非结构化的决策问题提供了有力的支持。但由于ADSS中计算机一方的重点还在于模型的定量计算,人机对话方式对于大多数不熟悉计算机的使用者仍存在一定的距离,限制了ADSS的应用效果。作为人工智能的一个分支,专家系统在二十世纪80年代初开始进入审计人员的视野,AES是建立在管理信息系统和计算机人工智能技术基础上的一种计算机辅助审计软件系统。与普通计算机辅助审计技术不同的是,它利用人工智能的原理,借助计算机模拟人类的思维过程,对管理信息系统的数据进行计算、分析及推理,并作出相应的判断,提出审计建议及线索,以供审计人员进行进一步的重点审计,最终得出审计结论。AES能够借助计算机强大的数据分析和处理能力,在最短的时间里,做广泛、详细的计算与核查,而且在面临多个结论时,能够通过排序来寻找最佳方案,减少审计人员在做出结论时出现的失误或不一致的可能性,因而可以有效地提高审计效率,降低审计风险。
2、AES的工作过程。AES的工作过程可分为三个阶段:初始化阶段、实质性测试阶段和完善工作底稿阶段。每一个阶段,系统会自动地根据审计人员事先选择的要求和系统数据库中所存储的相关审计知识,分成若干个推理判断的步骤,对被审计单位的会计资料及其他相关资料进行审查,并自动查找存在的各类错误、舞弊、异常数据和变动及其他不利于企业经营的情况,并以列表或审计意见初稿的形式向审计人员列示。在每一个阶段,审计人员都可以通过系统的人机对话界面对审查情况进行监控。作为一种模拟审计专家水平来解决问题的AES,必须具备的组件包括:(1)知识获取组件,它负责审计专家经验(规则)处理,并存储在知识库中,以备推理机调用。(2)知识表达组件,它运用各种表达法,解决内码转换问题,使信息在系统内部各部件之间得以沟通。(3)知识库,它存储的是既不能用数据表示,也不能用模型方法描述的审计专家知识与经验,同时也包括一些特定问题领域的专家知识。(4)知识库管理子系统,由一系列知识库的操作命令程序组成,是知识库操作与其他部件进行联系的桥梁。(5)推理机,主要功能是查询和分析,它由一组具有推理策略的程序组成,根据系统知识库的数据和程序,推断出问题的可能解。(6)解释组件,将推理机得出的结果经过解释输出,在系统的人机交互界面上,寻求审计决策人员的确认和进一步分析。AES中,知识库和推理机是核心。建立知识库的关键是如何表示知识,也就是审计经验的形式化表示,推理机用于确定不精确推理的方法。AES的弱点在于审计知识获取和转化困难,因为其需要人工地将各种审计专家知识从人类专家的头脑中或其他知识源处转换到知识库中,费时且低效;对于动态和复杂的系统,由于其推理规则是固定的,难以适应变化的情况,AES还不能从过去处理过的审计案例中继续学习,使知识获取较为困难。
三、数据挖掘系统(DMS)
1、DMS的功能。DMS能够从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、事先不知道的、潜在有用的信息和知识。不仅可以对信息系统产生的被审计单位财务、业务数据进行深层次分析和研究,而且可以通过模型匹配和挖掘算法实现其在信息系统开发审计、安全审计等方面的应用。此外,通过数据挖掘技术与信息系统审计技术的有效结合可确定快照技术中快照点的选择问题,以及确定系统控制审计复核文件中嵌入审计程序应采集什么信息。
2、DMS的应用。(1)运用统计分析子系统发现偏差数据。审计人员通过建立统计模型对搜集的被审计单位以及同类型单位的大量财务、业务历史数据进行分析,挖掘内部存在的函数关系或相关关系,然后对审计期间内的相关数据进行合理预测。(2)运用聚类分析子系统确定审计重点。利用聚类分析技术对信息系统中被审计单位的同类型的财务数据或者业务数据进行分组,使其成为有相似特性的聚集。一般来说,财务数据及重要业务数据(如销售数据)的变动具有一定的规律性,如果某些数据处于稀疏区域,说明其变动表现异常,需要重点关注。