第一篇:建筑垃圾 中英文讲稿
1:我是Cora,美国建筑与环境保护协会的学者。
I'm Cora, the scholar of America Association of Architectural and Environmental protection.Today,my topic is”Review of urban construction waste”.2:the first,What is construction waste? The second,Classification of construction waste.The third,Impact of construction waste on the environment.The forth,CDW Processing Technology.3:定义:建筑废弃物(即建筑垃圾)是指建设、施工单位或个人对各类建筑物、构筑物等进行建设、拆迁、修缮及居民装饰房屋过程中所产生的余泥、余渣、泥浆及其他废弃物。
“Construction waste” means any substance, matter or thing which is generated as a result of construction work and abandoned whether or not it has been processed or stockpiled before being abandoned.4建筑垃圾是指对建筑物、构筑物的建设、维修、拆除和装修的活动中产生的对建筑物本身无用或不需要的排出物料。
It is a mixture of surplus materials arising from site clearance, excavation, construction, refurbishment, renovation, demolition and road works.根据经验,新建项目产生的垃圾数量大约为建筑项目原材料总量的10%--20%.According to experience, the amount of garbage generated new project is about 10%--20% of the total construction project of raw materials 5超过90%的建筑垃圾是惰性的,被称为公众填料。公众填料包括碎片,瓦砾,泥土和混凝土,适用于土地复垦和土地平整。
Over 90% of construction waste are inert and are known as public fill.Public fill includes debris, rubble, earth and concrete which is suitable for land reclamation and site formation.剩余的非惰性物质的建筑废物包括竹,木材,植被,包装废弃物和其他有机材料。相反,公众填料,非惰性废物是不适合的土地复垦和受重用/可回收物品的回收,被弃置在堆填区。
The remaining non-inert substances in construction waste include bamboo, timber, vegetation, packaging waste and other organic materials.In contrast to public fill, non-inert waste is not suitable for land reclamation and subject to recovery of reusable/ recyclable items, is disposed of at landfills.6建筑业的贡献的废物流中的一个主要部分在美国。
The construction industry contributes a major portion of the waste stream in the United States.Reduction of construction waste is a major topic.美国建筑材料消耗
US Construction Material Consumption 从图中可以看出建筑材料消耗急剧增加,尤其是近20年。
As can be seen from the graph construction material consumption increased rapidly, especially in recent 20 years.欧洲CDW增长和中国建筑生产总值
EU CDW increase-China Construction Product “中国可能成为最大的建筑浪费国”.China may become the biggest construction waste States.7:随着城市化和人口膨胀,垃圾问题严重得多,这些年比过去;因此,废物管理已经以保护环境已经从政府压制的问题。
With the urbanization and population expansion ,the waste problems are much more serious these year than in past;therefore, waste management had been a pressed issue from the government in order to protect the environment.建筑垃圾的扩张不仅是资源的巨大消耗,但也导致了严重的环境污染,从而创造负面影响的环保产业和社会的可持续发展。
The expansion of construction wastes not only represents an enormous dissipation of resources but also results in serious environmental pollution, thus creating negative effects to the sustainable development of environmental industry and society.8:数量大,普遍性,经常性,污染性是建筑垃圾的特点。
The number of large, widespread, frequent, pollution is characteristic of construction waste.there are so many construction waste that more and more lands are occupied.9:由于有越来越多的高度房屋建筑和老城市的改造需求将不可避免地恶化了环境,而无需废物管理。
As there are highly increasing demands on house buildings and the rebuilding of the old cities will inevitably worsen the environment without waste management.如果没有强制性的规定和合同的要求(更糟糕的是,有没有这样的法律规定,目前),大多数项目都混了不同的废物一起送到垃圾填埋场直接。
Without compulsory rules and contract requirements(and what’s more, there is no this kind of laws and requirements at present), most projects all mixed the different waste together and send to landfill directly.10有些垃圾直接被放置在河边,与此同时有些户外垃圾被雨水浸泡,导致的结果是水污染。
Some garbage is placed directly in the river, while some rain soaked outdoor trash, resulting in the pollution.11 12Health & Ecological Risks deriving
from CDW(f.e.asbestos fibres)建筑垃圾对卫生和生态造成的危险(如石棉纤维)
German Reichstag Berlin, the demolition of this building in the center of east Berlin was delayed for several years due to the ‘asbestos’ problems.位于德国东柏林市中心的德国国会大厦。由于“石棉”问题,这座大厦的拆除延迟了几年。
Other contamination or hazardous waste materials: 其他受污染或危险废物材料包括:
PCBs, Cyanides, Cr VI, Heavy metals(lead containing paints, mercury switches, neon bulbs,..), mineral oil, solvents, >1 % asbestos containing materials, pesticides, radioactive contamination,..PCB、氰化物、Cr VI、重金属(含铅油漆、水银开关、氖灯管等)、矿物油、溶剂、石棉含量大于1%的材料、杀虫剂、放射性污染物等 13建筑公司用较低的沉积成本和较低的受益减少废物的产生采购成本原生材料。
Construction companies benefit from reduced waste generation by lower deposition costs and lower purchasing costs virgin materials.施工活动产生的各类建筑垃圾,包括土壤,污泥(剩余的涂料和抛弃材料等)等,其中还包括可变的可回收材料,如钢材和木材的浪费。可回收的废物一些研究发达国家作出的比例高达95%,即整体的废物,只有百分之五是不可回收。建筑活动从固体废物的生产和不可回收利用的材料(中国政府说服近40%的天然资源和能源使用的40%(吴,2004),但浪费了大约30十亿人民币($ 1=8.0273元)2004年)。为了节省能源和资源,固体废物管理,包括建筑垃圾的管理,是一个必要的过程。
Construction activities are generating various types of construction waste, including soil, sludge(surplus materials and abandon materials, etc), etc., which is also included variable recyclable materials, such as steel and timber waste.The proportion of recyclable waste to some research made in developed countries, is up to 95%, namely, only five percent of the overall waste is unrecyclable.Construction activities convinced nearly 40 percent of the natural resources and used 40 percent of energy(Wu, 2004), but wasted around 30 billion yuan(1$=8.0273yuan)from the productions of solid wastes and by not recycling materials(China Government, 2004).To save the energy and resources, the solid waste management, including construction waste management, is a necessary procedure.15、16:美国每年有1亿吨废弃混凝土被加工成骨料用于工程建设,其中,68%的再生骨料被用于道路基础建设,6%被用于搅拌混凝土,9%被用于搅拌沥青混凝土,3%被用于边坡防护,7%被用于回填基坑,7%被用在其他地方。
America every year 1 tons of waste concrete is processed into aggregate used in engineering construction, among them, 68% recycled aggregate is used for road infrastructure, 6% is used for mixing of concrete, 9% is used for mixing the asphalt concrete, 3% is used for slope protection, 7% were used for backfilling foundation pit, 7% are used elsewhere.17当正确的排序,材料如混凝土和沥青可再循环,用于建筑。
When properly sorted, materials such as concrete and asphalt can be recycled for use in construction.18处置公众填料在公众填土区和混合建筑废物分类设施,垃圾填埋场或已为建筑垃圾管理的主要手段。对于可持续发展,我们不能再仅仅依靠填海接受大部分惰性建筑废物。因此,政府正在研究如何减少并促进再利用和回收的建筑垃圾。尽管如此,仍然会有那些需要处理的材料大量,无论是在公众填料接收设施或堆填区。
Disposal of public fill at public filling areas and mixed construction waste at sorting facilities or landfills has been the major approach for construction waste management.For sustainable development, we can no longer rely solely on reclamation to accept most of the inert construction waste.As such, the government is examining ways to reduce and also to promote the reuse and recycling of construction waste.Nevertheless, there will still be a substantial amount of materials that require disposal, either at public fill reception facilities or at landfills.20C&DW Treatment 建筑拆迁废物
material recovery & safe landfill space 材料回收,节省填埋空间 EU 2004: CDW 50% of solid waste, 245 mio t/a in Germany 2004年欧洲CDW占固体废弃物50%;德国CDW年产量为2.45亿吨 21 Mobile & Fixed CDW Recyling Plants 移动式和固定式回收厂
Germany 2002 = 2290 plants 2002年德国拥有2290座工厂
提高环境意识和沉积废物的成本增加造成了许多施工企业重新评估他们的做法。
Both increased environmental awareness and increased cost for depositing waste have caused many construction companies to reevaluate their practices.22完善的立法执法,建立全面的环境法是必要的
Improving the legislative enforcement and build up comprehensive environmental law are necessary
第二篇:建筑垃圾
建筑垃圾循环利用 前言
1.1 定义
建筑垃圾是指建设、施工单位或个人对各类建筑物、构筑物等进行建设、拆迁、修缮或装饰房屋过程中所产生的余泥、余渣、泥浆及其他废弃物。
1.2 来源
建筑垃圾来源广泛,主要产生于工程建设的新建施工阶段、装饰装修阶段、改造阶段、拆除阶段。其中,新建工程施工产生的垃圾量约占15%,工程拆除阶段的建筑垃圾量约占70%,装修阶段的建筑垃圾量约占10%。