如SQL2005中的Microsoft Analysis Services工具,选择聚类挖掘模型,就可利用其强大的分析功能实现日志数据的分类,将非正常的日志记录从正常的日志数据中区分出来。(3)运用孤立点分析子系统挖掘审计疑点。面对海量的电子数据,采用孤立点检测算法,发现异常审计数据或异常发生频率等,从而发现有可能隐藏的违规行为,如利用快照点捕捉问题数据,利用嵌入式审计模块进行实时监控等方法,达到锁定疑点数据的目的。(4)运用关联分析子系统揭示关键属性。在对财务或业务数据的审计中,同类或不同类会计科目及数据项之间,可能存在某种对应关系,利用关联分析方法来查找、分析,可发现一些隐藏的经济活动,挖掘出数据的各个属性间可能的相互影响,为后续审计工作提供参考。
四、智能审计决策支持系统(IADSS)
1、IADSS的特点。与AES相比,人工智能的另一个分支,以神经网络为代表的数据挖掘系统(DMS)具有良好的自组织、自学习和自适应能力,因而适用于处理复杂问题和开放系统,这弥补了AES的不足。同样,DMS也有其弱点:数据挖掘的知识是分布在整个系统内部,对审计人员而言是个黑箱;而且其对于自己的结论不能作出合理的解释。因此,在ADSS的基础上,融入AES与DMS,可以充分发挥各自的优势,向IADSS发展。
2、IADSS的构建。IADSS的结构是在传统三库ADSS的基础上增设知识库和推理机,在人机对话子系统加入自然语言处理系统(LS),并在四库之间插入问题处理系统(PPS)而构成的四库系统结构。四库系统的智能人机接口接受用自然语言或接近自然语言的方式表达的决策问题及决策目标,这较大程度地改变了人机界面的性能。决策者可以使用自然语言来提出决策问题,由LS通过语法、语义结构分析等方法转换成系统能理解的形式。运行后,系统则以决策者能清晰理解的或制定的方式输出求解过程与结果。PPS是IADSS中最活跃的部件,它既要识别与分析问题,设计求解方案,还要为问题的求解调用四库中的数据、模型、方法及知识等资源,对半结构化或非结构化问题还要触发推理机作推理或新知识的推求。在分析被审计单位海量数据和复杂经济业务的条件下,可以对被审计单位原始数据(数据池)按审计风险分析目的进行有机归并(数据泵),利用关联规则的挖掘算法,提取其反映相关性的规则、规律和模式,并对这些规则、规律和模式进行分析和评价,有效地形成审计知识(知识库)。伴随着IADSS的发展,这种学习人脑思维活动的程序会日臻完善,但无论该技术如何发展,其毕竟是审计人员思维的外化,是计算机审计的高级形式,其作用不是完全替代审计人员,而是代替审计人员完成大量繁琐的线性或非线性逻辑思维过程,减轻审计人员的工作强度。^
第五篇:安全监管执法与决策支持系统使用与管理办法
山西省煤炭工业厅关于印发《山西省煤炭工业厅煤矿安全监管执法与决策支持系统使用与管理办法(试行)》的通知
各市煤炭工业局、各国有重点煤炭集团公司、中煤平朔煤业有限责任公司、山西煤炭运销集团有限公司、山西煤炭进出口集团有限公司、山西正华实业集团有限责任公司:
为了规范山西省煤矿安全监管执法与决策支持系统的建设、管理、使用和维护,保证系统的正常运行,充分发挥其在煤矿安全生产中的作用,省厅依据国发《国务院关于进一步加强企业安全生产工作的通知》((2010)23号)、《煤炭工业矿井监测监控系统装备配置标准》(GB 50581-2010)和《煤矿安全生产监控系统联网技术要求》(MT/T 1116-2011),制定了《山西省煤炭工业厅煤矿安全监管执法与决策支持系统使用与管理办法(试行)》,现印发你们,请你们认真贯彻执行。
二〇一一年十二月二日 山西省煤炭工业厅煤矿安全监管执法与决策支持系统
使用与管理办法(试行)
第一章
总则
第一条 为了规范山西省煤矿安全监管执法与决策支持系统(简称执法网系统)的建设、管理、使用和维护,保证系统的正常运行,充分发挥其在煤矿安全生产中的作用,依据《国务院关于进一步加强企业安全生产工作的通知》(国发(2010)23号)、《煤炭工业矿井监测监控系统装备配置标准》(GB 50581-2010)和《煤矿安全生产监控系统联网技术要求》(MT/T 1116-2011)制定本办法。