1.3 构成
我国建筑垃圾构成中,主要是混凝土、砖石渣土、陶瓷、木材、玻璃等废弃混合物[1]见图 1。构成建筑垃圾最主要的组分是混凝土,占58.8%。这是由于现代建筑对结构稳定性要求非常高,致使大量钢筋混凝土结构替代了传统的砖混结构,混凝土的用量随之增加。此外,砖石、玻璃、金属、瓦片和沥青也是构成建筑垃圾的主要组分。
建筑垃圾的成分多、复杂,且随着我国建筑形式的多样化发展,建筑垃圾成分有进一步增加的趋势。同时,加之建筑垃圾理化特性的不确定性,使其处理和再生利用的难度加大,给建筑垃圾资源化利用开展增加了一定的困难。
1.4国内建筑垃圾排放情况
表1为2005年-2010年全图建筑垃圾产量统计情况。由表1可知,建筑垃圾产生量在我国逐年稳步增长,我国每年建筑垃圾产生量(含渣土)占垃圾总量的 30%-40%。图 2 为国内主要城市的年平均排放量,随着城市建设的不断扩大,城市建筑废弃物排放量呈现着迅猛增长趋势[1]。
随着城镇化建设和城市建设的快速发展,各类开发区的建设,数以万计的城郊村庄被夷为平地,宽敞整洁的道路纵横交错,清新亮丽的各类建筑拔地而起,于此产生了大量建筑垃圾。这些垃圾数量庞大,多数为简单填埋处理,有些干脆不进行任何处理,堆积如山。长期以来,我国在建筑垃圾的管理一直较为薄弱,建筑垃圾基本不经任何处理便被施工单位运往郊外或乡村,采用露天堆放的方式进行处置。成为城市环境新的杀手。
城镇化后拆除村庄的建筑垃圾得不到及时理,严重影响到土地的复垦,占用了宝贵的土地资源。居民装潢后的建筑垃圾因为没有合适的去处往往混迹于生活垃圾中,增加了生活垃圾处理的难度。违规倾倒、胡乱倾倒、部分路段建筑垃圾成灾,城乡接合部的道路两边、河边空地,常有夜间偷倒渣土、建筑垃圾的现象。
大量的建筑垃圾不仅占用大量土地,还会对环境造成很大的危害,表现在:(1)占用土地,破坏土壤;(2)污染水体;(3)污染空气;(4)影响市容,等等。
与此同时,经过这些年城市建设的高速发展,特别是房地产的大量开发,很多大宗建筑材料已经出现供不应求的状态,价格飞涨,有时出现排队等候供应的现象,有些因材料供应得不到保证而修改了设计或寻求替代品。建筑材料价格的大幅上升给建筑垃圾资源化利用带来了空间。
建筑垃圾的回收和循环再利用不仅能够保护环境,降低对环境的影响,采用科学管理和有效措施将其减量化和再利用,还可以节省大量的建设资金和资源。建筑垃圾中的许多废弃物经分拣、剔除或粉碎后,大多是可以作为再生资源重新利用的。如废钢筋、废铁丝、废电线和各种废钢配件等金属,经分拣、集中、重新回炉后,可以再加工制造成各种规格的钢材;砖、石、混凝土等废料经破碎后,可以替代砂,用于砌筑砂浆、抹灰砂浆、打混凝土垫层等,还可以用于制作砌块、铺道砖、花格砖等建材制品[2]。为了可持续发展的战略目标,迫切要求对建筑垃圾进行回收利用[3]。
国外在建筑垃圾的处理和利用方面早已成熟,美国、德国等国家凭借经济实力与科技优势,采用高新技术处理建筑垃圾,给我们提供了许多先进经验。
美国采用微波技术处理回收的沥青路面,利用率达100%,成本降低且质量相同,既节约了清运和处理费用,又大大地减轻了环境污染。美国政府制定的《超级基金法》规定:“任何生产有工业废弃物的企业,必须自行妥善处理,不得擅自随意倾卸”。在建筑垃圾形成之前,就通过科学管理和有效的控制措施将其减量化。美国住宅营造商协会正在推广一种“资源保护屋”,其墙壁是用回收的轮胎和铝合金废料建成的,屋架所用的大部分钢料是从建筑工地上回收来的,所用的板材是锯末和碎木料加上20%的聚乙烯制成,屋面的主要原料是旧的报纸和纸板箱。这种住宅不仅积极利用了废弃的金属、木料、纸板,而且比较好的解决了住房紧张和环境保护之间的矛盾。
在德国,塑料很容易回收以重新利用或者作为发电站发电的燃料。玻璃、钢材、砖和结构性木材也常常通过地方议会制定的回收计划被收集。德国的干馏燃烧垃圾处理工艺,可以使垃圾中各种再生材料干净地分离出来,再回收利用,有效地解决了垃圾占用土地的问题[4]。
日本从20 世纪60 年代末就注意到建筑垃圾资源再利用的重要性,并将建筑垃圾视为“建筑副产品”日本还制定了一系列与建筑副产品相关的完整而又全面的措施、政策和法律,并规定所有的建筑垃圾都必须利用“再生资源化设备”进行相关处理,可见日本对建筑垃圾处理的重视程度。目前日本的建筑垃圾再利用率已经达到了100%。
法国通过设立评估系统对施工的整个过程进行监控,首先是对新的建筑产品进行评估,从源头上评估建筑垃圾的产量;其次,在施工、改善及清拆工程中,对工地废物的生产及收集做出预测评估,以便及时确定出相关回收应用程序,为建筑垃圾的处理的可行性做出评定,并对产品的性能进行评估[5]。
建筑废弃物不是垃圾是有效资源。目前国内外对建筑废弃物的应用主要在以下几个方面: ①填埋对于产生的污泥大部分采取填埋的方式处理,也有一部分经过脱水处理后做回填或园艺用土等。②再生骨料一般用再生利用率较大的混凝土、砂浆、石、砖瓦等分级粉碎后加工而成。③再生混凝土一般的建筑垃圾就是指混凝土。④再生砌块用再生砌块制作再生路面砖。⑤再生路面旧混凝土的再生利用、沥青路面再生利用。水泥混合材
水泥工业是自然资源和能源的消耗大户, 也是多种固体废弃物的消纳大户。为了提高建筑垃圾再生利用效率,进行了利用建筑垃圾作为水泥混合材的试验研究, 以期为其全成分资源化利用寻求新的途径[6]。
2.1原材料
建筑垃圾: 烟台市某旧建筑物的拆除物, 主要是粘有胶砂的废砖块、废混凝土和其他渣土。其化学组成如表1 所示。
水泥与水泥熟料: 烟台东源水泥有限公司生产的42.5R普通硅酸盐水泥性能见表2。该厂的42.5硅酸盐水泥熟料, 经5kg 试验球磨机粉磨45min, 细度为0.08mm 方孔筛筛余7.7% , 加入5% 二水石膏后的性能见表2。石膏: 工业用二水石膏, SO3 含量42.3%。标准砂: 国产ISO水泥胶砂强度检验标准砂。
2.2 试验方法
试验按照水泥生产的方法进行, 将建筑垃圾作为水泥混合材与水泥熟料、二水石膏按照设计的配合比共同粉磨制成水泥, 然后测定该水泥的强度及其他性能指标。水泥细度、凝结时间、安定性等指标分别按相应的国家标准进行检测。考虑到废砖与废混凝土性质有差异, 所以试验将两者分开, 分别探讨对水泥性能的影响。细度控制在0.08mm 方孔筛筛余7.8%左右。
2.3 试验结果与分析
试样的设计配合比及强度试验结果见表3。
从表3的数据可见, 当建筑垃圾掺量在10%时, 试样强度与42.5R普通硅酸盐水泥强度基本相当, 掺量为15%时, 也能够达到42.5普通硅酸盐水泥的强度要求, 所以从胶砂强度指标来看, 建筑垃圾可以作为水泥混合材。但随着建筑垃圾掺量的增大, 试样强度下降较大, 特别是抗压强度下降更为明显, 表明在大掺量使用建筑垃圾时, 应采取一定的措施, 如提高水泥细度、加入激发剂等, 否则当掺量为25%时, 只能生产32.5水泥。另外, 还可以看出掺废混凝土的试样各龄期强度普遍高于掺废砖的试样, 特别是早期强度差距更明显, 当掺量为15%时, A-2试样仍能达到42.5R普通硅酸盐水泥的要求, 而B-2由于早强较低只能达到42.5普通硅酸盐水泥的要求。
利用建筑垃圾生产水泥, 除胶砂强度满足要求外, 还应进行凝结时间、安定性等性能检测, 结果见表5。
水泥凝结时间随着建筑垃圾掺量的增加而延长, 废砖试样凝结时间较废混凝土试样长, 加入激发剂后, 初凝时间明显缩短, 总之, 各试样的凝结时间、安定性均符合水泥的国家标准要求。
2.4 结论
建筑垃圾作为水泥混合材是可行的, 当掺量在15%以下时, 可生产42.5R或42.5普通硅酸盐水泥, 利用建筑垃圾生产水泥, 不改变水泥厂原来的生产工艺, 利用废物降低了生产成本, 技术上可行, 经济上合理, 在建设节约型社会、大力发展循环经济的今天有着广阔的应用前景。建筑垃圾再生混合骨料配制透水性混凝土
透水性混凝土是指空隙率为15%-25% 的混凝土,也称作无砂混凝土,其由特定级配的骨料、胶凝材料(水泥)、水(可含外加剂和掺和料)等按特定比例经特殊工艺制成的,内部含有大量贯通性孔隙的蜂窝状混凝土制品。透水性混凝土大致可看作由三部分组成: 粗骨料形成的骨架、胶凝材料形成的胶结层及它们之间的孔隙。为研究建筑垃圾再生混合骨料配制透水性混凝土的可行性,下面通过实验对不同配合比下配制的透水性混凝土的强度及透水性进行研究[7]。
3.1实验方案
基于对混凝土理论分析和大量实验数据处理的基础上,透水性混凝土配合比选定设计的主要参数及其范围分别为: 水灰比(0.40,0.35,0.30),骨灰比(4.5,4.0,3.5),砂率(20%,15%,10%),以此三个因素为基础进行正交试验,测定不同配比下透水性混凝土试件的抗压强度、劈裂抗拉强度及透水系数。实验所采用的再生混合骨料由山东某建材公司提供,由回收的各种建筑垃圾直接通过机械破碎而来,其所含的成分为: 细骨料0mm-5mm、粗骨料5mm-10mm;试验所用的水泥为42.5级普通硅酸盐水泥;所用的添加剂为高效减水剂;拌合水为普通自来水。
3.2 试验方法
试验所用的混凝土拌和物均通过人工搅拌的方式制备,且按照GB/T50080-2002 普通混凝土拌合物理性能试验方法标准操作。本试验所制备的试件均为100 mm 的立方体试件,成型方法采用“静压成型法”,制作完成24 h 后拆模,并在试件标准养护条件(温度20 ℃ ± 2 ℃、相对湿度在95%以上)下养护至28 d 期龄,然后再进行测试。抗压强度和劈裂抗拉强度测试按照GB/T50081-2002 普通混凝土力学性能试验方法标准操作,所用压力机型号为XL.04-NYL-2000C,其最大试验力为2 000 kN。透水系数测定方法借鉴日本混凝土工学协会推荐的大孔混凝土透水性试验方法,试验采用定水头的方法,并根据达西定律测量透水性混凝土的透水系。
3.3 结果分析
每组试验均采用5个试件进行测试,取其均值作为最终结果。测得不同水灰比、不同骨灰比及不同砂率条件下,再生混合骨料透水性混凝土的抗压强度、劈裂抗拉强度以及透水系数见表2。由表2 可知,由此再生混合骨料制成的透水性混凝土的抗压强度比较低,远小于普通C30 混凝土的抗压强度,其最小抗压强度为11.2MPa,最大抗压强度20.6MPa,主要集中在10MPa-20MPa,而普通C30混凝土的抗压强度为30MPa 左右;再生混合骨料制成的透水性混凝土的劈裂抗拉强度与普通C30混凝土的劈裂抗拉强度相差不大,均在2 MPa左右;透水系数在1.50 cm/s 左右。
当配合比为水灰比0.4、骨灰比3.5、砂率20% 的情况下,混凝土的抗压强度可达到20.6 MPa,基本可达到路面砖合格品对力学性能的要求,此时透水系数可达到1.45 cm/s,具有较好的透水性能,按此配合比制作的混凝土产品可取得较好的效益。水泥孰料
4.1 原料成分 石灰石、高硅砂岩、低硅砂岩、铁尾矿粉和煤粉取自某水泥厂。建筑垃圾取自南京市鼓楼区国家电网拆除工地,是典型的砖混结构的建筑,以砖瓦、渣土和混凝土为主。建筑垃圾和其他原料的化学成分见表1。
由表1可以看出,建筑垃圾的主要成分是SiO2、CaO,同时还含有少量的CaCO3和Ca(OH)2,这些成分除了是水泥引入外,还有就是混凝土的集料,其可以作为煅烧水泥的原料[8]。
建筑垃圾中还含有少量的Cl-、R2O、SO3,其中Cl-的含量只有0.035%,试验中建筑垃圾的最高掺量20%,掺入的碱含量在0.442%,对烧成熟料的化学分析表明,其碱含量满足相关标准。
4.2 生料的制备
先用颚式破碎机将建筑垃圾破碎成0-20mm 的颗粒,用2.36mm 方孔筛筛除0-2.36mm 的细小颗粒,因为这一部分主要是河砂,SiO2含量较高,活性差,影 响生料的易烧性和易磨性。再将2.36-20mm 的颗粒球磨至80μm 方孔筛筛余≤10%。
将建筑垃圾按不同比例替代部分砂岩与石灰石进行配料,并外掺3.95%的煤灰,控制率值为KH=0.89±0.02,SM=2.5±0.2,IM=1.5±0.2,见表2。
KH:表示水泥熟料中的总CaO含量扣除饱和碱性氧化物(如Al2O3、Fe2O3)所需要的氧化钙后,剩下的与二氧化硅化合的氧化钙的含量与理论上二氧化硅全部化合成硅酸三钙所需要的氧化钙含量的比值。简言之,石灰饱和系数表示熟料中二氧化硅被氧化钙饱和成硅酸三钙的程度。
SM:是指硅酸盐水泥熟料中SiO2含量与Al2O3加Fe2O3含量的比值[SiO2/(Al2O3+Fe2O3)]。SM值过高时,熟料较难烧成,煅烧时液相量较少,不易挂窑皮;随SM值的降低,液相量增加,对熟料的易烧性和操作有利,但SM值过低,熟料强度低,窑内易结圈,结大块,操作困难。
IM:硅酸盐水泥熟料中三氧化二铝含量与三氧化二铁含量的比值(Al2O3/Fe2O3)。它反映水泥熟料中铝酸三钙(3CaO·Al2O3)与铁铝酸四钙(4CaO·Al2O3·Fe2O3)的相对含量。铝氧率过高时,则铝酸三钙含量多,煅烧时液相黏度较大,不利于游离氧化钙的吸收。过低时,生料烧结范围变窄,看火操作比较困难,且对水泥凝结有不良影响。
将上述各生料混合均匀后与蒸馏水以100∶5 的比例混匀,在25MPa 的压力下制样,然后置于105℃的烘箱中烘1h。在高温炉中以10℃/min 的升温速率,在1 450℃的高温下保温30min,取出后置于空气中急冷。
4.3 熟料的性能分析
4.3.1熟料中fCaO 含量
熟料煅烧时分别在1 300℃、1 350℃、1 400℃和1 450℃下保温30min,取出急冷后磨细,并全部通过80μm 方孔筛,采用乙二醇-甘油法测定fCaO 含量,结果见图3。
fCaO是游离氧化钙(或称为活性的石灰质)在水泥水化、硬化的过程中,fCaO在水泥具有一定的强度后才开始水化,并伴随一定的体积膨胀,从而导致混凝土内部产生巨大的膨胀应力,致使混凝土的强度急剧下降。当膨胀应力超过混凝土的强度极限时,就会引起混凝土的开裂和损坏。
从图3 可以看出,随着煅烧温度升高和建筑垃圾掺加量的增多,fCaO 的含量逐渐减少,说明建筑垃圾对水泥熟料的烧成有促进作用,可以改善生料的易烧性。
4.3.2熟料的XRD 分析
熟料的XRD 图谱见图4。
图4 表明,在同样的率值和煅烧条件下,几种熟料的XRD 图谱基本一致,掺建筑垃圾烧制的熟料主要矿物仍是C3S、C2S、C3A 和C4AF,这几种矿物的特征峰清晰可见,与不掺建筑垃圾的熟料无明显差异。4.3.3水泥的强度试验
熟料粉磨后以95∶5 的比例和石膏混匀后制成水泥,将水泥、标准砂和水按1∶3.0∶0.5 的比例,制成4cm×4cm×16cm 的试块进行试验,在标准养护条件下分别养护3d 和28d,试验结果见图5。
由图5 可见,各试样的3d 抗压强度基本相当,而28d 抗压强度基本在50MPa 以上,所以用建筑垃圾替代部分生料可以制备出强度较高的熟料。
4.4 结论
建筑垃圾可以代替部分原料来煅烧熟料,熟料中fCaO 含量符合国家标准,矿物比例合理,水泥胶砂的3d 和28d 抗压强度较高,28d 抗压强度与不掺建筑垃圾的试样相差不大。路基回填
5.1 性能要求
5.1.1建筑垃圾回填路基级配要求
路基填筑主要要求保证填料密实,对级配的要求不大。建筑垃圾一般是由各种粒径的颗粒组成,且级配差、大颗粒所占比例较大,故不宜直接用作路基填料,必须经过破碎处理并改良后才能使用。经破碎的建筑垃圾,根据大于4.75mm和0.075mm的颗粒含量,分为Ⅰ类和Ⅱ类,并应用于路基的不同部位,分类情况见表1。
要严格控制路基压实度,因为路基整体的强度、刚度以及平整度等都依托于路基结构层的充分压实,只有保证合格的压实度才能使路基、路面的使用寿命得到保障甚至延长。为保证路基的压实度,填料有如下要求:路床填料中粗料的比例为75%-85%,最大粒径应小于60mm;路堤填料中粗料的比例为15%-75%,最大粒径应小于200mm。
5.1.2建筑垃圾回填路基力学指标
可采用压碎值、塑性指数、单轴抗压强度、承载比(CBR)作为建筑垃圾力学指标。依据路基规范中对填石路基压碎值的要求,建筑垃圾作路床填料时压碎值不大于40%,作路堤填料时压碎值不大于50%;建筑垃圾作上路床填料时CBR≥8%,作下路床填料时CBR≥5%;建筑垃圾的塑性指数需不大于26%;石料单轴抗压强度不应小于15Mpa。
CBR(California bearing ratio)是美国加利福尼亚州提出的一种评定基层材料承载能力的试验方法。承载能力以材料抵抗局部荷载压入变形的能力表征,并采用高质量标准碎石的承载能力为标准,以相对值的百分数表示CBR值。这种方法后来也用于评定土基的强度。
5.1.3建筑垃圾回填路基稳定性要求
为了保证路基填料的稳定性,参照《建筑垃圾填筑路基设计施工技术指南》中对于建筑垃圾填料的技术要求,采用建筑垃圾填料粒径小于4.75mm细料进行有机质含量和易溶盐含量试验。作为路基填料的建筑垃圾,腐殖质的含量应不大于5%,有机质含量不大于5%,易溶盐的含量不大于0.3%。建筑垃圾填料中除混凝土、砂浆、砖瓦、石和土之外的杂物含量不大于1%。
5.2建筑垃圾的处理
5.2.1建筑垃圾的预处理
(1)人工挑拣建筑垃圾里的有机垃圾。(2)利用破碎锤对超大块材料进行预先破碎,人工剪除钢筋以避免大量钢筋缠绕。
(3)洒水除尘,湿法施工,避免生产时扬尘过大。(4)预先通过筛孔为200mm的筛分设备,分离满足工程要求的建筑垃圾并单独存放。其余建筑垃圾需要进一步加工破碎。5.2.2建筑垃圾的破碎