第二条 执法网系统是为了提高行政效率、加大对煤矿企业的安全监管力度,促进煤矿安全生产,根据相关国家标准,利用煤炭专网作为传输途径建立的煤矿安全监控系统、煤炭产量监测系统、煤矿井下作业人员管理系统由煤矿至县(集团、子公司)、市(省属集团)、省煤矿监管部门的同一平台联网、实现数据综合利用、对煤矿安全生产进行网络监管的计算机信息系统。
第三条 煤矿企业应当执行煤炭管理部门依据有关法律法规利用执法网系统下达的网络监管指令。
第二章 组织机构和职责
第四条 各级煤炭管理部门、集团公司和煤矿企业的调度机构(总调度室)负责执法网系统的管理和使用。
第五条 各级煤炭管理部门、集团公司和煤矿企业要建立和完善各项管理制度;确定分管领导,配备值班人员,每班值班人员不少于2人,实行24小时值班。
三章 系统的建设
第六条 省煤炭工业厅负责执法网系统的统一规划,对执法网系统建设工作进行指导。
第七条 各级煤炭管理部门、集团公司和煤矿企业应当使用省煤炭工业厅统一开发的执法网系统软件,配齐相应的硬件及系统软件。如因监管需求需对执法网软件进行适应性改动,应经省煤炭工业厅同意,并在保持软件主体结构、数据标准不变的情况下进行。
第八条 各级执法网系统应配备时间同步设备或采取定期进行人工对时等措施,保证各级执法网服务器的时间同步。
第九条 各煤矿企业要按照AQ6201-2006、AQ1029-2007、AQ6210-2007、AQ1048-2007、MT1082-2008、MT1080-2008等相关国家标准建设完善安全监控系统、井下作业人员管理系统、产量监测监控系统;按照《山西省煤矿安全监管执法与决策系统数据采集标准》为执法网系统上传合格的数据。用于上传数据的上传服务器要实现一主用一备用,并配备专用于执法网的终端。
第十条 安装执法网主机系统的机房要符合国家电子计算机机房的相关规定。煤矿企业的机房要有双回路供电,各机房均应配备在线式不间断电源系统(简称UPS),保证电网停电后执法网系统连续运行时间不小于2小时。
第十一条 新建、改扩建、资源整合等建设矿井的执法网系统建设要与矿井建设同时设计、同时施工、同时验收。没有执法网终端或不能向执法网上传合格数据的矿井,不得通过投产验收。
第四章
系统使用和管理
第十二条 执法网系统信息接收和报警处理是指对煤矿安全监控系统、煤炭产量监测系统、煤矿井下作业人员管理系统等系统上传的各种配置数据、实时数据、报警数据及系统异常数据的接收和处理。
第十三条 执法网系统实行分级管理。省、市煤炭管理部门的调度机构(总调度室)负责本辖区内执法网监测数据的统计、分析,对下级煤炭管理机构执法网系统的运行进行指导、考核。县级煤炭管理部门、集团公司的调度机构(总调度室)负责对辖区内煤矿的监测监管、监管指令的下达和督办,并对煤矿企业执法网系统运行情况进行监管、指导和考核。
第十四条 省煤炭工业厅调度机构应在每月10日前对上月全省执法网系统运行情况、报警及处理情况等进行分析、总结,并通报全省。
第十五条 市煤炭管理部门调度机构应每月5日前对上月本市执法网系统运行情况、报警及处理情况等进行分析、总结,通报全市并上报省煤炭工业厅调度机构。
第十六条 县级煤炭管理部门、集团公司的调度机构(总调度室)值班人员应监视执法网系统显示的各类报警、异常和执法指令执行情况的反馈等信息,对执法网系统显示的各种报警、异常情况应按有关 规定处理,对未及时处理的报警信息应依据相关规定通过执法网系统向煤矿企业下达指令,并督促整改。值班人员应做好当班运行记录,打印有关报表,每周对所辖煤矿企业的执法网运行情况、报警及处理情况等进行分析、总结,通报所辖煤矿企业并上报上一级监管部门。
第十七条 煤矿调度机构(总调度室)应及时填写和更新煤矿基础数据和矿图;认真监视执法网终端显示的各种信息,通过执法网终端接收上级煤炭监管部门下达的监管指令,上报监管指令的处理结果。