较大粒径的建筑垃圾,需进行破碎处理,根据具体工程及施工路段确定破碎程度。宜选用生产能力满足要求,可靠性高、易于运输、操作和维修简单、符合环保标准的破碎设备。目前,较为先进的破碎设备每小时可加工建筑垃圾200-350t。其中有些设备配有磁性分离器,能有效分离建筑垃圾中的钢筋、铁屑;最后进行筛分,去处超大颗粒,或筛分成不同的粒径再按级配要求进行掺配,使材料的级配能够达到规范的要求。经破碎、筛分处理的建筑垃圾,可用于路基填筑。
5.3 回填
(1)基底处理。施工前,应按规定清除原地面表层植被,挖除树根及杂草,并将挖除的表层土集中堆放。原地面的低洼和坑洞,必须经仔细填补及压实,对于松散处应松土晾晒并重新碾压,达到平整密实。按照《公路路基施工技术规范》(JTG F10-2006)的规定,高速公路、一级公路和二级公路路基 基底压实度不应小于90%。两侧坡脚各超宽50cm,确保碾压质量。
(2)摊铺、整平。在摊铺前,首先根据试验数据确定建筑垃圾在路基填筑时的松铺系数,以确定松铺厚度。根据运输车车载体积、松铺厚度,在填筑段用石灰画好方格网。采用后退式摊铺法铺筑建筑垃圾。布料后用推土机进行初平,为避免离析,用铲车进行二次翻拌。初平后再撒布1层5cm 厚的建筑垃圾细料,并采用光轮压路机稳压1-2遍,最后采用平地机进行精平。沿路线纵向方向,利用平地机整平,保持中间高两边低,整平后无明显的高差台阶。
(3)碾压。采用洒水车洒水,确保铺层材料的最佳含水量。要均匀洒水,避免出现水分分布不均现象
碾压组合方案:先使18t自行式羊角碾与18t光轮压路机的组合对建筑垃圾填料进行碾压,然后采用20t拖式振动羊角碾与18t光轮压路机的组合对填料进行最后的压实。碾压速度宜控制在3km·h-1,遵循先慢后快、先两边后中间的碾压原则。建筑垃圾的压实度随碾压遍数的增加而增加,达到一定程度后,再增加压实功率。建筑垃圾路基的碾压遍数应结合具体的工程性质和试验段施工情况确定,以沉降差2mm为标准确定碾压遍数。
5.4 质量检测
对于已完成的施工路基,应进行压实效果检测,主要方法如下。
(1)沉降量观测。在预先设置的沉降观测点上进行沉降量观测。具体方法为:将水准仪架在路基外,测量碾压前后各测点的读数差,即为各测点的沉降量。为防止压路机的振动对仪器高度产生影响,在远离路基处选一稳定点作为参照点,以检验仪器高度是否变化。经过稳压、强振碾压和静压三个阶段的观测,得出沉降量的变化趋势,若波动范围由逐渐大变小,且在接近压实状态下,沉降量小于2mm,则说明压实过程中填料的刚度和整体密实性逐渐加大,稳定性好。该观测方法简便易行。
(2)弯沉法检测。利用贝克曼梁或落锤式弯沉仪(FWD)测定路基的回弹弯沉来评价建筑垃圾回填路基的整体承载能力。按照相关规范对选定路段进行弯沉测试,通过计算得出该路段的代表弯沉值,然后与规范要求值进行对比,如果小于规范要求值,说明该路段的路基整体承载能力达到要求,反之,则说明路基整体承载能力较差,或说明路基压实质量未达到相应的要求。
(3)密度检测法(灌砂法)。建筑垃圾填筑路基的碾压过程是颗粒级配重新排列的过程,每隔一定距离在不同截面位置对碾压层进行压实度检测。路 基压实度不应小于96%。
5.5 结论
(1)通过对建筑垃圾回填路基施工的总结与研究,针对建筑垃圾粗、细集料比例不稳定,级配差等特点,建议先对其中超大粒径的颗粒进行预破、预筛分,分离出满足工程要求的建筑垃圾,再对其余建筑垃圾进行破碎、筛分。同时需在满足相应技术要求的前提下,进行地基处理、摊铺及碾压等施工工艺。
(2)通过对建筑垃圾回填路基施工工艺的分析研究与总结,提出了建筑垃圾回填路基施工质量控制关键技术。施工过程中,应对建筑垃圾的质量及均匀性进行严格控制,以保证其满足工程要求。同时为减少雨水对建筑垃圾回填路基的冲刷,建议对路床采用黏土封顶,在路基两侧加做包坡护肩土,包边宽度不小于1.0m,一般在1.0m-2.0m之间。综合考虑建筑垃圾回填路基的特点,建议采用沉降量观测法对路基压实度进行检测。墙材
6.1 原材料
本次试验采用旧城改造砖混结构建筑垃圾。主要组成有85%左右的碎砖渣、10%左右的粉刷垃圾和5%左右的废土。建筑垃圾的掺用量为30%~50%;建筑垃圾的化学成分如表1[9]。
一般作为建筑垃圾烧结空心砖粘结剂的原材料比较多, 有黏土、页岩、膨润土、高塑性煤矸石等。从国家有关政策和经济性出发, 本试验采用山东临沂苍山页岩, 其化学成分和物理性能如表2。
页岩和建筑垃圾均采用试验厂的破碎工艺: 原料→铲车→胶带输送机→锤式破碎机→胶带输送机→滚筒筛。页岩和建筑垃圾分别破碎后, 按6∶4的比例混合, 由装载机送入下一道工序: 箱式给料机→胶带输送机→双轴搅拌机(加水)→高速细碎对辊机→胶带输送机→高效搅拌挤出机(补水)→双级真空挤出机。由于试验厂的条件限制, 混合料未进行陈化。原料处理后的混合料物理性能见表3。
6.2 成型干燥
混合料制备好后, 由胶带输送机直接输送到JZK50/45双级真空挤出机挤出成型, 通过自动切条机、自动切坯机后形成半成品砖坯。其成型参数为: 砖机最大成型挤出压力3.8MPa、真空度0.091%、成型水分16%、泥条速度9条/min。采用多孔砖(240mm×115mm×90mm)芯架, 成型过程顺利, 一次成型成功。砖坯质量表面光滑、外观整齐、尺寸准确。
干燥试验采用试验厂的逆流式隧道干燥室, 干燥热介质来自焙烧轮窑余热。由于本次试验生产的建筑垃圾烧结空心砖的批量不足以单独进行干燥, 所以将成型好的砖坯码在干燥车上, 每车码放6层, 共204块, 与试验厂的页岩烧结空心砖一同送入干燥室内进行干燥, 所以干燥制度和干燥过程与试验厂的页岩空心砖相同。由于建筑垃圾在砖坯中是很好的痩化剂, 具有抗收缩和抗开裂的作用, 干燥好的砖坯比较理想, 无干燥裂纹和缺陷。干燥过程的有关参数见表4。
6.3 焙烧
焙烧采用试验厂一座36门节能轮窑进行。轮窑断面3.8m, 半圆拱。考虑到节能轮窑工作断面温度的差异, 选择窑中部温差相对较小的断面进行建筑垃圾烧成,烧成温度约950℃~980℃范围内, 根据实验室的试验结果, 这个温度对建筑垃圾砖来说略显偏低。焙烧参数统计结果见表5。
6.4 性能测试
我们将中试产品按照《烧结多孔砖》(GB13544-2000)国家标准, 由国家建材墙体屋面材料质检中心进行全项检验, 其结果见表6。
6.5 结论
试验证明, 建筑垃圾掺量达到40%时, 可以生产出质量合格的产品。将来的产业化过程中, 建筑垃圾的掺量与生产工艺、粘结剂的种类和塑性、建筑垃圾的破碎细度等关系很大, 可以在30%~50%范围内。一般的粘结剂可以采用黏土、纸浆废渣、高塑性煤矸石、页岩、陶土、膨润土等。建筑垃圾烧结砖的生产工艺, 要特别注意破碎细度、成型性能和焙烧三个方面。
建筑垃圾的破碎应采取二级破碎。首先由细碎颚式破碎机进行一级破碎, 然后用锤式破碎机进行二级破碎。对于建筑垃圾实心砖, 最大颗粒直径应小于2.0 mm,粒径0.5mm以下的颗粒应占50%以上;烧结多孔砖, 最大颗粒直径小于1.5mm,粒径0.5mm以下的颗粒应占60%以上。
成型采用硬塑或半硬塑挤出成型。建筑垃圾和黏土原料成型水分控制在16%-18%之间, 建筑垃圾和页岩原料成型水分控制在15%~16%之间。挤出工作压力应按产品不同有所区别, 建筑垃圾实心砖挤出工作压力应在2.0MPa左右, 建筑垃圾多孔砖挤出工作压力应在2.5MPa~3.0MPa。成型挤出时的真空度, 可以在0.085%以上。
干燥对于建筑垃圾砖来说比较容易, 因此重点是在焙烧方面。由于建筑垃圾烧结砖的烧成温度比页岩砖和黏土砖高, 一般为1000℃~1050℃, 如果温度掌握不当,会出现强度降低、吸水率增大、耐久性不好等缺陷。
[1] 王 琼,於林锋.国内外建筑垃圾综合利用现状和国内发展建议[J].上海市建筑科学研究院,2014(04).[2] 季学宝.建筑垃圾问题和合理利用的思考[J].江西建材,2014(12).[3] 刘成林.建筑垃圾循环利用实践[J].再生资源与循环经济,2012(05).[4] 薛菊.建筑垃圾利用的现状研究[J].三峡大学土木水电学院,2010(05).[5] 李聪,张欣.浅谈施工企业在建筑垃圾回收利用中的重要性[J].施工技术,2014(05).[6] 赵鸣.不同建筑垃圾作水泥混合材的试验研究[J].烟台大学学报,2008(04).[7] 李鑫.徐学庆,谈建筑垃圾再生混合骨料配制透水性混凝土[J].山西建筑,2014(08).[8] 聂江婷.掺加拆除建筑垃圾水泥熟料的性能[J].水泥,2012(12).[9] 李寿德.建筑垃圾生产烧结空心砖工业性试验[J].新型墙材,2006(01).
第三篇:建筑垃圾
摘自于【我国建筑垃圾处理现状与分析】 王雷,许碧君,秦峰(上海环境翌生工程设计院,上海2∞232)
一、建筑垃圾的现状
随着我国社会经济的快速发展,建筑垃圾产 生量逐年增长。据估计[¨,2005年,全阑城市建 筑垃圾排放总量超过4亿t。2006年,仅上海市 建筑垃圾产生量就达2 500万t。飞速增长的建筑 |疲圾带来了诸多环境问题,也引起政府及民众的 关注纛重视。2005年6胃1霹,建设都颁布了 《娥市建筑垃圾管理规定》,标志着我国建筑垃圾 处理已步入规范管理的轨道。然而,建筑垃圾处 理涉及诸多环节,任褥环节静疏溱都会带来环境、社会和经济影响。笔者通过对圜内建筑垃圾处理 过程的调查研究,从系统学角度对建筑垃圾从产 生、收集、孛转、运输餮最终处置进行全过程分 析,提出建筑垃圾全过程管理的解决思路。
国内建筑垃圾处理现状: 建筑垃圾措建设、麓工单使或个人对各类建 筑物、构筑物等进行建设、拆迁、修缮及居民装 饰房屋过程中产生的余泥、余渣、泥浆及其他废 物。自20世纪90年代以来。随着大规模的城市 建设,城市建筑垃圾产生量猛增,建筑垃圾乱堆 蘸倒、污染道路等现象较力严重。2l世纪滏来,这种情况得以初步改善。部分大、中城市根据管 理的实际需要,相继颁布了建筑垃圾或工程渣土 管理规定;初步建立了建筑垃圾申报及审搬制度,收运车辆也得以初步规范化。少数城市还建设了 建筑垃圾资源化处理厂和建筑垃圾填埋场等消纳设涟。现对国内典型城市的建筑垃圾处理现状进 行介绍。我国各地对于建筑垃圾处理的现状 北京市建筑垃圾处理现状 :
北京市垃圾渣i管理处负责全市渣土舀常管 理工作,受理跨区、县工程以及国家和市级重点 工程渣±熊潢纳(露填)孛请等;蘧、县渣土管 理部门主要负责管辖区内渣土消纳申报管理、渣 土消纳场管理等。2006年12月起,北京市规定 渣土砂石运输车辆必须持有绿色强保标悫,并安 装符合《流散物体运输车辆全密闭装置通用技术 条鳓规定的机械式全密闭装置,施工单位要优 先选用有绿色环保标恚的车辆承担渣±砂石等的 运输工作。
北京市每年设置20—30个建筑垃圾消纳场。这些消续场大部分设在五环以外,主要是将现有 大坑、窑地等经过熬理,设置照明等设施,消纳 场由企业经营,并按照市场化的物价标准向运输 单位收取费用。上海市建筑垃圾处理现状 :
1992年。上海市人民政府第10号令发布了 《上海市建筑垃圾和工程渣主处置管理魏定》,并 于1997年以市人民政府第53号令进行了修正。2005年起,建筑垃圾的日常管理和监管由区(县)负责,市渣主管理部门主要负责全市建筑垃 圾的规划、协调、政策研究、检查考核等宏观管 理[2|。
上海市建筑垃圾运输潋车辆运输为燕、车辆 运输加船舶转运为辅,车、船均采用了GPS定位、IC智能卡监控技术,有效实施建筑垃圾运输 车船作业状态监控管理。建筑垃圾末端处理通常 采取回填标高、围海造田、堆山造景等方式。2003—2005年,以标高回填、工程回填、绿化用 土等方式处理的建筑垃圾约占年产生量的60%; 以围海造田方式处理的建筑垃圾占年产生量的 30%;其余10%以临时堆放、弃置等方式处理,还有1座利用废弃混凝土块制作砌块和骨料的资 源化处理厂.年处理能力20万t。
深圳市建筑垃圾处理现状 :
深圳市环境卫生管理部门主要负责制定建筑 垃圾管理的具体实施办法,并指导、协调、监督 检查各区建筑垃圾的管理等工作;区环境卫生管 理部门主要负责清理辖区内市政道路及小区范围 内的无主建筑垃圾。深圳市在强化渣土运输规范 管理方面,率先对近5 000辆泥头车实施了密闭 加盖;在防止道路污染方面,深圳对全市施工工 地实行地毯式、24 h监督管理,规定运输车辆运 行线路和运输时间,实行全过程管理。
深圳市建筑垃圾的处理方式大体分2类:一 是未经任何处理直接填埋,约占98%;二是轻度 分拣出废金属、废混凝土,约占2%。现有3个 建筑垃圾填埋场均即将填满封场[3],其余建筑垃 圾由各街道自行消纳。深圳市拟在塘朗山填埋场 内建设l座处理能力为1 600 t/d的建筑垃圾制砖 厂,预计每年可处理建筑垃圾40万t。邯郸市建筑垃圾处理现状:
近几年,邯郸市相继出台了一系列对建筑垃 圾的综合管理政策和措施,创出一套“五化”建 筑垃圾综合管理体制,包括管理源头化、措施制 度化、市场准人化、车辆密闭化和处置资源化。邯郸市政府一方面严把建筑垃圾管理源头,规范 运输市场,健全管理制度,构建长效综合管理机 制;另一方面利用市场化运作手段,扶持筹建了 全有建筑垃圾制砖有限公司,年处理建筑垃圾40 余万t。设计年产量1.5亿块标准砖,主要原料 为拆迁建筑物形成的废旧混凝土、砖瓦、灰渣、陶 瓷等,并配比一定数量的粉煤灰和水泥。该市在建 筑垃圾资源利用方面起到了很好的示范作用[4】。
二、存在问题
1、管理体制不健全
管理体制不健全主要体现在3方面:①建筑 垃圾管理的法律、法规、政策不完善。我国至今 尚无一部国家关于建筑垃圾管理的法律文件,本领域的法律空白正由部门或地方法规、规章填补,一定程度上削弱了法律的权威性。②行业技术规 范和标准较为缺乏。目前,还没有针对建筑垃圾 处理形成全面性和系统化的技术规范和标准,仅 有少量大中城市或企业根据实际情况自行编写了 少数零星的标准、规范,定量执法的依据尚不充 分。③管理及运作部门协调约束机制尚不健全。相当一部分城市仍沿袭原有模式,政企不分,导 致建筑垃圾处理的行业垄断或者直接采取行政指 令取代规范化处理,导致有法不依的局面。
2、源头控制不力,建筑垃圾受控处理量远小 于实际排放量 目前,国内大部分城市建筑垃圾受纳量远远 低于排放量。广州市中心城区1990。2004年建筑 垃圾的总受纳量只占总排放量的32.78%。还有 67.22%主要通过偷倒乱倒的途径进行处理,不仅 占用了大量土地资源,而且阻碍交通,危害人体 健康。此外,建筑垃圾收集点设置不合理或与生 活垃圾中转站合建也导致部分建筑垃圾没有进入 受纳程序。
3、中转、运输系统设置不规范,环境污染较严重
中转、运输系统主要问题在于:①城市区域内 建筑垃圾的回填、消纳点较远,导致运输成本急剧 上升;②建筑垃圾运输过程中渣土等的飞扬撒落,影响了市容与大气环境;③清运市场混乱。建筑 垃圾运输市场最低价中标的规则使价格恶性争夺 市场的现象相当严重,有的企业甚至以偷倒乱倒 建筑垃圾等违法行为弥补成本,赚取非法利润。
4、处理方式较为落后,“三化”处理率较低
目前,我国建筑垃圾最终处置以回填为主。绝大部分建筑垃圾未经任何处理,直接运往郊外 或乡村,采用露天堆放或填埋的方式进行处理。除少数几个城市外,大部分城市没有专门的建筑 垃圾填埋场。这种简易堆填耗用大量的土地征用 等费用。此外,堆放过程中产生的粉尘、污水污 染等问题又造成了较严重的环境污染。
综上所述,国内建筑垃圾无害化、减量化和 资源化处理水平远低于发达国家。
三、解决方法
应加强源头控制,逐步实现分流与分类,力 争实现源头减量,节约建筑垃圾收运和处理费用,降低后续处理难度。源头控制模式设置应遵循如 下原则:①从设计和施工开始,抓源头减量。一 方面提高设计和施工质量,保证建筑物耐久性,延长拆除年限;另一方面改进和采用先进施工工 艺,减少建筑垃圾产生量;此外,注意建筑渣土 的就地利用。②按产生源不同,建筑垃圾应采取 大分流的收集措施。建筑渣土、装修垃圾、拆违 垃圾和泥浆应分流收运。③根据末端处理方式不 同,应逐步实现建筑垃圾的分类收集。卫生填埋 收集区域可分为有害垃圾、其它垃圾2类;回填 收集区域可分为渣土垃圾、有害垃圾和其它垃圾 3类;资源化处理收集区域可分为可回填垃圾、有害垃圾、可回收垃圾、其它垃圾4类。
建筑垃圾资源化处理方式分为3类:
一是“低级利用”。如分选处理、一般性回填 等。建筑垃圾分选主要将砖瓦、混凝土、沥青混 凝土、渣土、金属、木材、塑料、生活垃圾、有 害垃圾分离。其中,砖瓦、混凝土、沥青混凝土 可进行中级和高级利用。而金属、木材、塑料也 可以回收利用。一般性回填主要利用砖瓦、混凝 土、沥青混凝土、渣土等惰性且土力学特性较好 的建筑垃圾。
二是“中级利用”。如加工成骨料生产新型墙 体材料等。新型墙体材料的生产工序主要包括粗 选、破碎、筛分、磁选、风选等。主要骨料产品¨] 包括O~15 111113砖再生集料,0~5 mill混凝土再生 砂,5~15、15~25、25枷mill的混凝土再生集 料。这些骨料具有空隙率高的特点,适合生产混 凝土砌块,建筑隔声、保温、防火、防水墙板及 建筑装饰砖等墙体材料。
三是“高级利用”。如日本等发达国家已将建 筑垃圾还原成水泥、沥青等再利用⋯6。由于成本 较高,技术成熟度一般,目前还不宜在国内推广 应用。
建筑垃圾最终处置主要指填埋。由于组分特 性不同,建筑垃圾填埋场与生活垃圾填埋场具有 一定的差异性。建筑垃圾填埋场设计要点如下: ①工程泥浆、有害垃圾不宜进入建筑垃圾填埋场 填埋。②建筑垃圾填埋场宜针对可直接利用物质 较多,含水率较低的装修、拆违垃圾设置分选预 处理设施。③建筑垃圾填埋场宜根据组分不同设 置填埋分区。填埋区可分为建筑渣土填埋区和其 它垃圾填埋区。建筑渣土填埋区主要填埋砖瓦、混凝土、沥青混凝土、渣土等惰性物质。其它垃 圾填埋区主要填埋以装修、拆违垃圾为主的建筑 垃圾.这部分垃圾中掺混了较多生活垃圾。④建 筑渣土填埋区设计不需考虑人工防渗及雨污分流等措施,但应考虑雨水导排、易于开挖等方面内 容,开挖后还可作为建筑工地的回填料。⑤其它 垃圾填埋区中污承具有一定鹃污染性,填堙送设 计应参照生活垃圾卫生填埋场规范要求,设置人 工防渗、污水导排、雨水导排、雨污分流等措施。此外,还需设置污水处理系统。⑥建筑垃圾填壤 场(包括中转调配场)可以根据条件设置建筑垃 圾资源诧处理系统。
第四篇:建筑垃圾再利用
建筑垃圾处理后的成品:
1.建筑垃圾中的许多废弃物经分拣、剔除或粉碎后,大多可以作为再生资源重新利用。如:废钢筋、废铁丝、废电线和各种废钢配件等金属,经分拣、集中、重新回炉后,可以再加工制造成各种规格的钢材;
2.废竹木材则可以用于制造人造木材;
3.砖、石、混凝土等废料经粉碎后,可以代砂,用于砌筑砂浆、抹灰砂浆、打混凝土垫层等,还可以用于制作砌块、铺道砖、花格砖等建材制品。
再生建筑垃圾——实现建筑垃圾资源化、减量化、无害化的经济效益、社会效益和生态效益
1.利用再生原料加工再生产品,会得到政府的税收支持,有可观的经济效益
2.节省填埋费用及大量填埋用地,减少对环境的污染
3.减少对天然砂石的开采,保护了自然资源和人类生存环境,符合可持续发展战略
4.我们已经在成都都江堰建成了科技部建筑垃圾示范生产线
建筑垃圾生产
经多个建筑垃圾处理项目业主生产实践证明,郑州鼎盛生产的DPF建筑垃圾破碎机适用于:1.建筑垃圾再生砖2.建筑垃圾再生混凝土3.建筑垃圾再生稳定土骨料4.建筑垃圾再生砂浆类产品5.路基骨料6.回填土及绿化用土。该建筑垃圾破碎机在对建筑垃圾破碎过程中,具有以下几方面的优势:
图为在漯河时产120吨建筑垃圾处理生产线中使用的的DPF建筑垃圾破碎机
1、变三级破碎为一级破碎,简化工艺流程;
2、出料细,过粉碎少、颗粒成型好;
3、半敞开的排料系统,适合破碎含有少量钢筋的建筑垃圾;
4、在匀整区的衬板上设计有钢筋的凹槽,物料中混有的钢筋在经过这些凹槽后被捋出而分离;
5、配套功率小,耗电低,节能环保;
6、结构简单,维修方便,运行可靠,运营费用低;
DPF建筑垃圾破碎机在固定式建筑垃圾生产线中的应用
经过长期的研究,郑州鼎盛公司开发出采用成套破碎筛分设备将建筑垃圾加工成再生混凝土骨料、新型墙体材料的原料、道路基层填辅料等方案。其中DPF建筑垃圾破碎机常被用在固定式建筑垃圾生产线中,以DPF建筑垃圾破碎机在山西某建筑垃圾处理厂(为保护客户隐私,公司名称以某公司代替)中的实际生产情况来探究DPF建筑垃圾破碎机在固定式建筑垃圾生产线中的应用。
图1:我国每年都有大量亟待处理的含有钢筋、混凝土的建筑垃圾废弃物,图为某建筑垃圾处理厂内堆放的建筑垃圾废弃物料堆
图2:DPF建筑垃圾破碎机,建筑垃圾通过给料设备喂入DPF建筑垃圾破碎机的进料口后,堆放在机体内特设的中间托架上,锤头在中间托架的间隙中运行,将大块物料连续击碎而坠落,坠落的小块被高速运转的锤头打击到后反击板而发生细碎,再下落至均整区,锤头在均整区将物料进一步细碎化后,物料排出。同时,在均整区的衬板上设计有退钢筋的凹槽,物料中混有的钢筋在经过这些凹槽后被捋出。均整板到锤头的距离是可以调整的,距离越小,出料粒度越小,反之出料粒度就越大。
图3:建筑废弃物经DPF建筑垃圾破碎机处理后,被送到振动筛对骨料进行筛分,不同粒度的建筑垃圾骨料被皮带输送机运往建筑垃圾骨料料堆。
图4:经建筑垃圾生产线处理后,除铁器清理出来的钢筋,这些钢筋当作废品来卖,也是一笔可观的收入。
图5:经DPF建筑垃圾破碎机破碎后的建筑垃圾骨料被运往制砖生产线,用于生产各种环保砖。也有一些混凝土搅拌站从建筑垃圾处理厂购买建筑垃圾骨料,用来生产混凝土。
图6:建筑垃圾骨料再生利用制成的环保砖,这些砖既可以做墙体材料,也可以用作绿化砖,如渗水砖等。
DPF建筑垃圾破碎机生产的成品骨料有哪些用途
建筑垃圾回收利用也是建筑垃圾处理的重要部分,经建筑垃圾破碎设备破碎后的成品骨料可以用作混凝土骨料,水泥生产骨料以及生产环保砖。目前最常见也是效果最好的方式便是将破碎后的建筑垃圾骨料进行制砖,可生产绿化砖、环保砖、渗水砖等。
图为经DPF建筑垃圾破碎机破碎后的建筑垃圾骨料
如上图所示,建筑垃圾经DPF建筑垃圾破碎机破碎后的物料,大致可分为0-2.5/4.5 mm、2.5/4.5-10 mm、10-32 mm及32 mm以上超尺寸材料。根据破碎物料的粒度不同,如下图所示,可以用作以下用途:
1、0 – 2.5 mm的再生材料:用作抹墙灰浆的主要原料;或代替河沙。
2、0 – 4.5 mm的再生材料:用作砌砖灰浆的主要原料。
3、2.5/4.5-10 mm的再生材料:用作制砖的主要原料。
4、10 – 32 mm的再生材料:用作筑路原料。
5、大于 32 mm的再生材料:重新进破碎机破碎;或用于填筑路堤。
建筑垃圾国家规定
1发布施行编辑
第139号
《城市建筑垃圾管理规定》已于2005年3月1日经第53次部常务会议讨论通过,现予发布,自2005年6月1日起施行。建设部部长 汪光焘 二○○五年三月二十三日
2具体内容编辑 适用范围 第一条
为了加强对城市建筑垃圾的管理,保障城市市容和环境卫生,根据《中华人民共和国固体废物污染环境防治法》、《城市市容和环境卫生管理条例》和《国务院对确需保留的行政审批项目设定行政许可的决定》,制定本规定。
第二条
本规定适用于城市规划区内建筑垃圾的倾倒、运输、中转、回填、消纳、利用等处置活动。本规定所称建筑垃圾,是指建设单位、施工单位新建、改建、扩建和拆除各类建筑物、构筑物、管网等以及居民装饰装修房屋过程中所产生的弃土、弃料及其它废弃物。
第三条
国务院建设主管部门负责全国城市建筑垃圾的管理工作。
省、自治区建设主管部门负责本行政区域内城市建筑垃圾的管理工作。
城市人民政府市容环境卫生主管部门负责本行政区域内建筑垃圾的管理工作。
适用原则 第四条
建筑垃圾处置实行减量化、资源化、无害化和谁产生、谁承担处置责任的原则。
国家鼓励建筑垃圾综合利用,鼓励建设单位、施工单位优先采用建筑垃圾综合利用产品
第五条
建筑垃圾消纳、综合利用等设施的设置,应当纳入城市市容环境卫生专业规划。
第六条 城市人民政府市容环境卫生主管部门应当根据城市内的工程施工情况,制定建筑垃圾处置计划,合理安排各类建设工程需要回填的建筑垃圾。
第七条
处置建筑垃圾的单位,应当向城市人民政府市容环境卫生主管部门提出申请,获得城市建筑垃圾处置核准后,方可处置。
城市人民政府市容环境卫生主管部门应当在接到申请后的20日内作出是否核准的决定。予以核准的,颁发核准文件;不予核准的,应当告知申请人,并说明理由。城市建筑垃圾处置核准的具体条件按照《建设部关于纳入国务院决定的十五项行政许可的条件的规定》执行。
建筑垃圾处理再利用的方式
建筑垃圾处理迫在眉睫,现在城市的大量拆迁,产生大量的固体废弃物,建筑垃圾的危害已经给大家详细说明。但是遇到建筑垃圾该怎么处理,今天我就带大家一起来探讨建筑垃圾破碎、建筑垃圾处理、建筑垃圾再利用的几点观点?
一、建筑垃圾何去何从?
当前,在如火如荼的新城市建设中,城中村改造、拆临拆违、旧城改造等工程实施步伐不断加快,城市变得越来越美的同时,建筑垃圾产生量却在与日俱增,成为环境保护的又一大难点。建筑垃圾犹如城市建设的伴生“疮”,既侵占土地,还对周边环境产生严重影响,甚至带来围城之患,若不及时有效治理,必将后患无穷。城市建筑垃圾治理有望破局,但任重道远。
城市建设速度加快,垃圾数量不断猛增。去年6月各地都启动重建改造工作的片区城中村重建改造项目工地,粉刷一新、一人多高的围墙里,被拆得千疮百孔的建筑物旁,没有运走的大量建筑垃圾散落在近百亩空地上。而在部分片区改造施工现场,各种大型拆迁机械正在全速运转,一间间房屋瞬间轰然倒地,在腾起的团团尘雾下顷刻间变成越来越多的建筑垃圾。
这两处工地的建筑垃圾仅是中国各大城市成百上千个施工点的缩影。按照相关规定,主城区建筑垃圾只能在晚上固定时间段转运。每到这种时候,成群结队的渣土车穿行在城市大街上,车声隆隆,场面甚是壮观。尽管如此,城里产生的建筑垃圾并未见少,仍然此生彼长。
违规消纳不断,污染形势日益严峻。长期以来,巨量的建筑垃圾,在给市民的生活带来影响的同时,也给城市环境埋下了更多的污染隐患。据了解,近年来,因缺乏统一完善的建筑垃圾管理办法和规范的处置场所,城市大量建筑垃圾多采取扔弃、填埋等简单方式处理。
侵占土地、随意丢弃填埋、看得到的粉尘,乃至下雨天从垃圾堆流出的污水,只是建筑垃圾造成严重环境污染影响的冰山一角。据了解,由于建筑垃圾中的建筑用胶、涂料、油漆等属于难以降解的高分子聚合物材料,并含有有害的重金属元素,它们被埋到地下,会污染地下水,直接危害到周边居民的生活。
众所周知,随着科技的不断发展,建筑垃圾早已被看成是放错了地方的资源。回收利用步履蹒跚而解决问题又迫在眉睫的中国,建筑垃圾的归途到底在哪里?
据了解,废弃物资源化国家工程研究中心在对城市城中村改造中建筑垃圾的问题进行深入调查后认为,近5年来各大城市建筑垃圾的产生呈现出数量巨大、产生周期集中等新特点,要改变目前建筑垃圾主要还是采取回填、填埋和露天堆放为主的方式,急需寻找新的处理渠道,以科学、经济、有效的方式进行建筑垃圾资源化处理。庞大的建筑垃圾,各城市以资源化处理为主,工程弃土将以回填、复垦、覆土绿化为主,逐步降低以回填和填埋方式处置建筑垃圾的比例以新型的资源化处理基地替代传统的消纳场。今年,昆明市建成1个~2个工艺水平、装备水平和管理水平先进的建筑垃圾规范化处理示范工程,主城4区各建成一个过渡性建筑垃圾处置场并投入运营,完成全市建筑垃圾资源化处理项目的生产力布局,2012年年底,力争实现全市建筑垃圾处置率达100%、资源化利用率达95%以上的目标。
二、建筑垃圾处理再利用的方式
随着城市化进程的不断加快,城市中建筑垃圾的产生和排出数量也在快速增长。人们在享受城市文明同时,也在遭受城市垃圾所带来的烦恼,其中建筑垃圾就占有相当大的比例,约占垃圾总量的30%~40%,因此如何处理和利用越来越多的建筑垃圾,已经成为各级政府部门和建筑垃圾处理单位所面临的一个重要课题。
建筑垃圾中的许多废弃物经分拣、剔除或粉碎后,大多是可以作为再生资源重新利用的,建筑垃圾处理再利用的方式主要有:
(1)利用废弃建筑混凝土和废弃砖石生产粗细骨料,可用于生产相应强度等级的混凝土、砂浆或制备诸如砌块、墙板、地砖等建材制品。粗细骨料添加固化类材料后,也可用于公路路面基层。
(2)利用废砖瓦生产骨料,可用于生产再生砖、砌块、墙板、地砖等建材制品。
(3)渣土可用于筑路施工、桩基填料、地基基础等。
(4)对于废弃木材类建筑垃圾,尚未明显破坏的木材可以直接再用于重建建筑,破损严重的
木质构件可作为木质再生板材的原材料或造纸等。
(5)废弃路面沥青混合料可按适当比例直接用于再生沥青混凝土。
(6)废弃道路混凝土可加工成再生骨料用于配制再生混凝土。
(7)废钢材、废钢筋及其他废金属材料可直接再利用或回炉加工。
(8)废玻璃、废塑料、废陶瓷等建筑垃圾视情况区别利用。
第五篇:建筑垃圾运输
建筑垃圾运输、消纳协议书
为了加强环境保护管理工作,施工现场产生的垃圾必须及时清理外运。建筑垃圾运输、消纳由王宏负责,为明确双方责任特制定此协议。
甲方:浙江宝业绿城百合公寓六标段项目部 乙方: 王宏
协议期限:自2006年3月25日至2007年9月15日 双方责任与义务:
1、甲乙双方认真执行国家有关安全生产的法律、法规,认真遵守交通法规及安全生产规章制度。
2、甲方在乙方进行垃圾运输、消纳过程中进行监督检查,以免有公司财产损失,有权对乙方进行经济处罚。
3、4、甲方为乙方提供场内道路,按月给予结算(100元/车)。乙方车辆进入现场服从甲方管理,速度不得超过5公里/小时。司机持证上岗,保持车况完好,尾气排放符合标准。垃圾消纳点按甲方制定地点进行处理。
5、乙方在装车前对施工垃圾要进行洒水降尘,严禁出现装车扬尘现象。装车的时候要对垃圾进行分拣,金属、塑料等凡是有价值的东西拣出来,归项目部所有。车斗要装满但不要超载,车辆要进行苫盖,并保证苫盖严密,防止在外运的过程中造成遗洒。
6、乙方车辆要注意施工现场地埋管和架空线路。在高、中考期间晚22时至次日晨6时禁止施工,做到文明施工、不扰民。
7、乙方在进行施工垃圾外运的过程中的一切问题自行解决,甲方不负任何责任。
甲方负责人签字:
乙方负责人签字:
公章
年
月
****年**月**日
日